Dimension: px
Commencer à balayer dès la page:

Download ""

Transcription

1 Conception systematique d'algorithmes de detection de pannes dans les systemes dynamiques Michele Basseville, Irisa/Cnrs, Campus de Beaulieu, Rennes Cedex, bassevilleirisa.fr. 1 Publications. Exemples Publication originale [1 ] A. Benveniste, M. Basseville, G. Moustakides (1987). The asymptotic local approach to change detection and model validation. IEEE Trans. Automatic Control, vol.ac-32, no 7, pp Points d'entree bibliographiques conseilles [2 ] M. Basseville (1997). Statistical approaches to industrial monitoring problems - Fault detection and isolation. Plenary Talk, 11th Ifac/Ifors Symp. Identication and System Parameter Estimation - Sysid'97, Fukuoka, Japan. { Rapport de Recherche Irisa no 1122/ Inria no ftp://ftp.irisa.fr/techreports/1997/pi-1122.ps.gz. [3 ] M. Basseville, A. Benveniste, Q. Zhang (1996). Surveillance d'installations industrielles : demarche generale et conception de l'algorithmique. Rapport de Recherche Irisa no 1010/ Inria no ftp://ftp.irisa.fr/techreports/1996/pi-1010.ps.gz. Exemples d'applications Surveillance vibratoire des machines et structures : Changements de la structure propre de la matrice de transition d'etat d'un systeme lineaire dynamique [8, 6]. Surveillance des chambres de combustion d'une turbine a gaz : Changements de parametres dans un systeme non-lineaire statique [7]. Surveillance du pot catalytique d'une automobile : Changements de parametres dans un systeme non-lineaire dynamique [10]. 2 Objectifs Construction systematique d'algorithmes de detection de pannes dans des systemes dynamiques, l'objectif privilegie etant la surveillance de pannes de systeme, plus delicate que celle des pannes de capteurs ou d'actionneurs (voir gure 1). On ne parle ici que de detection. Le diagnostic est traite dans les references citees, en particulier [4]. 1

2 i changement de o U connue Systeme Y W s inconnue W o inconnue Figure 1: Trois types de pannes. Les donnees mesurees en sortie Y sont considerees comme la sortie d'un systeme parametre par un vecteur de parametre, et ayant plusieurs sortes d'entree, ce que, negligeant la dynamique, on peut ecrire : Y = g(; U + i ;W s )+ o + W o. On suppose l'entree U connue (mesuree). La quantite inconnue W s represente les entrees non mesurees, les excitations et perturbations inconnues et nonstationnaires du systeme, et les bruits en entree. La quantite inconnue W o represente les bruits en sortie. Les pannes (d'actionneurs) i sur les entrees et (de capteurs) o sur les sorties operent additivement, alors que les pannes (de composants) du systeme agissent par des changements du parametre. 3 Principes de la methode Approche par modeles parametriques, au sens large (i.e. un reseau de neurones ou d'ondelettes est un modele parametrique, dans lequel les parametres sont les poids, et le cas echeant les coecients de translation et dilatation [11]). Decomposition de la construction de detecteurs en deux etapes fondamentales : Fabrication d'un residu primaire : processus vectoriel H(; Y; U), transformation convenable des signaux mesures (entrees U et sorties Y ), qui reete les pannes par un changement de son vecteur moyenne. Fabrication d'un residu normalise, construit a partir de H, qui est un vecteur (et pas un processus) Z(; Y; U), Gaussien de covariance connue (calculable a partir des signaux mesures). Une grande classe de problemes de detection portant sur le parametre d'un processus aleatoire, se trouvent ainsi reduits au probleme, tres simple, de detection de changement dans la moyenne d'un vecteur Gaussien. Le seul travail conceptuel a faire est donc de trouver une fonction H pertinente. Residu primaire et fonction d'estimation. On note Y 1 un echantillon de taille de donnees Y,et, sans restreindre la generalite, on supprime la mention explicite de l'entree U (connue ou mesuree). Denition 3.1 Une fonction H(; Y k 1 ) 1 est un residu primaire sielleestdierentiable en et s'il existe un voisinage ( 0 ) tel que E H( 0 ; Y k 1 ) = 0 si = 0 (1) E H( 0 ; Y k 1 ) 6= 0 si 2 ( 0) n 0 ; (2) ou E est l'esperance lorsque le parametre du systeme est. Pour isoler des (sous-ensembles de) composantes de, une requ^ete supplementaire est que la matrice Jacobienne M( 0 ) =, E 0 H(; Y 1 k ) soit de rang colonne plein. (3) 1 Cette notation doit ^etre interpretee [2]. Voir presentation formelle en [9][part1,chap.5] et [5][chap8]. 2

