Corrélation linéaire et régression linéaire simple
|
|
|
- François-Xavier Favreau
- il y a 8 ans
- Total affichages :
Transcription
1 Corrélation linéaire et régression linéaire simple IUT Carquefou Année
2 Notion de corrélation Contexte : on soupçonne qu il existe une liaison entre deux variables X et Y. Par exemple, existe-t-il un lien entre le volume des ventes d une entreprise et le montant alloué à la publicité? De même, existe-t-il un lien entre le poids de courrier reçu par une entreprise chaque matin et le nombre de commandes traitées dans la journée? Notion : on dit qu il y a corrélation entre deux variables lorsqu elles ont tendance à varier soit toujours dans le même sens (par exemple, si X augmente, Y a tendance à augmenter aussi), soit toujours en sens inverse (par exemple, si X augmente, Y a tendance à diminuer). Questions mathématiques : Peut-on quantifier cette liaison? Peut-on tester si cette liaison est statistiquement significative? Peut-on utiliser cette liaison à des fins prédictives?
3 Observations de couples de variables Regarder ses données!!! Tracer le nuage de points : y a-t-il liaison linéaire, non-linéaire, pas de liaison???? valeur des xi valeur des yi valeur des xi valeur des yi valeur des xi valeur des yi valeur des xi valeur des yi
4 Coefficient de corrélation linéaire Le coefficient de corrélation de Pearson ρ mesure le degré d association linéaire entre X et Y : E[XY ] E[X ]E[Y ] ρ =. σ(x )σ(y ) ρ est un nombre forcément compris entre 1 et 1. Le nombre ρ sert à quantifier l intensité et le sens de la dépendance linéaire entre X et Y. Lorsque ρ > 0, cela signifie que lorsqu une des variables a tendance à augmenter, l autre aussi. Lorsque ρ < 0, cela signifie que lorsqu une des variables a tendance à augmenter, l autre a tendance à diminuer. Lorsque ρ = 0, on dit que X et Y sont non corrélées : il n y a pas d association linéaire entre X et Y. ρ ± 1 l une des variables est une fonction affine de l autre, par exemple Y est une fonction affine de X i.e. Y = ax + b avec b du signe de ρ. Lorsque X et Y sont indépendantes, ρ = 0 mais la réciproque est fausse!!! Si ρ = 0, X et Y ne sont pas forcément indépendantes, par ex : soit X de loi normale et soit Y = X 2, alors ρ = 0 mais X et Y ne sont pas indépendantes.
5 Estimation du coefficient de corrélation Les données : pour chaque individu d un échantillon de taille n, on relève les valeurs prises par X et Y. On obtient n couples indépendants les uns des autres notés (x i, y i ) pour i = 1,..., n. Un estimateur de ρ est : n i=1 r = x iy i n x y ( n i=1 x i 2 nx 2) ( n i=1 y i 2 ny 2) avec x = 1 n n i=1 x i et y = 1 n n i=1 y i. r est un nombre compris entre 1 et 1. Lorsque les points de coordonnées (x i, y i ) pour i = 1,..., n sont parfaitement alignés, alors r = 1. Lorsqu on obtient un nuage flou de points, r est proche de 0. Plus les points sont étroitement concentrés autour d une droite, plus r est proche de 1. C est la concentration des points autour de la droite en question qui indique l intensité de la liaison tandis que c est la pente de la droite qui indique le sens de la liaison.
6 Test de l hypothèse H 0 : ρ = ρ 0 Conditions d application : n 30 Soit un échantillon (X 1, Y 1 ),..., (X n, Y n ) un échantillon. On teste H 0 : ρ = ρ 0 contre une hypothèse alternative H 1. La forme de la région de rejet dépend de la forme de H 1. L erreur de 1ère espèce est fixée à α. H 1 ρ ρ 0 ρ > ρ 0 ρ < ρ 0 Décision ( ) ( ) 1+r Rejeter H 0 si log 1 r > log 1+ρ0 1 ρ 0 + F 1 N (1 α/2) 2 ( ) ( ) n 3 1+r ou log 1 r < log 1+ρ0 1 ρ 0 F 1 N (1 α/2) 2 ( ) ( ) n 3 1+r Rejeter H 0 si log 1 r > log 1+ρ0 1 ρ 0 + F 1 N (1 α) 2 ( ) ( ) n 3 1+r Rejeter H 0 si log 1 r < log 1+ρ0 1 ρ 0 F 1 N (1 α) 2 n 3
7 Régression linéaire Les données : on dispose d un échantillon de n couples (x i, y i ) pour i = 1,..., n indépendants les uns des autres. Régression linéaire : on cherche d une relation linéaire entre X =variable explicative=variable de régression et Y =variable à expliquer=réponse. Modèle linéaire : Y = ax + b + ε où ε est une variable aléatoire appelée erreur résiduelle satisfaisant E[ε] = 0 et Var(ε) = σ 2. Droite de régression : y = ax + b à ajuster sur les données au sens des moindres carrés Droite de régression estimée (meilleure droite ajustée) : y = âx + b avec â=estimateur de a et b=estimateur de b : n i=1 â = x iy i n x y n i=1 x i 2 nx 2 b = y â x On appelle réponse prédite au point x i la valeur ŷ i = âx i + b. On appelle résidu au point x i la valeur e i = y i ŷ i représentant la différence entre la réponse observée y i et la réponse prédite ŷ i.
