Application des surfaces de réponse pour l'analyse abiliste d'une structure spatiale
|
|
|
- Achille Langevin
- il y a 8 ans
- Total affichages :
Transcription
1 Application des surfaces de réponse pour l'analyse abiliste d'une structure spatiale 6 eme Journées Nationales de Fiabilité Nicolas ROUSSOULY 1,2, Michel SALAUN 2, Frank PETITJEAN 1, Fabrice BUFFE 3, Anne CARPINE 4 1 ICAM, 2 Université de Toulouse, ICA, ISAE 3 CNES, 4 Thales Alenia Space Mars 2010
2 2/21 Sommaire 1 2 3
3 3/21 Plan 1 2 3
4 4/21 Contexte Pourquoi l'approche probabiliste dans le domaine spatial? Le choix de la solution optimale doit intégrer une vision technique et nancière. Il faut fournir une information plus riche sur le plan technique pour aider le décideur. L'approche probabiliste intégre dans l'information nale le contenu des hypothèses de départ. La contribution technique dans le processus de décision : anoncer une probabilité de défaillance à chaque solution.
5 5/21 Choix de la méthode Pourquoi les surfaces de réponses? Approche non-intrusive. Approche plus souple (ré-analyse, optimisation...). Comportement mécanique simple (linéaire, élastique), réponses régulières. Variations des paramètres faibles.
6 6/21 Plan 1 2 3
7 7/ r s Failure domain Success domain Limit state Méta-modélisation Outputs Inputs Mechanical Parameters Materials Geometries Loads... Propagation of uncertainties Finite element model Mechanical Results Stresses Displacements Frequencies... Statistical information Random variables Normal law Uniform law Weibull law... Expectation, variance Distribution law Variance decomposition... Reliability f R,S Propagation of uncertainties Metamodel Response surface Probability of failure
8 8/21 Les surfaces de réponse A partir d'un échantillon statistique de taille N, on cherche un modèle de regression linéaire : y = X β + ε y vecteur des observations ; X matrice des régresseurs de taille N K (N > K ), de rang maximum ; β vecteur des coecients à déterminer ; ε vecteur des erreurs.
9 /21 Résolution La méthode des moindres carrés donne une estimation des paramètres β par : ˆβ = min β R K y X β 2 et on obtient : ˆβ = (X T X ) 1 X T y
10 Qualité du modèle Comment évaluer la qualité de prédiction du modèle? L'erreur d'apprentissage (somme des carrés résiduelle, notée SCR) n'est pas un bon indicateur Exemple : 6 Métamodèle Modèle de référence 10/21 4 Point d'apprentissage
11 11/21 Qualité du modèle Possibilités : Estimer l'erreur sur un autre échantillon, diérent de celui d'apprentissage : couteux.
12 11/21 Qualité du modèle Possibilités : Estimer l'erreur sur un autre échantillon, diérent de celui d'apprentissage : couteux. Estimer l'erreur par un critère de pénalisation de la forme : J = f (SCR) + pénalisation où pénalisation = f (Nombre de regresseurs). Exemple : Cp de Mallows, AIC, BIC, R 2 ajusté.
13 11/21 Qualité du modèle Possibilités : Estimer l'erreur sur un autre échantillon, diérent de celui d'apprentissage : couteux. Estimer l'erreur par un critère de pénalisation de la forme : J = f (SCR) + pénalisation où pénalisation = f (Nombre de regresseurs). Exemple : Cp de Mallows, AIC, BIC, R 2 ajusté. Estimer l'erreur par simulation en construisant des sous-échantillons à partir de l'échantillon de base : Validation Croisée : découpage de l'échantillon de base en plusieurs sous-ensembles ; Bootstrap : construction de sous-échantillons de taille N par tirages aléatoires avec remise dans l'échantillon de base.
14 12/21 Construction du modèle Lorsque le nombre de variables est important, le nombre de régresseurs peut être très important (modèle quadratique avec interactions). On cherche un sous-ensemble de regresseurs de manière itérative. Sélection forward, backward, stepwise, sequential replacement. Sélection du meilleur sous-ensemble de régresseurs au sens d'un critère de pénalisation.