3 A cause de (1)-(2), qui est exactement une condition d'identiabilite locale, il y aunlien etroit entre un residu primaire et une fonction d'estimation. Voir cependant les remarques faites a la n. A cause de (3), la dimension d'un residu primaire doit ^etre superieure ou egale a celle du parametre. Deux exemples typiques d'une telle fonction H sont le gradient, par rapport a, de la log-vraisemblance : 1 ) H( 0 ; Y k 1 )= ln p (Y k jy k,1 qui est appele score ecace, et le gradient du carre de l'erreur de prediction H( 0 ; Y k 1 )=, 1 2, T k () k () (4) ou l'erreur de prediction est k () =Y k, b Ykjk,1() et b Ykjk,1() est une prediction des donnees en sortie, basee sur le modele parametre considere. On convient d'appeler ls-score la fonction denie en (4). Si l'on s'interesse a des pannes du systeme, un contre-exemple typique de residu primaire est l'innovation. Il sut, pour s'en convaincre, de considerer l'exemple elementaire de la surveillance spectrale d'un signal scalaire, posee comme la surveillance de p coecients autoregressifs, ou le score ecace est le produit de l'innovation par le vecteur des p observations passees (et, donc, pas la seule innovation). Une erreur d'estimation d'etat n'est, de m^eme, pas un residu primaire pertinent en general. Residu normalise. M^eme pour des modeles lineaires simples et des fonctions d'estimation classiques, la distribution du residu primaire H est inconnue, ce qui pose probleme pour le choix d'un seuil auquel le confronter. Un moyen de contourner cette diculte consiste a supposer des hypotheses proches (approche dite locale) H 0 : = 0 et H 1 : = 0 + p (5) ce qui, pour grand, correspond a des deviations faibles en, et a accumuler les residus primaires. Denition 3.2 Etant donnes un residu primaire H et un echantillon de nouvelles donnees Y de taille, le residu normalise est deni comme Z ( 0 ) = 1 p X k=1 H( 0 ; Y k 1 ) (6) Pour tout residu primaire (fonction d'estimation) H satisfaisant (1)-(2) et susamment regulier, ce residu normalise est asymptotiquement unvecteur Gaussien, sous les deux hypotheses H 0 et H 1, ce qui rend son evaluation aisee. Plus precisement, soit ( 0 ) = X i=, cov 0, H(0 ; Y i 1);H( 0 ; Y 1 ) ( 0 ) = lim!1 ( 0 ) (7) ou E 0 et cov 0 sont l'esperance et la covariance lorsque le parametre du systeme est 0. Alors, si ( 0 )est denie positive, le theoreme central limite (clt) suivant est valide [1, 12] Z ( 0 )! ( (0; (0 )) sous P 0 (M( 0 ); ( 0 )) sous P 0+ p 3