8 Analyse des sources de variabilité La variabilité totale des données (correspondant à SCT) se décompose entre la variabilité expliquée par le modèle de régression (correspondant à SCR) et la variabilité résiduelle ou terme d erreur (correspondant à SCE) de la façon suivante : SCT = SCR + SCE avec SCT = n i=1 (y i y) 2 = n i=1 y i 2 ny 2 =somme des carrés totale SCE = n i=1 (y i ŷ i ) 2 =somme des carrés d erreur SCR = n i=1 (ŷ i y) 2 =somme des carrés de régression On appelle moyenne des carrés de régression le terme MCE défini par : i=1 MCE = SCE n 2. NB : on peut noter : n n S xx = xi 2 nx 2 S yy = yi 2 ny 2 S xy = i=1 n x i y i nx y i=1
9 Intervalle de confiance pour les paramètres Un IC bilatéral au niveau de confiance 1 α pour le paramètre a est donné par : P[â inf a â sup ] = 1 α avec â inf = â F 1 T (n 2) (1 α/2) MCE S xx â sup = â + F 1 T (n 2) (1 α/2) MCE S xx Un IC bilatéral au niveau de confiance 1 α pour le paramètre b est donné par : P[ b inf b b sup ] = 1 α avec binf = b F 1 T (n 2)(1 α/2) MCE bsup = b + F 1 T (n 2)(1 α/2) MCE ( 1 n + x 2 S xx ( 1 n + x 2 S xx ) )
10 Test pour le paramètre a ou significativité de la régression On teste l hypothèse nulle H 0 : a = 0 contre l hypothèse alternative H 1 avec un risque de 1ère espèce fixé à α. La forme de la région de rejet dépend de la forme de H 1. H 1 a 0 a > 0 a < 0 Décision Rejeter H 0 si â < F 1 T (n 2) (1 α/2) MCE S xx ou si â > F 1 T (n 2) (1 α/2) MCE S xx Rejeter H 0 si â > F 1 T (n 2) (1 α) MCE S xx Rejeter H 0 si â < F 1 T (n 2) (1 α) MCE S xx Si on ne rejette pas H 0, cela signifie que les données ne permettent pas de mettre en évidence une influence linéaire de X sur Y.
11 Diagnostic de régression Coefficient de détermination : le coefficient de détermination multiple est le nombre R 2 défini par : R 2 = SCR SCT Ce coefficient est une mesure de la variabilité expliquée par le modèle de régression linéaire. Il vérifie toujours 0 R 2 1. Plus R 2 est proche de 1, plus le modèle choisi semble pertinent. Analyse des résidus : on appelle résidus studentisés les termes r i pour i = 1,..., n définis par : r i = e i ( 1 1 n (x i x) 2 S xx ) MCE On analyse les résidus studentisés en disant que si r i > 2 alors soit y i est une observation aberrante, soit y i est dans une région où le modèle estimé n est pas réaliste.
12 Du bon usage du coefficient de corrélation linéaire données A données B données C données D x y x y x y x y Dans les 4 cas, on a x = 9, y = 7.5, n i=1 x2 i = 1001, n i=1 y i 2 = 660 et n i=1 x iy i = On obtient donc r = et la droite de régression y = 0.5x + 3.