15 12/21 Construction du modèle Lorsque le nombre de variables est important, le nombre de régresseurs peut être très important (modèle quadratique avec interactions). On cherche un sous-ensemble de regresseurs de manière itérative. Sélection forward, backward, stepwise, sequential replacement. Sélection du meilleur sous-ensemble de régresseurs au sens d'un critère de pénalisation. Pour utiliser les 4 critères (Cp, AIC, BIC et R 2 ajusté) : recherche forward au sens de la SCR ; comparaison des modèles de niveau diérent (1 regresseur, puis 2...) au sens des critères de pénalisation ; parmi les 4 modèles potentiels, sélection du meilleur au sens de la validation croisée.
16 13/21 Validation du modèle L'indicateur d'erreur nal est fourni par le bootstrap : variations maximales des prédictions.
17 13/21 Validation du modèle L'indicateur d'erreur nal est fourni par le bootstrap : variations maximales des prédictions. 0 5 Learning points 5% of exact variation Predicted response Exact response
18 13/21 Validation du modèle L'indicateur d'erreur nal est fourni par le bootstrap : variations maximales des prédictions. Le modèle est validé par l'inuence de son erreur sur la probabilité de défaillance : soit ˆφ le méta-modèle d'une réponse mécanique ; X 1 et X 2 des vecteurs de variables aléatoires ; G(X 1, ˆφ(X 2 )) la fonction de performance associée à la réponse. On dénit les probabilités : P f + = P(G(X1, ˆφ(X2) + ε sup ) 0) P f = P(G(X1, ˆφ(X2) ε inf ) 0) où ε sup et ε inf sont les variations maximales supérieure et inférieure observées par bootstrap.
19 14/21 Plan 1 2 3
20 15/21 Description du modèle - TARANIS ddl 8 cas de chargements statiques Temps de calcul unitaire environ 2 min
21 16/21 Descriptif de l'étude Marge élastique dans les panneaux latéraux, inférieur et supérieur : MS elas = R e 1 σ calc Marge de glissement dans les vis d'interface entre le plateau inférieur et les panneaux latéraux : MS gliss = F preload F N 1 F T f ass 151 variables aléatoires, 81 dans le modèle éléments nis : épaisseurs uniformes 10% propriétés matériaux gausiennes 4% limites élastiques, précharges, coecients de frottement gaussiennes 10% 1200 réponses, 150 étudiées.
22 Démarche progressive Etape 1 : termes linéaires et carrés (échantillonnage Latin Hypercube dimensionné pour un modèle linéaire 3K ). Etape 2 : ajout des termes d'interaction (sans augmenter le plan). Sélection des termes inuents par analyse de sensibilité : méthode de MORRIS OAT, 3K calculs. 1 b 1 Percentage of cumulative importance of variables /21 Percentage of variable
23 18/21 Erreurs des métamodèles
24 19/21 Résultat des probabilités de défaillance 10 6 tirages
25 20/21 Résultat des indices de abilité Erreur relative max : 5.1%
26 21/21 Conclusions Nombre de calculs éléments nis : 492. Temps total environ 20h. Les surfaces de réponse permettent d'obtenir des résultats corrects Perspective : Changement des lois Utilisation multiple (optimisation...) Analyse de réponses dynamiques
TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie
PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux [email protected] www.pressesagro.be
Intérêt du découpage en sous-bandes pour l analyse spectrale
Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,
FIMA, 7 juillet 2005
F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation
Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)
Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut
STATISTIQUES. UE Modélisation pour la biologie
STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres
La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites
La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur
Modélisation intégrée des écoulements pour la gestion en temps réel d'un bassin versant anthropisé
1 TGR Modélisation intégrée des écoulements pour la gestion en temps réel d'un bassin versant anthropisé Simon Munier Institut des Sciences et Industries du Vivant et de l'environnement (AgroParisTech)
Bureau : 238 Tel : 04 76 82 58 90 Email : [email protected]
Dominique Muller Laboratoire Inter-universitaire de Psychologie Bureau : 238 Tel : 04 76 82 58 90 Email : [email protected] Supports de cours : webcom.upmf-grenoble.fr/lip/perso/dmuller/m2r/acm/
OpenFLUID Software Environment for Modelling Fluxes in Landscapes
OpenFLUID Software Environment for Modelling Fluxes in Landscapes TP MHYDAS : Mise en uvre, analyses de sensibilité et de scénarii du modèle hydrologique distribué MHYDAS - Application au bassin versant
Exemples d application
AgroParisTech Exemples d application du modèle linéaire E Lebarbier, S Robin Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations 4 2 Régression linéaire simple 7 21 Présentation 7 211 Objectif
Rupture et plasticité
Rupture et plasticité Département de Mécanique, Ecole Polytechnique, 2009 2010 Département de Mécanique, Ecole Polytechnique, 2009 2010 25 novembre 2009 1 / 44 Rupture et plasticité : plan du cours Comportements
AICp. Vincent Vandewalle. To cite this version: HAL Id: inria-00386678 https://hal.inria.fr/inria-00386678
Sélection prédictive d un modèle génératif par le critère AICp Vincent Vandewalle To cite this version: Vincent Vandewalle. Sélection prédictive d un modèle génératif par le critère AICp. 41èmes Journées
TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.
STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,
$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU
$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU Fabien FIGUERES [email protected] 0RWVFOpV : Krigeage, plans d expériences space-filling, points de validations, calibration moteur. 5pVXPp Dans le
Commande Prédictive des. Convertisseurs Statiques
Commande Prédictive des Convertisseurs Statiques 1 Classification des méthodes de commande pour les convertisseurs statiques Commande des convertisseurs Hystérésis MLI Cde Linéaire Fuzzy Logic Sliding
Echantillonnage Non uniforme
Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas
Soutenance de stage Laboratoire des Signaux et Systèmes
Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud
Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation
Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation Laurent Denis STATXPERT Journée technologique "Solutions de maintenance prévisionnelle adaptées à la production" FIGEAC,
Mesures de Risque Multipériodes Cohérentes Appliquées au Compte à Terme
TFE Ingénieur Civil Mathématiques Appliquées 24 juin 2010 Mesures de Risque Multipériodes Cohérentes Appliquées au Compte à Terme Auteur Christophe Pochet Promoteur Pierre Devolder Comment garantir la
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
Analyse de la variance Comparaison de plusieurs moyennes
Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction
Validation probabiliste d un Système de Prévision d Ensemble
Validation probabiliste d un Système de Prévision d Ensemble Guillem Candille, janvier 2006 Système de Prévision d Ensemble (EPS) (ECMWF Newsletter 90, 2001) Plan 1 Critères de validation probabiliste
Liste des notes techniques... xxi Liste des encadrés... xxiii Préface à l édition internationale... xxv Préface à l édition francophone...
Liste des notes techniques.................... xxi Liste des encadrés....................... xxiii Préface à l édition internationale.................. xxv Préface à l édition francophone..................
Une comparaison de méthodes de discrimination des masses de véhicules automobiles
p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans
Les techniques des marchés financiers
Les techniques des marchés financiers Corrigé des exercices supplémentaires Christine Lambert éditions Ellipses Exercice 1 : le suivi d une position de change... 2 Exercice 2 : les titres de taux... 3
NOTE SUR LA MODELISATION DU RISQUE D INFLATION
NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
Renforcement des trois compétences : compréhension orale, expression orale et expression écrite à partir de documents et vidéos.
Master Mathématiques et Applications Spécialité : Ingénierie mathématique et modélisation Parcours : Mathématique et Informatique : Statistique, Signal, Santé (MI3S) 2015-2016 RÉSUMÉ DES COURS : (dernière
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
CONFERENCE PALISADE. Optimisation robuste d un plan d expériences par simulation Monte-Carlo Concepts de «Design Space» et de «Quality by Design»
CONFERENCE PALISADE Optimisation robuste d un plan d expériences par simulation Monte-Carlo Concepts de «Design Space» et de «Quality by Design» 1 SIGMA PLUS Logiciels, Formations et Etudes Statistiques
Conception systematique d'algorithmes de detection de pannes dans les systemes dynamiques Michele Basseville, Irisa/Cnrs, Campus de Beaulieu, 35042 Rennes Cedex, bassevilleirisa.fr. 1 Publications. Exemples
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
ÉCOLE CENTRALE PARIS LABORATOIRE DE MÉCANIQUE SOLS, STRUCTURES ET MATÉRIAUX. Thèse. présentée par. Éric Savin
ÉCOLE CENTRALE PARIS LABORATOIRE DE MÉCANIQUE SOLS, STRUCTURES ET MATÉRIAUX Thèse présentée par Éric Savin pour l'obtention du Grade de Docteur de l'école Centrale de Paris FORMATION DOCTORALE SPÉCIALITÉ
Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage
Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage Journées de Méthodologie Statistique Eric Lesage Crest-Ensai 25 janvier 2012 Introduction et contexte 2/27 1 Introduction
Programmation Linéaire - Cours 1
Programmation Linéaire - Cours 1 P. Pesneau [email protected] Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.