4 ou M est denie en (3). L'estimation de M a partir d'un echantillon de donnees est obtenue en remplacant l'esperance par une moyenne d'ensemble. L'estimation de la covariance est plus delicate [12]. Sous l'hypothese (3), le test correspondant entre les hypotheses H 0 et H 1 denies en (5) est alors Z T,1 M, M T,1 M,1 M T,1 Z (8) ou ladependance en 0 aete supprimee par souci de simplicite. Il s'agit d'un test du 2. Son parametre de non-centralite est T M T,1 M. oter que ce detecteur (8) est inchange lorsque la fonction d'estimation H est pre-multipliee par un gain matriciel inversible (voir consequences interessantes en [6]). Lorsque M est carree et inversible, le test (8) se reduit a Z T,1Z. Choix de residus primaires pour les trois exemples d'application [2]. Le premier exemple a ete traite en s'appuyant soit sur la methode d'identication par variables instrumentales (equations de Yule- Walker decalees) reposant surune formulation du probleme par modele entrees-sorties arma [8], soit sur les methodes d'identication stochastiques par sous-espaces, reposant sur une formulation du probleme par modele d'etat lineaire [6]. Le deuxieme exemple a ete traite a l'aide du ls-score : l'erreur de prediction, dans ce cas, est une erreur d'estimation (de sorties), puisque le modele entrees-sorties est suppose statique [7, 12]. Le troisieme exemple a ete traite soita l'aide d'un ls-score s'appuyant sur une formulation du probleme par modele d'etat non-lineaire - ce qui suppose de disposer d'un observateur complet de l'etat [10], soit a l'aide d'un ls-score s'appuyant sur une formulation du probleme par modele entrees-sorties equivalent, ce qui est possible en non-lineaire egalement [13]. 4 Quelques caracteristiques de la methode Precautions d'emploi. Calcul de la matrice de covariance du residu normalise. Avantages. Tres grande sensibilite; e.g., en surveillance vibratoire, detection de changements de frequence de 1%, ou de changements modaux se traduisant uniquement surlageometrie des deformees modales. Complexite. Les tests sont des formes quadratiques, peu co^uteuses a calculer. La complexite dudetecteur provient essentiellement de celle du calcul du residu primaire, qui peut ^etre co^uteux lorsque le modele dynamique est un peu complique. 5 References complementaires et remarques Dans les trois exemples d'application mentionnes, les signaux contiennent des non-stationarites de plusieurs types : certaines sont a detecter (e.g. changements de caracteristiques vibratoires ou thermiques), d'autres pas (e.g. modications de l'environnementouchangements de mode de fonctionnement delamachine). Ilya plusieurs facons de se debarasser de ces phenomenes de nuisance, soit par le choix de la fonction d'estimation (e.g. equations de Yule-Walker decalees [8]), soit dans la denition des hypotheses entre lesquelles on teste (ellipsode de robustesse autour du point dereference 0 [7]). D'autre part, il convient de remarquer que l'hypothese (3) concernant la Hessienne, qui est requise pour le calcul des tests du 2, est bien plus faible que celles qui sont necessaires pour garantir sa stabilite [9]. Ceci signie qu'une fonction d'estimation peut tres bien ^etre de peu d'inter^et pour la conception d'algorithmes d'identication recursifs, et tout-a-fait pertinente pour la conception d'algorithmes de surveillance (m^eme en-ligne). C'est d'ailleurs ce que l'on a constate pourlemodele non-lineaire statique du deuxieme exemple, pour l'identication duquel il a fallu operer en deux etapes, separant l'estimation des coecients non-lineaires de celle des autres coecients (lineaires); alors que la surveillance a ete eectuee de maniere satisfaisante a l'aide d'un ls-score global en tous les parametres [7, 12]. Enn, cette methode de conception algorithmique peut ^etre adaptee au cas ou existe un biais dans l'identication du parametre de reference 0 - par exemple, dans le cas de modeles a entrees et sorties bruitees [12, 7]. 4