13 Du bon usage du coefficient de corrélation linéaire (suite) ya yb xa xb yc yd xc xd
14 Exercice : régression linéaire (1) La gérante d un commerce veut évaluer l impact des frais déboursés en publicité par mois (représentés par une variable X exprimée en milliers d euros) sur le chiffre d affaires mensuel (représenté par une variable Y exprimée en milliers d euros). On aimerait évaluer dans quelle mesure une modification du budget publicitaire mensuel affecterait le chiffre d affaires mensuel. On a donc recueilli sur une période de 10 mois les données du tableau ci-dessous. chiffre d affaires frais publicitaires Tracer le nuage de points et estimer le coefficient de corrélation linéaire. 2 Etablir la droite de régression correspondant à ce problème et tracer cette droite. 3 Déterminer un intervalle de confiance au risque 5% des paramètres de la droite de régression. 4 Tester la significativité de la régression au risque 5%. 5 Calculer le coefficient de détermination. 6 Calculer les résidus studentisés. Y-a-t-il des valeurs aberrantes ou mal expliquées par le modèle? 7 Quel serait le chiffre d affaires mensuel prédit par le modèle pour un budget publicitaire mensuel de 400 euros? de 4000 euros?
15 Exercice : régression linéaire (2) La société Métalex moule des pièces dans un four. L ingénieur se demande s il existe un lien entre la température (en degré celsius) à laquelle les pièces sont moulées et leur résistance (en kg/cm 2 ). Il dispose des données suivantes transmises par l atelier. température résistance Tracer le nuage de points et estimer le coefficient de corrélation linéaire. 2 Ajuster un modèle linéaire de la forme Y = ax + b + ε : établir la droite de régression correspondant à ce problème et tracer cette droite. 3 Tester la significativité de la régression au risque 5%. 4 Calculer le coefficient de détermination. 5 Calculer les résidus studentisés. Y-a-t-il des valeurs aberrantes ou mal expliquées par le modèle? 6 Ajuster un modèle non-linéaire de la forme Y = a log(x ) + b + ε : établir la courbe de régression correspondant à ce problème et tracer cette courbe. 7 Tester la significativité de la régression au risque 5%. 8 Calculer le coefficient de détermination. 9 Calculer les résidus studentisés. Y-a-t-il des valeurs aberrantes ou mal expliquées par le modèle?
16 Nuage de points de l exercice (1) chiffre d'affaires frais publicitaires
17 Modèle ajusté de l exercice (1) chiffre d'affaires frais publicitaires
18 Nuage de points de l exercice (2) resistance temperature
19 Modèles ajustés de l exercice (2) resistance temperature
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites
La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur
STATISTIQUES. UE Modélisation pour la biologie
STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres
Statistiques à deux variables
Statistiques à deux variables Table des matières I Position du problème. Vocabulaire 2 I.1 Nuage de points........................................... 2 I.2 Le problème de l ajustement.....................................
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
Régression linéaire. Nicolas Turenne INRA [email protected]
Régression linéaire Nicolas Turenne INRA [email protected] 2005 Plan Régression linéaire simple Régression multiple Compréhension de la sortie de la régression Coefficient de détermination R
Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.
Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Introduction : Avant de commencer, il est nécessaire de prendre connaissance des trois types de
Leçon N 4 : Statistiques à deux variables
Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d
Relation entre deux variables : estimation de la corrélation linéaire
CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence
Séquence 2. Repérage dans le plan Équations de droites. Sommaire
Séquence Repérage dans le plan Équations de droites Sommaire 1 Prérequis Repérage dans le plan 3 Équations de droites 4 Synthèse de la séquence 5 Exercices d approfondissement Séquence MA0 1 1 Prérequis
SOMMAIRE OPÉRATIONS COURANTES OPÉRATIONS D INVENTAIRE
SOMMAIRE OPÉRATIONS COURANTES OPÉRATIONS D INVENTAIRE 1 Factures de doit p. 9 Processus 1 2 Réductions sur factures de doit p. 11 Processus 1 3 Frais accessoires sur factures p. 13 Processus 1 4 Comptabilisation
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Que faire lorsqu on considère plusieurs variables en même temps?
Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions
Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
Le Modèle Linéaire par l exemple :
Publications du Laboratoire de Statistique et Probabilités Le Modèle Linéaire par l exemple : Régression, Analyse de la Variance,... Jean-Marc Azaïs et Jean-Marc Bardet Laboratoire de Statistique et Probabilités
Espérance conditionnelle
Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle
Introduction aux Statistiques et à l utilisation du logiciel R
Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil
Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme
Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour [email protected] Une grande partie des illustrations viennent
OM 1 Outils mathématiques : fonction de plusieurs variables
Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
VI. Tests non paramétriques sur un échantillon
VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes
Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE
UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
Analyse de la variance Comparaison de plusieurs moyennes
Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction
TESTS D'HYPOTHESES Etude d'un exemple
TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses
Activités numériques [13 Points]
N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES
LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Équations non linéaires
Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et
Méthode : On raisonnera tjs graphiquement avec 2 biens.