Projet de Traitement du Signal Segmentation d images SAR
Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,
1 Imputation par la moyenne
Introduction au data mining L3 MIS - STA 1616-2010 V. Monbet Données manquantes L'objectif de ce TD est de manipuler et de comparer plusieurs méthodes d'imputation de données manquantes. La première partie
Une introduction. Lionel RIOU FRANÇA. Septembre 2008
Une introduction INSERM U669 Septembre 2008 Sommaire 1 Effets Fixes Effets Aléatoires 2 Analyse Classique Effets aléatoires Efficacité homogène Efficacité hétérogène 3 Estimation du modèle Inférence 4
Couplage efficace entre Optimisation et Simulation stochastique Application à la maintenance optimale d une constellation de satellites
Couplage efficace entre Optimisation et Simulation stochastique Application à la maintenance optimale d une constellation de satellites Benoît Beghin Pierre Baqué André Cabarbaye Centre National d Etudes
Estimation du coût de l incessibilité des BSA
Estimation du coût de l incessibilité des BSA Jean-Michel Moinade Oddo Corporate Finance 22 Juin 2012 Incessibilité des BSA Pas de méthode académique reconnue Plusieurs méthodes «pratiques», dont une usuelle
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
un environnement économique et politique
Vision d un économiste sur le risque agricole et sa gestion un sol un climat un environnement économique et politique Jean Cordier Professeur Agrocampus Ouest Séminaire GIS GC HP2E Prise en compte du risque
Principe de symétrisation pour la construction d un test adaptatif
Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, [email protected] 2 Université
Elaboration et Suivi des Budgets
Elaboration et Suivi des Budgets 1 1- La Notion Du contrôle de Gestion 2- La Place du Contrôle de Gestion dans le système organisationnel 3- La Notion des Centres de responsabilité 4- La procédure budgétaire
Evaluation de la variabilité d'un système de mesure
Evaluation de la variabilité d'un système de mesure Exemple 1: Diamètres des injecteurs de carburant Problème Un fabricant d'injecteurs de carburant installe un nouveau système de mesure numérique. Les
Évaluation de la régression bornée
Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement
Laboratoire d Automatique et Productique Université de Batna, Algérie
Anale. Seria Informatică. Vol. IX fasc. 2 Annals. Computer Science Series. 9 th Tome st Fasc. 2 La sélection de paramètres d un système industriel par les colonies de fourmis Ouahab Kadri, L. Hayet Mouss,
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
Mémoire d Actuariat Tarification de la branche d assurance des accidents du travail Aymeric Souleau [email protected] 3 Septembre 2010 Plan 1 Introduction Les accidents du travail L assurance des
Optimisation Combinatoire et Colonies de Fourmis Nicolas Monmarche April 21, 1999 Sommaire Inspiration biologiques Ant Colony Optimization Applications TSP QAP Flow Shop Problemes dynamiques 1 Historique
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,
Filtrage stochastique non linéaire par la théorie de représentation des martingales
Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de
IFT3245. Simulation et modèles
IFT 3245 Simulation et modèles DIRO Université de Montréal Automne 2012 Tests statistiques L étude des propriétés théoriques d un générateur ne suffit; il estindispensable de recourir à des tests statistiques
Application de la méthode de surface de réponse stochastique à l analyse de stabilité d un tunnel pressurisé
Application de la méthode de surface de réponse stochastique à l analyse de stabilité d un tunnel pressurisé Guilhem Mollon 1, Daniel Dias 2, Abdul-Hamid Soubra 3 1 Doctorant, Laboratoire de Génie Civil
chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d
Laboratoire de Mécanique et Ingénieriesnieries EA 3867 - FR TIMS / CNRS 2856 ER MPS Modélisation stochastique d un d chargement d amplitude variable à partir de mesures Application à l approche fiabiliste
TD 3 : suites réelles : application économique et nancière
Mathématiques Appliquées Cours-TD : K. Abdi, M. Huaulmé, B. de Loynes et S. Pommier Université de Rennes 1 - L1 AES - 009-010 TD 3 : suites réelles : application économique et nancière Exercice 1 Calculer
Catalogue de formation
Enregistré sous le numéro : 11 91 012 9991 auprès du Commissaire de la République de la Région Ile de France et du Département de Paris, CADLM propose un ensemble de formation dont les programmes sont
EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG
Exploitations pédagogiques du tableur en STG Académie de Créteil 2006 1 EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Commission inter-irem lycées techniques contact : [email protected] La maquette
Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R
Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences
Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»
Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences
Ordonnancement robuste et décision dans l'incertain
Ordonnancement robuste et décision dans l'incertain 4 ème Conférence Annuelle d Ingénierie Système «Efficacité des entreprises et satisfaction des clients» Centre de Congrès Pierre Baudis,TOULOUSE, 2-4
FORMULAIRE DE STATISTIQUES
FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)
Couples de variables aléatoires discrètes
Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude
Équation de Langevin avec petites perturbations browniennes ou
Équation de Langevin avec petites perturbations browniennes ou alpha-stables Richard Eon sous la direction de Mihai Gradinaru Institut de Recherche Mathématique de Rennes Journées de probabilités 215,
Une plate-forme pour la quantification des incertitudes sous Matlab
UQLab Une plate-forme pour la quantification des incertitudes sous Matlab Bruno Sudret Stefano Marelli ETH Zürich, Institute of Structural Engineering Chair of Risk, Safety & Uncertainty Quantification
Exercice : la frontière des portefeuilles optimaux sans actif certain
Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué
Mémoire d actuariat - promotion 2010. complexité et limites du modèle actuariel, le rôle majeur des comportements humains.
Mémoire d actuariat - promotion 2010 La modélisation des avantages au personnel: complexité et limites du modèle actuariel, le rôle majeur des comportements humains. 14 décembre 2010 Stéphane MARQUETTY
Introduction au Data-Mining
Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
P M L R O G W. sylomer. Gamme de Sylomer Standard. Propriétés Méthode de test Commentaires. Polyuréthane (PUR) Cellulaire mixte
Matière : Couleur : Polyuréthane (PUR) Cellulaire mixte Gris Recommandations d usage : Pression (dépend du facteur de forme) Déflexion Pression statique maximum :. N/mm ~ % Pression dyn. maximum :. N/mm
Interception des signaux issus de communications MIMO
Interception des signaux issus de communications MIMO par Vincent Choqueuse Laboratoire E 3 I 2, EA 3876, ENSIETA Laboratoire LabSTICC, UMR CNRS 3192, UBO 26 novembre 2008 Interception des signaux issus
Systèmes de transmission
Systèmes de transmission Conception d une transmission série FABRE Maxime 2012 Introduction La transmission de données désigne le transport de quelque sorte d'information que ce soit, d'un endroit à un
Gestion optimale des unités de production dans un réseau compte tenu de la dynamique de la température des lignes
Gestion optimale des unités de production dans un réseau compte tenu de la dynamique de la température des lignes M. Nick, R. Cherkaoui, M. Paolone «Le réseau électrique de demain» - EPFL, 21.05.2015 Table
Théorie des sondages : cours 5
Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne e-mail : [email protected] Master Besançon-2010 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur
Leçon N 4 : Statistiques à deux variables
Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d
ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring
ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des
PROGRAMME (Susceptible de modifications)
Page 1 sur 8 PROGRAMME (Susceptible de modifications) Partie 1 : Méthodes des revues systématiques Mercredi 29 mai 2013 Introduction, présentation du cours et des participants Rappel des principes et des
ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE
ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE ANALYSIS OF THE EFFICIENCY OF GEOGRIDS TO PREVENT A LOCAL COLLAPSE OF A ROAD Céline BOURDEAU et Daniel BILLAUX Itasca
COURS GESTION FINANCIERE A COURT TERME SEANCE 2 COUVERTURE DU BESOIN DE FINANCEMENT CHOIX DU NIVEAU DU FONDS DE ROULEMENT
COURS GESTION FINANCIERE A COURT TERME SEANCE 2 COUVERTURE DU BESOIN DE FINANCEMENT CHOIX DU NIVEAU DU FONDS DE ROULEMENT SEANCE 2 COUVERTURE DU BESOIN DE FINANCEMENT CHOIX DU NIVEAU DU FONDS DE ROULEMENT
Assises Européennes du Bâtiment Basse Consommations. Frédéric ric FRUSTA. Président Directeur Général. ENERGIVIE 25 Juin 2010
c1 Assises Européennes du Bâtiment Basse Consommations Frédéric ric FRUSTA Président Directeur Général ENERGIVIE 25 Juin 2010 Diapositive 1 c1 Merci de me fournir le texte complet de la page de titre cql;
Exemples de dynamique sur base modale
Dynamique sur base modale 1 Exemples de dynamique sur base modale L. CHAMPANEY et Ph. TROMPETTE Objectifs : Dynamique sur base modale réduite, Comparaison avec solution de référence, Influence des modes
VI. Tests non paramétriques sur un échantillon
VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes
Généralités. Aperçu. Introduction. Précision. Instruction de montage. Lubrification. Conception. Produits. Guides à brides FNS. Guides standards GNS
Généralités Aperçu Introduction Précision Instruction de montage Lubrification Conception page............................. 4............................. 5............................. 6.............................