5 [4 ] M. Basseville (1997). Information criteria for residual generation and fault detection and isolation. Automatica, vol.33, no 5, pp [5 ] M. Basseville, I. ikiforov (1993). Detection of Abrupt Changes { Theory and Applications. Prentice Hall,.J. [6 ] M. Basseville, M. Abdelghani, A. Benveniste (1997). Subspace-based fault detection and isolation methods - Application to vibration monitoring. Rapport de Recherche Irisa no 1143/ Inria no ftp://ftp.irisa.fr/techreports/1997/pi-1143.ps.gz. [7 ] M. Basseville, A. Benveniste, G. Mathis, Q. Zhang (1994). Monitoring the combustion set of a gas turbine, Ifac/IMACS Symp. SAFEPROCESS'94, Helsinki. [8 ] M. Basseville, A. Benveniste, B. Gach-Devauchelle, M. Goursat, D. Bonnecase, P. Dorey, M. Prevosto, M. Olagnon (1993). Damage monitoring in vibration mechanics: issues in diagnostics and predictive maintenance. Mecha. Syst. and Sig. Proc., vol.7, no 5, pp [9 ] A. Benveniste, M. Metivier, P. Priouret (1990). Adaptive Algorithms and Stochastic Approximations. Springer, Y. [10 ] C. Cussenot, M. Basseville, F. Aimard (1996). Monitoring the vehicle emission system components. Ifac'96 World Conf., San Francisco, CA. [11 ] Q. Zhang (1995). Using nonlinear black-box models in fault detection and isolation. Rapport de Recherche Irisa no 951. ftp://ftp.irisa.fr/techreports/1995/pi-951.ps.gz. [12 ] Q. Zhang, M. Basseville, A. Benveniste (1994). Early warning of slight changes in systems and plants with application to condition based maintenance. Automatica, vol.30, no 1, pp [13 ] Q. Zhang, M. Basseville, A. Benveniste (1996). Fault detection and isolation in nonlinear dynamic systems : a combined input-output and local approach. Rapport de Recherche Irisa no 1074/ Inria no ftp://ftp.irisa.fr/techreports/1996/pi-1074.ps.gz. 5

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle

CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle CHAPITRE I Modélisation de processus et estimation des paramètres d un modèle I. INTRODUCTION. Dans la première partie de ce chapitre, nous rappelons les notions de processus et de modèle, ainsi que divers

Plus en détail

Algorithmes d'apprentissage

Algorithmes d'apprentissage Algorithmes d'apprentissage 1 Agents qui apprennent à partir d'exemples La problématique : prise de décision automatisée à partir d'un ensemble d'exemples Diagnostic médical Réponse à une demande de prêt

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Soutenance de stage Laboratoire des Signaux et Systèmes

Soutenance de stage Laboratoire des Signaux et Systèmes Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud

Plus en détail

LE MODELE CONCEPTUEL DE DONNEES

LE MODELE CONCEPTUEL DE DONNEES LE MODELE CONCEPTUEL DE DONNEES Principe : A partir d'un cahier des charges, concevoir de manière visuelle les différents liens qui existent entre les différentes données. Les différentes étapes de réalisation.

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x )

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x ) Séries de Fourier Les séries de Fourier constituent un outil fondamental de la théorie du signal. Il donne lieu à des prolongements et des extensions nombreux. Les séries de Fourier permettent à la fois

Plus en détail

Reconstruction d images binaires par l estimation moindres carrés et l optimisation valeur propre

Reconstruction d images binaires par l estimation moindres carrés et l optimisation valeur propre Reconstruction d images binaires par l estimation moindres carrés et l optimisation valeur propre Stéphane Chrétien & Franck Corset Université de Franche-Comté, UMR6623, Département Mathématiques 16 route

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h Télécom Physique Strasbourg Master IRIV Optimisation et programmation mathématique Professeur Michel de Mathelin Cours intégré : 20 h Programme du cours d optimisation Introduction Chapitre I: Rappels

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q 1 Codes linéaires Un code de longueur n est une partie de F n q. Un code linéaire C de longueur n sur le corps ni F q est un sous-espace vectoriel de F n q. Par défaut, un code sera supposé linéaire. La

Plus en détail

Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1

Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1 CHAPTER 1 Ordonnancement 1.1. Étude de cas Ordonnancement de tâches avec contraintes de précédences 1.1.1. Exemple : construction d'une maison. Exercice. On veut construire une maison, ce qui consiste

Plus en détail

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m 1 épartement de Physique, Université Laval, Québec Pierre Amiot, 1. La fonction delta et certaines de ses utilisations. Clientèle Ce texte est destiné aux physiciens, ingénieurs et autres scientifiques.