Chapiittrre 1 : L uttiilliitté ((lles ménages)) Définitions > Utilité : Mesure le plaisir / la satisfaction d un individu compte tenu de ses goûts. (On s intéresse uniquement à un consommateur rationnel
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
Econométrie La régression linéaire simple et multiple
Ricco Rakotomalala Econométrie La régression linéaire simple et multiple Version 1.1 Université Lumière Lyon 2 Page: 1 job: Econometrie_Regression macro: svmono.cls date/time: 26-May-2015/18:13 Page: 2
Correction du bac blanc CFE Mercatique
Correction du bac blanc CFE Mercatique Exercice 1 (4,5 points) Le tableau suivant donne l évolution du nombre de bénéficiaires de minima sociaux en milliers : Année 2002 2003 2004 2005 2006 2007 2008 2009
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
DUT Techniques de commercialisation Mathématiques et statistiques appliquées
DUT Techniques de commercialisation Mathématiques et statistiques appliquées [email protected] Université de Caen Basse-Normandie 3 novembre 2014 [email protected] UCBN MathStat
Résumé du Cours de Statistique Descriptive. Yves Tillé
Résumé du Cours de Statistique Descriptive Yves Tillé 15 décembre 2010 2 Objectif et moyens Objectifs du cours Apprendre les principales techniques de statistique descriptive univariée et bivariée. Être
L Econométrie des Données de Panel
Ecole Doctorale Edocif Séminaire Méthodologique L Econométrie des Données de Panel Modèles Linéaires Simples Christophe HURLIN L Econométrie des Données de Panel 2 Figure.: Présentation Le but de ce séminaire
Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes.
Plan Intérêts 1 Intérêts 2 3 4 5 6 7 Retour au menu général Intérêts On place un capital C 0 à intérêts simples de t% par an : chaque année une somme fixe s ajoute au capital ; cette somme est calculée
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
Corrigés Exercices Page 1
Corrigés Exercices Page 1 Premiers algorithmes Questions rapides 1 1) V ; ) F ; 3) V ; 4) F. 1) a ; ) b ; 3) a et b ; 4) b. 3 L'algorithme répond à la question : "le nombre entré estil positif?". 4 a (remarque
Bureau : 238 Tel : 04 76 82 58 90 Email : [email protected]
Dominique Muller Laboratoire Inter-universitaire de Psychologie Bureau : 238 Tel : 04 76 82 58 90 Email : [email protected] Supports de cours : webcom.upmf-grenoble.fr/lip/perso/dmuller/m2r/acm/
I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.
I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous
1 Complément sur la projection du nuage des individus
TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
Exemples d utilisation de G2D à l oral de Centrale
Exemples d utilisation de G2D à l oral de Centrale 1 Table des matières Page 1 : Binaire liquide-vapeur isotherme et isobare Page 2 : Page 3 : Page 4 : Page 5 : Page 6 : intéressant facile facile sauf
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Chapitre 3 : Le budget des ventes. Marie Gies - Contrôle de gestion et gestion prévisionnelle - Chapitre 3
Chapitre 3 : Le budget des ventes Introduction 2 Rappel des différents budgets opérationnels - budget des ventes (chapitre 3) - budget de production (chapitre 4) - budget des approvisionnements et des
Exemples d application
AgroParisTech Exemples d application du modèle linéaire E Lebarbier, S Robin Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations 4 2 Régression linéaire simple 7 21 Présentation 7 211 Objectif
Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS
Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Mémento Ouvrir TI-Nspire CAS. Voici la barre d outils : L insertion d une page, d une activité, d une page où l application est choisie, pourra
6 Equations du première ordre
6 Equations u première orre 6.1 Equations linéaires Consiérons l équation a k (x) k u = b(x), (6.1) où a 1,...,a n,b sont es fonctions continûment ifférentiables sur R. Soit D un ouvert e R et u : D R
Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point
03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de
M2 IAD UE MODE Notes de cours (3)
M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
Géométrie dans l espace Produit scalaire et équations
Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
Statistiques. Rappels de cours et travaux dirigés. Master 1 Biologie et technologie du végétal. Année 2010-2011
Master 1 Biologie et technologie du végétal Année 010-011 Statistiques Rappels de cours et travaux dirigés (Seul ce document sera autorisé en examen) auteur : Jean-Marc Labatte [email protected]
LA GESTION DU RISQUE DE CHANGE. Finance internationale, 9 ème édition Y. Simon et D. Lautier
LA GESTION DU RISQUE DE CHANGE 2 Section 1. Problématique de la gestion du risque de change Section 2. La réduction de l exposition de l entreprise au risque de change Section 3. La gestion du risque de
Introduction à l économétrie : Spécifications, formes fonctionnelles, hétéroscédasticité et variables instrumentales
Introduction à l économétrie : Spécifications, formes fonctionnelles, hétéroscédasticité et variables instrumentales Pierre Thomas Léger IEA, HEC Montréal 2013 Table des matières 1 Introduction 2 2 Spécifications
Quantification Scalaire et Prédictive
Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction
a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b
I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Le théorème de Thalès et sa réciproque
Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de l espérance d utilité Olivier Bos [email protected]
Cours 7 : Utilisation de modules sous python
Cours 7 : Utilisation de modules sous python 2013/2014 Utilisation d un module Importer un module Exemple : le module random Importer un module Exemple : le module random Importer un module Un module est
Cours de méthodes de scoring
UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-
GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau
GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles
Rupture et plasticité
Rupture et plasticité Département de Mécanique, Ecole Polytechnique, 2009 2010 Département de Mécanique, Ecole Polytechnique, 2009 2010 25 novembre 2009 1 / 44 Rupture et plasticité : plan du cours Comportements
Biostatistiques : Petits effectifs
Biostatistiques : Petits effectifs Master Recherche Biologie et Santé P. Devos DRCI CHRU de Lille EA2694 [email protected] Plan Données Générales : Définition des statistiques Principe de l
Chapitre 2 Introduction aux objectifs des coûts. Pr. Zoubida SAMLAL-Doctorante en Risk Management MBA, CFA
Chapitre 2 Introduction aux objectifs des coûts Pr. Zoubida SAMLAL-Doctorante en Risk Management MBA, CFA Objectif du chapitre Faire la différence entre les coûts et les charges Définir les inducteurs
SOMMAIRE. 1. Préambule...2. 2. Le calendrier...2. 3. Trajectoire d un objet lancé...6. 4. Régression linéaire...9
SOMMAIRE 1. Préambule...2 2. Le calendrier...2 3. Trajectoire d un objet lancé...6 4. Régression linéaire...9 5. Calcul de commissions par tranches...12 6. Base de données...16 7. Valeur cible...19 ATTENTION
www.banquedelareunion.fr
LES CENTRES D AFFAIRES DÉDIÉS AUX ENTREPRISES, COLLECTIVITÉS ET ASSOCIATIONS CENTRE D AFFAIRES NORD/EST Tél. 0262 40 01 31 / 0262 40 01 33 Fax : 0262 40 01 60 CENTRE D AFFAIRES OUEST Tél. 0262 55 68 13
Séminaire TEST. 1 Présentation du sujet. October 18th, 2013
Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de
MA6.06 : Mesure et Probabilités
Année universitaire 2002-2003 UNIVERSITÉ D ORLÉANS Olivier GARET MA6.06 : Mesure et Probabilités 2 Table des matières Table des matières i 1 Un peu de théorie de la mesure 1 1.1 Tribus...............................
C f tracée ci- contre est la représentation graphique d une
TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe
Mémoire d actuariat - promotion 2010. complexité et limites du modèle actuariel, le rôle majeur des comportements humains.
Mémoire d actuariat - promotion 2010 La modélisation des avantages au personnel: complexité et limites du modèle actuariel, le rôle majeur des comportements humains. 14 décembre 2010 Stéphane MARQUETTY
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
Corrigé du baccalauréat S Asie 21 juin 2010
Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =
Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Fausto Errico Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2012 Table des matières
Lecture graphique. Table des matières
Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE
CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE Jean Luc Bovet, Auvernier L'article de Monsieur Jean Piquerez (Bulletin de la SSPMP No 86), consacré aux symédianes me paraît appeler une généralisation. En
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
ICC 115-6. 26 août 2015 Original: anglais. L'impact du prix du pétrole et du taux de change du dollar américain sur les prix du café
ICC 115-6 26 août 2015 Original: anglais F Conseil international du Café 115 e session 28 septembre 2 octobre 2015 Milan (Italie) L'impact du prix du pétrole et du taux de change du dollar américain sur
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités
Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements
Projet de synthèse de l'électronique analogique : réalisation d'une balance à jauges de contrainte
J3eA, Journal sur l enseignement des sciences et technologies de l information et des systèmes, Volume 4, HorsSérie 2, 20 (2005) DOI : http://dx.doi.org/10.1051/bibj3ea:2005720 EDP Sciences, 2005 Projet
Estimation et tests statistiques, TD 5. Solutions
ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études