ELASTICITE DE LA DEMANDE Calcul de l'elasticite & Applications Plan du cours I. L'elasticite de la demande & ses determinants II. Calcul de l'elasticite & pente de la courbe de demande III. Applications
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
FONCTION COMPTAGE BINAIRE ET DIVISION DE FRÉQUENCE
I/ GÉNÉRALITÉS I.1/ Fonction Un compteur binaire est utilisé : -pour compter un certain nombre d'évènements binaires -pour diviser la fréquence d'un signal logique par 2 m Page 1 FONCTION COMPTAGE BINAIRE
FONCTION DE DEMANDE : REVENU ET PRIX
FONCTION DE DEMANDE : REVENU ET PRIX 1. L effet d une variation du revenu. Les lois d Engel a. Conditions du raisonnement : prix et goûts inchangés, variation du revenu (statique comparative) b. Partie
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
MODELES DE DUREE DE VIE
MODELES DE DUREE DE VIE Cours 1 : Introduction I- Contexte et définitions II- Les données III- Caractéristiques d intérêt IV- Evènements non renouvelables/renouvelables (unique/répété) I- Contexte et définitions
Glissière linéaire à rouleaux
LRX Guidage linéaire Introduction Rail de guidage Joint Graisseur Corps Rouleaux cylindriques Joint Cage Couvercle d extrémité Les guides linéaires à rouleaux de la série LRX offrent une haute fiabilité
Système ASC unitaire triphasé. PowerScale 10 50 kva Maximisez votre disponibilité avec PowerScale
Système ASC unitaire triphasé 10 50 kva Maximisez votre disponibilité avec Protection de première qualité est un système ASC triphasé de taille moyenne qui offre une protection électrique remarquable pour
DOCUMENT DE TRAVAIL DES SERVICES DE LA COMMISSION RÉSUMÉ DE L'ANALYSE D'IMPACT. accompagnant le document:
COMMISSION EUROPÉENNE Bruxelles, le 22.4.2015 SWD(2015) 88 final DOCUMENT DE TRAVAIL DES SERVICES DE LA COMMISSION RÉSUMÉ DE L'ANALYSE D'IMPACT accompagnant le document: Rapport de la Commission au Parlement
Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels
Etab=MK3, Timbre=G430, TimbreDansAdresse=Vrai, Version=W2000/Charte7, VersionTravail=W2000/Charte7 Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels
Construction de l'intégrale de Lebesgue
Université d'artois Faculté des ciences Jean Perrin Mesure et Intégration (Licence 3 Mathématiques-Informatique) Daniel Li Construction de l'intégrale de Lebesgue 10 février 2011 La construction de l'intégrale
SOLUTION DE GESTION COMMERCIALE POUR IMPRIMEURS
SOLUTION DE GESTION COMMERCIALE POUR IMPRIMEURS ENJEU: PRODUCTIVITÉ ET EFFICACITÉ COMMERCIALE DES BESOINS, UNE SOLUTION Pour un imprimeur de petite ou moyenne taille, le devisage est complexe o Chaque
Intelligence Economique - Business Intelligence
Intelligence Economique - Business Intelligence Notion de Business Intelligence Dès qu'il y a une entreprise, il y a implicitement intelligence économique (tout comme il y a du marketing) : quelle produit
FINANCEMENT OPTIMAL DE LA SOLVABILITE D UN ASSUREUR
FINANCEMENT OPTIMAL DE LA SOLVABILITE D UN ASSUREUR Guillaume PLANTIN GREMAQ Université Toulouse I 1 La détermination d un plan de réassurance optimal est une des applications les plus classiques de la
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