Plus en détail

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008) Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut

Plus en détail

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes. Introduction L'objectif de mon TIPE est la reconnaissance de sons ou de notes de musique à l'aide d'un réseau de neurones. Ce réseau doit être capable d'apprendre à distinguer les exemples présentés puis

Plus en détail

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS Formations EViews FORMATIONS GENERALES INTRODUCTIVES DEB : DECOUVERTE DU LOGICIEL EVIEWS INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS FORMATIONS METHODES ECONOMETRIQUES VAR : MODELES

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun

Plus en détail

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources

RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources Master Maths Finances 2010/2011 Data Mining janvier 2011 RapidMiner 1 Introduction 1.1 Présentation RapidMiner est un logiciel open source et gratuit dédié au data mining. Il contient de nombreux outils

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

2 TABLE DES MATIÈRES. I.8.2 Exemple... 38

2 TABLE DES MATIÈRES. I.8.2 Exemple... 38 Table des matières I Séries chronologiques 3 I.1 Introduction................................... 3 I.1.1 Motivations et objectifs......................... 3 I.1.2 Exemples de séries temporelles.....................

Plus en détail

Martingales dans l étude de quelques arbres aléatoires

Martingales dans l étude de quelques arbres aléatoires Martingales dans l étude de quelques arbres aléatoires Brigitte CHAUVIN Brigitte.Chauvin@math.uvsq.fr Monastir, 18-20 Octobre 2010 Contents 1 Introduction 1 2 Arbres binaires de recherche 2 2.1 Définitions.....................................

Plus en détail

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université

Plus en détail

Théorie de la crédibilité

Théorie de la crédibilité ISFA - Année 2008-2009 Théorie de la crédibilité Chapitre 2 : Prime de Bayes Pierre-E. Thérond Email, Page web, Ressources actuarielles Langage bayesien (1/2) Considérons une hypothèse H et un événement

Plus en détail

Introduction à la Statistique Inférentielle

Introduction à la Statistique Inférentielle UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique

Plus en détail

Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2.

Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Techniques de correction pour les options barrières 25 janvier 2007 Exercice à rendre individuellement lors

Plus en détail

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES Bertrand GOTTIN Directeurs de thèse: Cornel IOANA et Jocelyn CHANUSSOT 03 Septembre 2010 Problématique liée aux Transitoires

Plus en détail

Integrale de Wiener par rapport au mouvement brownien multi-fractionnnaire

Integrale de Wiener par rapport au mouvement brownien multi-fractionnnaire Integrale de Wiener par rapport au mouvement brownien multi-fractionnnaire L.P.M.A Universite Paris VI L.M.A.S Ecole Centrale Paris 9 eme Colloque des jeunes probabilistes et statisticiens Le Mont-Dore

Plus en détail

COMMUNICATEUR BLISS COMMANDE PAR UN SENSEUR DE POSITION DE L'OEIL

COMMUNICATEUR BLISS COMMANDE PAR UN SENSEUR DE POSITION DE L'OEIL COMMUNICATEUR BLISS COMMANDE PAR UN SENSEUR DE POSITION DE L'OEIL J. TICHON(1) (2), J.-M. TOULOTTE(1), G. TREHOU (1), H. DE ROP (2) 1. INTRODUCTION Notre objectif est de réaliser des systèmes de communication

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Vers l'ordinateur quantique

Vers l'ordinateur quantique Cours A&G Vers l'ordinateur quantique Données innies On a vu dans les chapîtres précédents qu'un automate permet de représenter de manière nie (et même compacte) une innité de données. En eet, un automate

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

Introduction a l'algorithmique des objets partages. Robert Cori. Antoine Petit. Lifac, ENS Cachan, 94235 Cachan Cedex. Resume

Introduction a l'algorithmique des objets partages. Robert Cori. Antoine Petit. Lifac, ENS Cachan, 94235 Cachan Cedex. Resume Introduction a l'algorithmique des objets partages Bernadette Charron{Bost Robert Cori Lix, Ecole Polytechnique, 91128 Palaiseau Cedex, France, charron@lix.polytechnique.fr cori@lix.polytechnique.fr Antoine

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Arbres binaires Version prof Version prof

Arbres binaires Version prof Version prof Arbres binaires Version prof Version prof types /* déclaration du type t_element */ t_arbrebinaire = t_noeudbinaire t_noeudbinaire = enregistrement t_element cle t_arbrebinaire fg, fd n enregistrement

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

YAO : Un logiciel pour les modèles

YAO : Un logiciel pour les modèles YAO : Un logiciel pour les modèles numériques et l'assimilation de données Sylvie Thiria, Fouad Badran, Charles Sorror Rapport de recherche (22 juin 2006) 1 Table des matières 1 Introduction 3 2 Principes

Plus en détail

Une comparaison de méthodes de discrimination des masses de véhicules automobiles

Une comparaison de méthodes de discrimination des masses de véhicules automobiles p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,

Plus en détail

Commande auto-adaptative par auto-séquencement, avec application à un avion instable

Commande auto-adaptative par auto-séquencement, avec application à un avion instable Commande auto-adaptative par auto-séquencement, avec application à un avion instable Patrice ANTOINETTE 1 2 Gilles FERRERES 1 1 ONERA-DCSD, Toulouse 2 ISAE, Toulouse GT MOSAR, 4 juin 2009 Plan Introduction

Plus en détail

Le Modèle Linéaire par l exemple :

Le Modèle Linéaire par l exemple : Publications du Laboratoire de Statistique et Probabilités Le Modèle Linéaire par l exemple : Régression, Analyse de la Variance,... Jean-Marc Azaïs et Jean-Marc Bardet Laboratoire de Statistique et Probabilités

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Renforcement des trois compétences : compréhension orale, expression orale et expression écrite à partir de documents et vidéos.

Renforcement des trois compétences : compréhension orale, expression orale et expression écrite à partir de documents et vidéos. Master Mathématiques et Applications Spécialité : Ingénierie mathématique et modélisation Parcours : Mathématique et Informatique : Statistique, Signal, Santé (MI3S) 2015-2016 RÉSUMÉ DES COURS : (dernière

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Cours de Data Mining PageRank et HITS

Cours de Data Mining PageRank et HITS Cours de Data Mining PageRank et HITS Andreea Dragut Univ. Aix-Marseille, IUT d Aix-en-Provence Andreea Dragut Cours de Data Mining PageRank et HITS 1 / 48 Plan du cours Présentation Andreea Dragut Cours

Plus en détail

LE PROBLEME DU PLUS COURT CHEMIN

LE PROBLEME DU PLUS COURT CHEMIN LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs

Plus en détail

1 Design-based and model-based methods for estimating model parameters

1 Design-based and model-based methods for estimating model parameters Groupe de lecture Econométrie des données d'enquête Compte-rendu de la troisième réunion, 19 janvier 2015 La modélisation en théorie des sondages Suivi par Marine Guillerm et Ronan Le Saout Cette troisième

Plus en détail

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production Revue des Sciences et de la Technologie RST- Volume 4 N 1 /janvier 2013 Etude d un cas industriel : Optimisation de la modélisation de paramètre de production A.F. Bernate Lara 1, F. Entzmann 2, F. Yalaoui

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

La méthode des éléments finis et le contrôle des calculs

La méthode des éléments finis et le contrôle des calculs Table des matières Techniques Avancées en Calcul des Structures Cours d option La méthode des éléments finis et le contrôle des calculs J.-P. Pelle ENS - Cachan Master MIS Parcours TACS Année universitaire

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

Chapitre 1. L algorithme génétique

Chapitre 1. L algorithme génétique Chapitre 1 L algorithme génétique L algorithme génétique (AG) est un algorithme de recherche basé sur les mécanismes de la sélection naturelle et de la génétique. Il combine une stratégie de survie des

Plus en détail

LES MÉTHODES DE POINT INTÉRIEUR 1

LES MÉTHODES DE POINT INTÉRIEUR 1 Chapitre XIII LES MÉTHODES DE POINT INTÉRIEUR 1 XIII.1 Introduction Nous débutons par un rappel de la formulation standard d un problème d optimisation 2 linéaire et donnons un bref aperçu des différences

Plus en détail

Commande Prédictive. J. P. Corriou. LSGC-ENSIC-CNRS, Nancy. e-mail : corriou@ensic.inpl-nancy.fr

Commande Prédictive. J. P. Corriou. LSGC-ENSIC-CNRS, Nancy. e-mail : corriou@ensic.inpl-nancy.fr Commande Prédictive J P Corriou LSGC-ENSIC-CNRS, Nancy e-mail : corriou@ensicinpl-nancyfr Ý Consigne Trajectoire de référence Ý Ö Réponse Ý Horizon de prédiction À Ô ¹ Ù ¹ Temps Entrée Ù Horizon de commande

Plus en détail

Analyse de la variance Comparaison de plusieurs moyennes

Analyse de la variance Comparaison de plusieurs moyennes Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Les codes linéaires - Chapitre 6 - Principe Définition d un code linéaire Soient p un nombre premier et s est un entier positif. Il existe un unique corps de taille q

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

COLLOQUE NATIONAL de la PERFORMANCE INDUSTRIELLE

COLLOQUE NATIONAL de la PERFORMANCE INDUSTRIELLE COLLOQUE NATIONAL de la PERFORMANCE INDUSTRIELLE Analyse vibratoire expérimentale : outil de surveillance et de diagnostic Dr Roger SERRA ENIVL / LMR 1 Contexte (1/2) Première publication de la charte

Plus en détail

Cours d analyse numérique SMI-S4

Cours d analyse numérique SMI-S4 ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,

Plus en détail

Fast and Furious Decision Tree Induction

Fast and Furious Decision Tree Induction Institut National des Sciences Appliquées de Rennes Dossier de planification initiale Encadreurs : Nikolaos Parlavantzas - Christian Raymond Fast and Furious Decision Tree Induction Andra Blaj Nicolas

Plus en détail

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1 Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe

Plus en détail

Optimisation. 1 Petite taxinomie des problèmes d optimisation 2

Optimisation. 1 Petite taxinomie des problèmes d optimisation 2 Table des matières Optimisation 1 Petite taxinomie des problèmes d optimisation 2 2 Optimisation sans contraintes 3 2.1 Optimisation sans contrainte unidimensionnelle........ 3 2.1.1 Une approche sans

Plus en détail

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels Etab=MK3, Timbre=G430, TimbreDansAdresse=Vrai, Version=W2000/Charte7, VersionTravail=W2000/Charte7 Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels

Plus en détail

Critère du choix des variables auxiliaires à utiliser dans l'estimateur par calage

Critère du choix des variables auxiliaires à utiliser dans l'estimateur par calage des variables auxiliaires à utiliser dans l'estimateur par calage Mohammed El Haj Tirari Institut National de Statistique et d'economie Appliquée - roc Laboratoire de Statistique d'enquêtes, CREST - Ensai

Plus en détail

a) La technique de l analyse discriminante linéaire : une brève présentation. 3 étapes de la méthode doivent être distinguées :

a) La technique de l analyse discriminante linéaire : une brève présentation. 3 étapes de la méthode doivent être distinguées : a) La technique de l analyse discriminante linéaire : une brève présentation. Nous nous limiterons ici à l'analyse discriminante linéaire et à deux groupes : - linéaire, la variante utilisée par ALTMAN

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples, Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU $SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU Fabien FIGUERES fabien.figueres@mpsa.com 0RWVFOpV : Krigeage, plans d expériences space-filling, points de validations, calibration moteur. 5pVXPp Dans le

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Arnaud Triay Table des matières 1 Introduction Position du problème.1 Pricing des options........................................... Formalisme..............................................

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Approche bayésienne des modèles à équations structurelles

Approche bayésienne des modèles à équations structurelles Manuscrit auteur, publié dans "42èmes Journées de Statistique (2010)" Approche bayésienne des modèles à équations structurelles Séverine Demeyer 1,2 & Nicolas Fischer 1 & Gilbert Saporta 2 1 LNE, Laboratoire

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail