CONCOURS BLANC PCSI MATHÉMATIQUES 1 - Correction

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "CONCOURS BLANC PCSI MATHÉMATIQUES 1 - Correction"

Transcription

1 CONCOURS BLANC PCSI MATHÉMATIQUES - Correction Eercice. Calculs d intégrales Les trois questions sont indépendantes. t. Par I.P.P., arctan t dt = t arctan + t dt = t arctan t ln( + t + C.. Il faut se ramener à la forme canonique pour reconnaitre une primitive en arctan : = ( + + = ( + donc : + 3. (a d = ( + + = d = ( + arctan. + = + ( + + = + donc une primitive de est F : arctan. + + (b + cos θ ne s annulant pas sur l intervalle [0, π ], il s agit de l intégrale d une fonction continue (quotient de fonctions usuelles continues donc l intégrale est bien définie. De plus, par le changement de variable = tan I = π/ 0 cos θ + cos θ dθ = ( θ, on obtient que : + d = 0 + d = [ arctan ] 0 = π. Eercice. Étude d une fonction. La dérivée seconde de la fonction ep est positive donc c est une fonction convee. La courbe de la fonction ep est au-dessus de sa tangente au point d abscisse = 0. La tangente ayant pour équation y = u +, on obtient que pour tout u R, e u u + u.. Posons u = et eploitons l inégalité précédente : e(/. On a alors e / + 0 e / (e / + 0 (en multipliant par e / > 0. On obtient donc pour tout 0, e / + e / 3. La fonction est de classe C sur R ; la fonction eponentielle est de classe C sur R, ainsi + e / est de classe C sur R, de plus elle ne s annule pas sur R. Donc la fonction f est de classe C sur R en tant que quotient de deu fonctions dont le dénominateur ne s annule pas. 4. Il suffit d étudier la limite en 0 de f : lim 0 e / = 0 donc lim = 0 et lim + 0 +f( 0 e / = donc lim = 0. 0 f( En conclusion limf( = 0 donc la fonction f est prolongeable par continuité en 0, en notant toujours 0 f la fonction prolongée, la valeur de f(0 est Étude de la dérivabilité de f en 0. (a Pour tout 0, f ( = e / + e / ( + e /. 0.

2 (b Étudions la limite du tau d accroissement de f en 0+ : f( f(0 lim = lim e / = donc f est dérivable à droite en 0 et f d (0 =. (c Étudions la limite du tau d accroissement de f en 0 : f( f(0 lim = lim e / = 0 donc f est dérivable à gauche en 0 et f g(0 = 0. La dérivée à droite et à gauche sont différentes donc f n est pas dérivable en 0 (son graphe admet un point anguleu. 6. Allure du graphe de f. (a L inégalité obtenue au. montre que 0, f ( 0 : donc f est croissante sur R et R +. Les limites en et ne posent aucun problème (pas de forme indéterminée donc : 0 f( (b Pour tout 0, on a f ( = e / ( e / Le signe de f ( est celui de ( 3 + e / 3 ( e / 0, il suffit d étudier son signe. 3. Or e / > < 0 donc : e / f ( (c La fonction f est donc concave sur les intervalles R et R + (mais pas sur R. (la demi-tangente à gauche en 0 est horizontale et se confond avec l ae des abscisses, tandis que la demi-tangente à droite a pour équation y =

3 Eercice 3. Étude asymptotique d une série divergente Un équivalent de S n.. Pour tout n N, S n+ S n = n + > 0 donc (S n n est croissante.. Il s agit d appliquer l inégalité des accroissements finis à la fonction sur l intervalle [n, n + ]. Cette fonction est continue et dérivable sur [n, n + ]. De plus [n, n + ], f ( = et m = n + n = M donc : n N, m f(n + f(n M 3. En ajoutant les inégalités obtenues pour k allant de à n, on obtient : n + n + n n n ( k + n k k= k= k soit n + S n (la somme de gauche est télescopique En ajoutant les inégalités obtenues pour k allant de 0 à n, on obtient : n k=0 soit S n n (la somme de droite est télescopique n k + ( k + k k=0 n + n S n. n On en déduit que n N, n + S n n soit n + n + On remarque que : lim = lim n n n n = lim n n En passant à la limite, on en déduit par les théorèmes de comparaison que lim S n = n + n n =. donc que S n n. Un D.A. à deu termes. 4. Ceci est équivalent à dire que lim n ε n = 0, en effet par définition ε n = o( 5. A la question 3., on a prouvé que n N, n + S n n, on a alors : n + n + un. lim n ε n = 0. Comme n + n > 0, on en déduit que (u n n est minorée par Pour tout n N, u n u n+ = n + n n + = n + + n Or n + + n < n + donc n + + n > On en déduit que la suite (u n n est décroissante. n + soit u n u n+ > 0. n + 7. La suite (u n n est décroissante et minorée donc convergente vers un réel l. Par conséquent lim u n l = 0 ce qui s écrit d après le. comme u n l = o( ou encore u n = l+o(. n 8. On a immédiatement S n = u n + n + = n + (l + o(, on pose alors α = l R. 3

4 PROBLÈME (d après Petites Mines 009 Partie A - Étude d une fonction. R est symétrique par rapport à 0 et pour tout 0, f( = ( sh car sh est impaire donc f est paire. ( ( = sh = f(. (a On sait que en 0, e X = + X + o(x donc e X = X + o(x et que sh X = ex e X. ( + X + o(x ( X + o(x X + o(x On en déduit que sh X = = X (ou alors on reconnait le tau d accroissement de la fonction sh pour démontrer que sh X X. En posant X =, quand ±, on a X 0, donc en et en : ( f( = sh = sh X X X 0 X. On a donc lim f( = et lim f( = 0 = sh X X (b Pour 0 +, on pose X = (, ainsi X tend vers et sh e X or lim = (par croissances comparées et X X lim e X X X Par parité lim f( = 0 = ex e X X. = 0 donc lim f( = Sur R, est dérivable, donc par composée avec la fonction sh qui est dérivable sur R, la fonction ( sh est dérivable sur R et par produit f est dérivable sur R. Pour tout R, ( f ( = sh + ( ( [ ( ch = th ] ( ch. 4. Pour tout X R +, on pose g( = th(x X, g est une fonction dérivable et g (X = th (X = th (X < 0 g est donc strictement décroissante et par suite inférieur ou égale à g(0 = 0. On en déduit que g(x < 0 sur R + donc que pour tout X R +, on pose th(x < X. 5. Comme la fonction ch est strictement positive, on trouve d après la question A.4. que f est strictement négative sur R +. On en déduit le tableau de variation suivant (complété par parité : 0 f( 6. On admet qu au voisinage de 0, sh X = X + X3 6 + o(x3. En posant X =, on a X 0+ et X 0. On en déduit ( que, en comme en : f( = + ( o 3 = + ( 6 + o soit a 0 =, a = 0 et a = 6. ( 7. La fonction f est dérivable sur R comme composée de deu fonctions dérivables. De plus, pour 0, au voisinage de 0 on a f ( = o(. 4

5 ( On en déduit que lim = ce qui prouve que f se prolonge par continuité en 0. 0 En notant F ce prolongement, F (0 =. F ( F (0 + On a également, au voisinage de 0, = 6 + o( = + o( Donc F (0 = 0 et F est dérivable sur R et en 0 donc F est dérivable sur R. Partie B - Tracé d une courbe paramétrée 8. La fonction est la fonction f étudiée dans la partie A. Passons à l étude de la fonction y. La fonction y est dérivable sur R et pour tout t R, on a : ( y (t = ep t ( ( ( t t ep = ep. t t t Le signe de y (t est celui de. Par ailleurs t lim t te/t = et lim t te/t =. Pour obtenir la limite en 0 + de y(t, on pose T = /t. lorsque t 0 +, T. Or te /t = et = (croissances comparées. Donc lim T t 0 te/t =. + En 0 il n y a pas de forme indéterminée : lim t 0 te/t = 0. Finalement, on obtient les tableau de variation et de signes suivants : 0 (t y (t y(t 0 e 9. On a (t et y(t. De plus (t et y(t. t t t t La courbe Γ admet donc une asymptote verticale d équation =. Par ailleurs, d après le tableau de variation, tous les points M de Γ sont à droite de cette asymptote. On a (t et y(t 0. t 0 t 0 La courbe Γ admet donc une asymptote horizontale d équation y = 0. Les points M de Γ correspondant à un paramètre t < 0 sont en dessous de cette asymptote horizontale. On a (t et y(t. t 0 + t 0 + De plus y(t (t = e/t sh(/t = e /t e /t e /t. t 0 + e /t e /t 0 Enfin y(t (t = te /t 0. t 0 + La courbe Γ admet donc la droite d équation y = comme asymptote oblique. Comme y(t (t 0 pour t > 0 car te /t > 0 pour t > 0, la courbe Γ est au-dessus de son asymptote oblique pour les points M de paramètre t > 0. 5

6 0. Partie C - Une équation différentielle. On introduit l équation homogène (E 0 associée : y + y = 0. Sur R +, la fonction est continue et ne s annule pas. De plus, une primitive de a : est ln = ln. Donc les solutions de (E 0 sont y( = λe ln = λ, où λ est une constante réelle quelconque. Pour obtenir une solutions particulière de (E, on utilise la méthode de variation de la constante. On considère λ une fonction dérivable sur R +. On pose alors pour > 0, y( = λ(. y est dérivable et y ( = λ ( λ(. Ainsi y est solution de (E si et seulement si > 0, λ ( = ch. Prenons par eemple λ( = sh( pour tout > 0, les solutions de (E sont la somme de la solution particulière que l on vient d ehiber et des solutions de l équation homogène (E 0. Les solutions de (E sont donc de la forme R + λ + sh (λ étant une constante réelle quelconque.. En effectuant les mêmes calculs, on retrouve que les solutions de (E sont également de la forme R µ + sh (µ étant une constante réelle quelconque 3. Procédons par analyse-synthèse. Analyse : Supposons qu une telle solution eiste, alors d après les questions C. et C., il eiste deu constantes réelles λ et µ telle que : µ + sh si < 0 y( = λ + sh si > 0 Comme y est continue en 0 (car dérivable les limites de y en 0 + et 0 sont finies et égales, ce qui impose que λ = µ = 0. Ainsi, pour tout R, y( = sh. de plus y est continue en 0, par unicité du prolongement par continuité de y, elle est égale à la fonction F définie dans la question A.7.. Synthèse : La fonction F est dérivable sur R d après la question A.7.. De plus sur R +, F ( = y( = sh donc F est bien solution de (E sur ces deu intervalles. Enfin F (0 = donc en = 0, on a bien 0.F (0 + F (0 = ch(0. Finalement F est l unique fonction dérivable sur R, solution de (E sur R. Justifier que la fonction F (définie dans la question A.7. est l unique fonction définie et dérivable sur R qui soit solution de l équation différentielle (E sur R. 6

7 Partie D - Étude d une suite 4. La fonction f est continue et strictement décroissante sur l intervalle ]0; [. Par ailleurs lim f( = et lim f( = donc f réalise une bijection de l intervalle ]0, [ 0 + sur l intervalle ], [. Pour tout n N, le réel n + = + appartient à l intervalle ], [. n n Il possède donc un unique antécédent dans ]0, [ par la fonction f. On note u n cet antécédent. 5. D après la question précédente, puisque f est décroissante sur ]0, [, et que f(u n = + n + n + = f(u n+ on en déduit nécessairement que u n u n+. Donc la suite (u n n N est croissante. ( n + 6. En notant h la bijection réciproque de f, on a u n = h. n ( n + n + Comme lim = par composée de limites lim n n u n = lim h =. n n n (en effet lim h(y = car lim f( = y + y 7. Pour tout n N, f(u n = + n. Or. lim u n = permet d utiliser le développement obtenu dans la question A.6. et d obtenir n + ( 6u + o n u = + n n soit 6u n D où 6u n n et en prenant la racine carrée (possible vu que u n > 0 on obtient u n n 6. n Partie E - Une fonction définie par une intégrale 8. Pour tout R, ch( sh( = e + e e e = e e = sh(. 4 ( 9. Soit F une primitive de F sur R +, pour tout R +, J( = F ( F. Comme F est dérivable sur R +, J est dérivable sur R + en tant que différence et composée de fonctions continues. Pour tout R +, J ( = F ( ( F = f( ( ( f = sh ( 4 sh. ( ( ( Or sh = ch sh d après la question E.9. donc pour tout > 0 : ( [ J ( = sh ( ] [ ch = f( ( ] ch. 0. Sur R +, la fonction f est strictement positive. Résolvons sur R + l inéquation : ( ch 0. ( Celle-ci équivaut à ch, soit en remplaçant la fonction ch par son epression à l aide de la fonction eponentielle : e / + e / 4. En posant X = e /, l inéquation devient X + 4X, avec X > 0. X En multipliant par X qui est positif, obtient l inéquation équivalente X + 4X qui est une inéquation 7

8 du second degré équivalente (après résolution à 3 X + 3. Ainsi 3 e / + 3 soit ln( 3 ln( + 3. Or > 0 donc on trouve finalement ln( + 3. En conclusion J ( 0 ln( + 3 et de même J ( 0 ln( + 3. En utilisant les limites données en 0 + et en, on obtient le tableau (en notant α = ln( + 3. J ( 0 α 0 + J( J(α. 8

( ) Corrigé variations de la fonction logarithme népérien. Exercice 1. ; f (x) = = = x ; f (x) = 4 ( ln x) 3. ; f (x) = x x 1 = = ; f (x) = x x = 1 ln

( ) Corrigé variations de la fonction logarithme népérien. Exercice 1. ; f (x) = = = x ; f (x) = 4 ( ln x) 3. ; f (x) = x x 1 = = ; f (x) = x x = 1 ln Eercice ) f ( ) = ln ; f () = ln + ) ln ln ln f ( ) = ; f () = = ² ² ) f ( ) = ( ln ) 4 ; f () = 4 ( ln ) 4) f ( ) = ; f () = = ln ln ² ln ² ) ( ln + ) ( ln ) ln f ( ) = ; f () = = ln + (ln + )² ( ln +

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Fonctions usuelles Eercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr Eercice **I * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile

Plus en détail

Exercices : Étude de fonctions

Exercices : Étude de fonctions Eercices : Étude de fonctions Eercice : Calculer les limites suivantes : (. lim 3 2 +(ln) 3 ) 0 + 2. lim 3. lim ln(e +) ln 3 2 + 4. lim 5. lim 6. lim 7. lim e 2 3 2 e 3+ (ln) (e 4 3 ) + e2 ln+ ln+e 8.

Plus en détail

(croissances comparées) x + x 1 x x 1. 1 x 1 x 1 x = 2 = 1

(croissances comparées) x + x 1 x x 1. 1 x 1 x 1 x = 2 = 1 Eercice.. 2. 3. e 2 ln = e 2 ( 2 ) /2 } ln {{ / } (ln ) 3 2 2 = (ln ) 3 / 2 / /(2) 2 }{{} sin 0 car sin est bornée et 0. 0 4. e (aucune difficulté!) 5. Il faut distinguer 0 et 0. 6. (croissances comparées)

Plus en détail

Dérivabilité, dérivée,

Dérivabilité, dérivée, Ai-Marseille Université 2016-2017 Analyse I PLANCHE 3 : DÉRIVATION - DÉVELOPPEMENTS LIMITÉS Dérivabilité, dérivée, Eercice 1 [Opérations sur les dérivées] Soit a < b, ]a, b[ et f, g deu applications de

Plus en détail

Devoir non surveillé Équation différentielle, fonction définie par une intégrale

Devoir non surveillé Équation différentielle, fonction définie par une intégrale Devoir non surveillé Équation différentielle, fonction définie par une intégrale Pelletier Sylvain, BCPST Lycée Hoche $\ CC BY: pour le 0 juin Eercice Résoudre l équation différentielle : E y y + 5y cos

Plus en détail

Terminales S BAC BLANC Mathématiques Corrigé. Durée 4 heures. La calculatrice graphique est autorisée.

Terminales S BAC BLANC Mathématiques Corrigé. Durée 4 heures. La calculatrice graphique est autorisée. Terminales S BAC BLANC Mathématiques Corrigé Durée 4 heures. La calculatrice graphique est autorisée. Eercice (commun) A. Etude de f en ) On a : lim = et lim e = e =. Par composition, il vient alors :

Plus en détail

I. Les fonctions de référence

I. Les fonctions de référence I. Les fonctions de référence. Fonctions affines, affines par morceau Une fonction affine est croissante lorsque., décroissante lorsque... Sa représentation graphique est la droite d équation y = a b,

Plus en détail

Dérivabilité, dérivée,

Dérivabilité, dérivée, Ai-Marseille Université 203-204 Analyse I PLANCHE 3 : DÉRIVATION Dérivabilité, dérivée, Eercice [Opérations sur les dérivées] Soit a < b, ]a, b[ et f, g deu applications de ]a, b[ dans R. On suppose que

Plus en détail

EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES

EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES Calculer les nombres suivants a) arcsin sin 8π ) 5 c) arcsin sin 5π ) 7 e) sin arcsin ) 3 b) arccos sin 8π ) 5 d) arcsin sin 0π

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Etude de fonctions Eercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS T ale S LIMITES DE FONCTIONS Analyse - Chapitre 6 Table des matières I Limite d une fonction à l infini 2 I Limite finie à l infini........................................ 2 I a..........................................

Plus en détail

Concours commun 2009 des écoles des mines d Albi, Alès, Douai, Nantes.

Concours commun 2009 des écoles des mines d Albi, Alès, Douai, Nantes. Concours commun 009 des écoles des mines d Albi, Alès, Douai, Nantes. Corrigé Problème (Algèbre et géométrie Partie (Étude de deu applications Nous noterons deg P le degré du polynôme P. Pour tout polynôme

Plus en détail

1. Soit l un nombre réel. On dit que f tend vers l en + si f est aussi proche que l on veut de l dès que x est suffisamment

1. Soit l un nombre réel. On dit que f tend vers l en + si f est aussi proche que l on veut de l dès que x est suffisamment Limites s Soit f une fonction définie sur un intervalle I et 0 un point de I ou une etrémité de I.. Limite réelle en un point Soit l un nombre réel. On dit que f admet l pour limite en 0 si f() est aussi

Plus en détail

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Fonctions Numériques Site MathsTICE de Adama Traoré Lcée Technique Bamako A- / Ensemble de définition d une fonction : - / Définition : Soit f : A B une fonction. On appelle ensemble de définition D f

Plus en détail

TS Limites de fonctions Cours

TS Limites de fonctions Cours TS Limites de fonctions Cours I. Limites à l infini. Limite infinie en + ( 3 ) Définition Une fonction f a pour limite + en + si pour toute valeur réelle A, on a f() > A pour assez grand c est à dire pour

Plus en détail

Chapitre II : Limites de fonctions et continuité

Chapitre II : Limites de fonctions et continuité Chapitre II : Limites de fonctions et continuité Cité Scolaire Gambetta Année scolaire 0-03 I Limite à l infini : ) Limite finie en Définition : Dire qu une fonction f a pour limite le réel l en signifie

Plus en détail

FONCTIONS USUELLES. 1 Fonctions logarithme, exponentielle et puissances. 1.1 Fonction logarithme et exponentielle

FONCTIONS USUELLES. 1 Fonctions logarithme, exponentielle et puissances. 1.1 Fonction logarithme et exponentielle FONCTIONS USUELLES Fonctions logarithme, eponentielle et puissances. Fonction logarithme et eponentielle Définition. Logarithme La fonction ln est l unique primitive de sur R + s annulant en. Proposition.

Plus en détail

Université de Rennes 1, Licence 1 Biologie Parcours Accompagné Soutien Mathématiques. Etude de Fonctions, Feuille 1

Université de Rennes 1, Licence 1 Biologie Parcours Accompagné Soutien Mathématiques. Etude de Fonctions, Feuille 1 Université de Rennes 1, Licence 1 Biologie Parcours Accompagné Soutien Mathématiques Etude de Fonctions, Feuille 1 Calcul de dérivées. Dériver les fonctions suivantes. f 1 () = e f () = ln() f 3 () = log

Plus en détail

DÉVELOPPEMENTS LIMITÉS

DÉVELOPPEMENTS LIMITÉS CHAPITRE 9 DÉVELOPPEMENTS LIMITÉS Dans ce chapitre, I désignera systématiquement un intervalle de R non réduit à un point. 1 Développement limité d une fonction au voisinage d un point Définition 9.1 Soient

Plus en détail

Devoir de Mathématiques 1 : corrigé

Devoir de Mathématiques 1 : corrigé PCSI 0-04 Mathématiques Lycée Bertran de Born Devoir de Mathématiques : corrigé Exercice. Résolutions d inéquations (a) Disjonction de cas selon le signe de x. Si x [, ] alors x = x. Dans ce cas : x x

Plus en détail

FONCTION LOGARITHME. 2 exemple 2. Soit f la fonction définie sur [0 ; 1 ] par : f(x) = 2 x + 1 signe de f 5

FONCTION LOGARITHME. 2 exemple 2. Soit f la fonction définie sur [0 ; 1 ] par : f(x) = 2 x + 1 signe de f 5 FONCTION LOGARITHME I FONCTION RECIPROQUE La fonction carrée La fonction carrée est dérivable et strictement monotone sur [ 0 ; 2 ] D'après le corollaire du théorème des valeurs intermédiaire pour tout

Plus en détail

FX 24 - EQUATIONS DIFFÉRENTIELLES

FX 24 - EQUATIONS DIFFÉRENTIELLES Lycée Thiers FX 24 - EQUATIONS DIFFÉRENTIELLES EDL - 1 Soit n N. Résoudre sur ], + [ l équation différentielle 2t + = t n. Résoudre sur R l équation différentielle ch (t) + sh (t) = 1 1 + t 2. Soit I un

Plus en détail

FONCTIONS D UNE VARIABLE RÉELLE

FONCTIONS D UNE VARIABLE RÉELLE FONCTIONS D UNE VARIABLE RÉELLE Toutes les fonctions considérées dans ce chapitre seront des d une variable réelle (i.e. l ensemble de départ est R) à valeurs dans R ou C. 1 Généralités 1.1 Ensemble de

Plus en détail

Étude de fonction et de courbes dans le plan

Étude de fonction et de courbes dans le plan Chapitre Étude de fonction et de courbes dans le plan Dans ce chapitre on étudie le problème suivant : étant donne une fonction donné par f) y, comment tracer approimativement la courbe représentative

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien Introduction La fonction eponentielle est continue strictement croissante de R à valeurs dans ]0; + [. Le théorème des valeurs intermédiaires permet donc d affirmer que : Pour

Plus en détail

Fonction exponentielle 1

Fonction exponentielle 1 Fonction eponentielle 1 Unicité de la solution de l équation différentielle Conséquences 1. Si f est une solution de l équation différentielle y = y, y(0) = 1, alors, pour tout réel, f( )f() = 1 et f()

Plus en détail

CHAPITRE 3 PRIMITIVES ET INTEGRALES FONCTIONS LOGARITHMES ET EXPONENTIELLES

CHAPITRE 3 PRIMITIVES ET INTEGRALES FONCTIONS LOGARITHMES ET EXPONENTIELLES CHAPITRE 3 PRIMITIVES ET INTEGRALES FONCTIONS LOGARITHMES ET EXPONENTIELLES 3--PRIMITIVES ET INTEGRALES 3---Primitives Soit f une fonction définie sur un intervalle I. On appelle fonction primitive de

Plus en détail

x x ; Chapitre 2 GÉNÉRALITÉS SUR LES FONCTIONS

x x ; Chapitre 2 GÉNÉRALITÉS SUR LES FONCTIONS Chapitre GÉNÉRALITÉS SUR LES FONCTIONS I. GÉNÉRALITÉS SUR LES FONCTIONS DE VARIABLE RÉELLE Sau indication particulière, pour simpliier, les onctions sont déinies sur un intervalle I de non réduit à un

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation Ce que dit le programme : Nouveautés par rapport à la première : Dérivée de la composée et écriture différentielle (pour la physique)

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

2 Fonctions : limites et continuité

2 Fonctions : limites et continuité capitre Fonctions : ites et continuité Activités (page ) ACTIVITÉ Dans le cas, f est continue sur [ ; ] puisqu elle est d un seul morceau. Dans le cas, f est discontinue en, donc n est pas continue sur

Plus en détail

TD : Fonctions. Université Pierre et Marie Curie Le 29 novembre 2012 http ://www.eleves.ens.fr/home/waldspur/lm110.html.

TD : Fonctions. Université Pierre et Marie Curie Le 29 novembre 2012 http ://www.eleves.ens.fr/home/waldspur/lm110.html. Université Pierre et Marie Curie Le 9 novembre 0 LM0 ttp ://www.eleves.ens.fr/ome/waldspur/lm0.tml TD : Fonctions Corrigé Eercice :. Réécrivons f () en fonction de y : f () ey + y/ f () ey + y y ( + y

Plus en détail

Etude des fonctions usuelles

Etude des fonctions usuelles Etude des fonctions usuelles 1. Introduction Soit f une fonction réelle de la variable réelle, on a vu que ces fonctions sont souvent définies par des formules, c est-à-dire définies par des epressions

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

( e ) x 2 e x 1 = 1. CORRIGÉ PARTIEL Fonction exponentielle. Ch 5. = donc lim x. Exercice 2. e x e2 =. = +. Par produit lim ( 3 x)e x =.

( e ) x 2 e x 1 = 1. CORRIGÉ PARTIEL Fonction exponentielle. Ch 5. = donc lim x. Exercice 2. e x e2 =. = +. Par produit lim ( 3 x)e x =. C 5 CORRIGÉ PARTIEL Fonction eponentielle Eercice e + = e e = e e. En + : + e = 0 (ite de référence), donc + e e = 0. En : e 0 + = donc e =. e > 0, donc e e =. En + : 3 = et e = +. Par produit ( 3 )e =.

Plus en détail

Sujets de bac : Intégration

Sujets de bac : Intégration Sujets de bac : Intégration Sujet n 1 : Liban juin 2006 Partie A : étude d une fonction Soit la fonction définie sur l intervalle 0; par ln 1 Sa courbe représentative dans un repère orthogonal ; ; est

Plus en détail

La fonction puissance

La fonction puissance La fonction puissance Table des matières Fonction puissance. Définition.................................. Propriétés.................................. Eercices.................................. Etude de

Plus en détail

maîtriser le cours (page 48)

maîtriser le cours (page 48) e) > donc la première inégalité équivaut à - sin N cos et sont strictement positis donc la seconde inégalité équivaut à cos N - sin et donc pour tout de sin cos N - N b) Le téorème d encadrement et le

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Fonctions Remise à Niveau Mathématiques Deuième partie : Fonctions Corrigés des eercices Page sur 0 RAN Fonctions Eercices corrigés - Rev 03 Mathématiques RAN - Fonctions DÉFINITIONS

Plus en détail

Les fonctions logarithmes

Les fonctions logarithmes DOCUMENT 34 Les fonctions logarithmes. Eistence des fonctions logarithmes.. L aspect algébrique. L idée de transformer les produits de nombres réels en sommes, afin de simplifier les calculs numériques,

Plus en détail

Devoir Surveillé /Evaluation

Devoir Surveillé /Evaluation Lycée Pierre-Gilles de Gennes BCPST Mathématiques 4-5 Devoir Surveillé /Evaluation Le 4 septembre 4 Documents écrits, électroniques, calculatrices et téléphones portables interdits La plus grande attention

Plus en détail

2 cos x =. 0 ;2π l équation sin x =. Corrigés des exercices de trigonométrie

2 cos x =. 0 ;2π l équation sin x =. Corrigés des exercices de trigonométrie Corrigés des eercices de trigonométrie I. Résoudre algébriquement des équations, des inéquations Pour les eercices suivants, on utilisera le cercle trigonométrique Eercice 1 Résoudre dans l intervalle

Plus en détail

Examen de l UE LM110 Juin 2005

Examen de l UE LM110 Juin 2005 Université Pierre et Marie Curie Licence Sciences et Technologies MIME Eamen de l UE LM110 Juin 2005 La durée de l eamen est de deu heures Les eercices sont indépendants les uns des autres Les notes de

Plus en détail

PARTIE I : ETUDE DE F

PARTIE I : ETUDE DE F Concours ESIM 999 ÉPREUVE DE MATHÉMATIQUES I - ANALYSE Durée : 3 heures Filière PC PRELIMINAIRES. f(, est défini si et seulement si :, et ( + ( + >. Le plan étant rapporté à un repère orthonormé (O, i,

Plus en détail

I. Equation et inéquation du second degré

I. Equation et inéquation du second degré I. Equation et inéquation du second degré Théorème : Soient a, b et c des nombres réels avec a non nul, on appelle discriminant et on note Δ le nombre b 2 4ac. L équation ax 2 + bx + c = 0, - admet deux

Plus en détail

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines BTS Fonctions 0-0 FONCTIONS I Fonctions usuelles I. Fonctions affines Définition a et b sont deu réels donnés. La fonction définie sur R par f() = a + b est appelée fonction affine. Sa représentation graphique

Plus en détail

Dérivées et applications

Dérivées et applications Dérivées et applications I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de la tangente

Plus en détail

Etude théorique d équation d ordre 2

Etude théorique d équation d ordre 2 [http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 Etude théorique d équation d ordre 2 Eercice 1 [ 01555 ] [Correction] Soit q : R R + une fonction continue non nulle. On se propose de

Plus en détail

Cours sur les fonctions usuelles

Cours sur les fonctions usuelles Cours sur les fonctions usuelles c Emmanuel Vieillard Baron, Table des matières Préambule Fonctions logarithmes, eponentielles et puissances. Logarithme néperien................................ Eponentielle

Plus en détail

Limites et asymptotes

Limites et asymptotes Chapitre 3 Limites et asymptotes Sommaire 3. Définitions, propriétés........................... 87 3.. Limite finie en un point........................... 87 3..2 Limite infinie en un point..........................

Plus en détail

DÉRIVÉE. I Nombre dérivé - Tangente. Définition. Exemple 1. Remarque

DÉRIVÉE. I Nombre dérivé - Tangente. Définition. Exemple 1. Remarque DÉRIVÉE I Nombre dérivé - Tangente Eemple Considérons la fonction carré f() = 2, et effectuons avec une calculatrice un zoom de sa représentation graphique au voisinage de son point 0 d'abscisse 0 = 2

Plus en détail

Fonctions usuelles. lim x 1. lim. x α ln x = 0

Fonctions usuelles. lim x 1. lim. x α ln x = 0 I Fonction logarithme Fonctions usuelles Définition : n appelle fonction logarithme népérien la primitive de la fonction définie sur ]0, + [ qui s annule en. n notera cette fonction ln. Remarque : L eistence

Plus en détail

Limites : Exercices. Amerinsa - Ecole d été. Exercice 1 : Notions intuitives

Limites : Exercices. Amerinsa - Ecole d été. Exercice 1 : Notions intuitives Amerinsa - Ecole d été Limites : Eercices Eercice : Notions intuitives Dans la figure ci-contre, vers quoi tend f() lorsque tend vers : a) - b) + c) 0 d) -4 e) 4 Eercice : Notions intuitives Vers quelle

Plus en détail

Devoir Surveillé Samedi 24 Mars 2012

Devoir Surveillé Samedi 24 Mars 2012 Devoir Surveillé Samedi 4 Mars 01 BCPST Lycée Hoche Pelletier Sylvain $\ CC BY: = Durée : 3h Eercice 1 Une urne contient n boules numérotées de 1 à n. On en choisit 3 au hasard et 7 simultanément. 1. Quel

Plus en détail

T.S L 2. Limite d une fonction. Limites de fonctions, continuité et dérivabilité. I.1 Activités. I.2 Définitions

T.S L 2. Limite d une fonction. Limites de fonctions, continuité et dérivabilité. I.1 Activités. I.2 Définitions T.S Limites de fonctions, continuité et dérivabilité. L 2 Le second degré, vu en classe de ère S, est à connaître IMPÉRATIVEMENT : solutions événtuelles d une équation du second degré, signe d une epression

Plus en détail

Concours Communs Polytechniques 2013 Épreuve de Mathématiques n 1 TSI

Concours Communs Polytechniques 2013 Épreuve de Mathématiques n 1 TSI ÉLÉMENTS DE CORRECTION CCP TSI MATHS Concours Communs Polytechniques Épreuve de Mathématiques n TSI. a) On a f ) + Eercice donc f ) + +. b) L application f est dérivable et même de classe C ) sur R comme

Plus en détail

Dérivation et fonctions trigonométriques

Dérivation et fonctions trigonométriques Dérivation et fonctions trigonométriques 1. Compléments sur la dérivation Théorème. Soit une fonction à valeurs positives dérivable sur un intervalle. Alors est dérivable sur et. Soit. La fonction est

Plus en détail

Programme de colle - Semaine 4. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique.

Programme de colle - Semaine 4. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique. Programme de colle - Semaine 4 Fonctions circulaires. Bijections, fonctions circulaires réciproques. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique. Démonstrations du

Plus en détail

Exercices : Fonctions continues

Exercices : Fonctions continues Eercices : Fonctions continues Eercice 1 Sur quels ensembles les fonctions suivantes sont elles continues? sin() si 0 1) f : 2) f : E() 2 si = 0 3) f : sin(π)e() 4) f : sin() sin( 1 ) si 0 0 si = 0 Eercice

Plus en détail

Chapitre 12 : Étude locale des fonctions : limites

Chapitre 12 : Étude locale des fonctions : limites Chapitre 12 : Étude locale des fonctions : limites Dans tout ce chapitre, I désigne un intervalle de R, x 0 R, f est une fonction définie sur son domaine de définition D f à valeurs réelles. C f désigne

Plus en détail

Exercices supplémentaires : ln

Exercices supplémentaires : ln Exercices supplémentaires : ln Partie A : Propriétés algébriques Exprimer en fonction de ln2 : Exercice 2 Simplifier les expressions suivantes ln 1 2 ; ln8 ; ln64 ; ln2 ; ln64 ; ln 32 ; ln 2 ; ln 32 ln

Plus en détail

(ln x) 3 + x. x+ 1 x. xe 1 x

(ln x) 3 + x. x+ 1 x. xe 1 x Calculs et entraînement. Eercice 1. [limites ] Calculer les limites suivantes : 1. lim + e + ln. lim + (ln ) 3 + sin 3. lim + 1 + + 4. lim + e 1 sin + cos 7. lim + + 1 1 10. lim + 1 13. lim 5. lim e 1

Plus en détail

Représenter graphiquement (sur un même schéma) ces trois ensembles.

Représenter graphiquement (sur un même schéma) ces trois ensembles. PCSI DEVOIR SURVEILLÉ de MATHÉMATIQUES n 4 07/1/001 Durée : 4 heures EXERCICE 1 : Calculatrices interdites Dans le plan complee rapporté au repère orthonormal (O; e 1, e, on définit une transformation

Plus en détail

Corrigé du TD 2 : Fonctions simples

Corrigé du TD 2 : Fonctions simples Corrigé du TD : Fonctions simples Exercice : Fonctions élémentaires. Cas f(x) = Il est clair qu il n y a aucun problème de définition et que cette fonction est définie pour tout x réel. De plus, la fonction

Plus en détail

FONCTIONS USUELLES. Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction.

FONCTIONS USUELLES. Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction. A 00-0 FONCTIONS USUELLES Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction. Exponentielles, logarithmes, puissances. Exponentielle

Plus en détail

PRATIQUE DES FONCTIONS NUMÉRIQUES

PRATIQUE DES FONCTIONS NUMÉRIQUES UNIVERSITÉ DE CERGY U.F.R. Economie et Gestion Licence d Économie et Gestion L1 - S1 PRATIQUE DES FONCTIONS NUMÉRIQUES EXAMEN PREMIÈRE SESSION - Janvier 01 - heures Les exercices sont indépendants et peuvent

Plus en détail

Correction du devoir surveillé

Correction du devoir surveillé ycée Saint ouis DS Correction du devoir surveillé Exercice. On cherche les racines carrées de 8 + i sous la forme u = x + iy avec x, y R. Ainsi, u = 8 + i. On obtient alors : x y = 8 égalité des parties

Plus en détail

4.6 Application de la dérivée à l étude des fonctions

4.6 Application de la dérivée à l étude des fonctions 54 4.15. Théorème Règle de l Hôpital. f() Soit f et g deu fonctions telle que la limite lim est une forme indéterminée ( 0 0 ou f () 0 g() ). Alors si lim 0 g eiste (soit un nombre réel, soit + soit ()

Plus en détail

Limite d une fonction en un point

Limite d une fonction en un point Limite d une fonction en un point Définiton Soit f une fct déf. sur un intervalle I de R, sauf p-ê en a I. l R est la limite de f en a si, quand x I se rapproche de a, f (x) se rapproche de l. Dans ce

Plus en détail

Fonctions d une variable réelle

Fonctions d une variable réelle Fonctions d une variable réelle BTS Table des matières Fonctions usuelles. Fonctions en escalier.......................................... Fonctions affines............................................

Plus en détail

Chap V : De nouvelles fonctions de référence

Chap V : De nouvelles fonctions de référence Chap V : De nouvelles fonctions de référence Cours Chap V, page 1 sur 6 I) Le théorème des bijections réciproques Théorème Théorème des bijections réciproques Si f : I R est continue sur l intervalle I

Plus en détail

Cours de Mathématiques Continuité, dérivabilité, convexité

Cours de Mathématiques Continuité, dérivabilité, convexité Table des matières I Continuité....................................... 2 I.1 Continuité en un point............................ 2 I.2 Propriétés................................... 3 I.3 Continuité sur

Plus en détail

Dérivation des fonctions numériques d une variable réelle

Dérivation des fonctions numériques d une variable réelle Maths PCSI Exercices Dérivation des fonctions numériques d une variable réelle 1 Aspects locaux 1 + x 1 x si x 0 Exercice 1 Etudier la dérivabilité en 0 de x x 1 sinon Exercice 2 Dériver x 1 + 2 + x. Recommencer,

Plus en détail

Terminale S Chapitre 2 «Fonctions : limites, continuité et dérivabilité» Page 1. si pour tout M > 0, on a f x < M "pour x assez grand"

Terminale S Chapitre 2 «Fonctions : limites, continuité et dérivabilité» Page 1. si pour tout M > 0, on a f x < M pour x assez grand Terminale S Capitre «Fonctions : ites, continuité et dérivabilité» Page I) Limites ) Limites à l infini a) Limite finie Définition : Etant donnée une fonction f et un réel α, on dira quelle tend vers α

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN T ale S FONCTION LOGARITHME NÉPÉRIEN Analyse - Chapitre 8 Tale des matières I La fonction logarithme népérien 2 I Théorème et définition 2 I 2 Conséquences immédiates 2 I 3 La relation fonctionnelle 3

Plus en détail

Limites et fonctions continues

Limites et fonctions continues Limites et fonctions continues Vidéo partie. Notions de fonction Vidéo partie 2. Limites Vidéo partie 3. Continuité en un point Vidéo partie 4. Continuité sur un intervalle Vidéo partie 5. Fonctions monotones

Plus en détail

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ A. Limites d'une fonction I. Limite en et en. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ où a R. DÉFINITIONS Soit l un réel.

Plus en détail

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités Chapitre 5 Généralités sur les fonctions numériques 5.1 Généralités Définition 5.1 Une fonction numérique permet d associer à chaque nombre x d un ensemble D un autre nombre que l on note f(x). On note

Plus en détail

Exercice 1 - Enseignement de spécialité - 5pts. u 0 = 7 et u n+1 = 2u n v n = u n 2. u n =

Exercice 1 - Enseignement de spécialité - 5pts. u 0 = 7 et u n+1 = 2u n v n = u n 2. u n = La maison Ecole d ' Devoir de type bac n o 4 Classe de terminale ES Variations, limites, continuité, asymptotes, fonction logarithme, suites... Copyright c 2004 J.- M. Boucart GNU Free Documentation Licence

Plus en détail

Limites, continuité et dérivabilité

Limites, continuité et dérivabilité Correction de la Feuille de TD - Analyse 8 9 Limites, continuité et dérivabilité Eercice. Montrer que a = et ( ) =.. Démontrer maintenant ces résultats en utilisant la définition (avec le ε) de la ite.

Plus en détail

Synthèse de cours PanaMaths Fonctions dérivables convexes

Synthèse de cours PanaMaths Fonctions dérivables convexes Synthèse de cours PanaMaths Définitions et eemples fondamentau Définitions à un point Soit C sa courbe représentative dans un repère tel que l ae des ordonnées est orienté du bas vers le haut La fonction

Plus en détail

Fonctions usuelles Limites

Fonctions usuelles Limites Fonctions usuelles Limites I) Généralités Dans tout ce cours, I désignera un intervalle de Y (intervalle ouvert, fermé, semi-ouvert ). Si I = [a, b], on appellera I un segment de Y. On considère la fonction

Plus en détail

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité Chapitre. Compléments sur les fonctions : ites, continuité, dérivabilité I. Rappels de cours. Limites d une fonction Soit l R. (i) Limites en + et en On dit que f() tend vers l lorsque tend vers + quand

Plus en détail

Activités d approche. ACTIVITÉ 1 Vers de nouvelles formules de dérivation. Partie A : Fonction sous radical. Partie B : Fonction en puissance

Activités d approche. ACTIVITÉ 1 Vers de nouvelles formules de dérivation. Partie A : Fonction sous radical. Partie B : Fonction en puissance Dérivation. Fonctions cosinus et sinus ANALYSE Connaissances nécessaires à ce chapitre Calculer la dérivée d une fonction f Déterminer certaines caractéristiques de f à partir de f Utiliser le cercle trigonométrique,

Plus en détail

Université Denis Diderot Paris 7 ( ) Devoir maison 2

Université Denis Diderot Paris 7 ( ) Devoir maison 2 Université Denis Diderot Paris 7 (03-04) Maths, Agro & Véto Devoir maison Exercice [Sujet Analyse 03] Soit la fonction d une variable réelle f définie sur D = [0,+ [ par f(x) = xe x +x. On appelle Cf la

Plus en détail

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie Finance et Gestion L1-S1 : MATH101 : Pratique des Fonctions numériques Notes de cours : Chapitre II : Limites Notations

Plus en détail

DÉVELOPPEMENTS LIMITÉS

DÉVELOPPEMENTS LIMITÉS DÉVELOPPEMENTS LIMITÉS Définitions et premières propriétés Définition. Développement limité Soient f une fonction définie au voisinage de a R (éventuellement non définie en a) et n N. On dit que f possède

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques Jérôme Germoni Novembre 2 Première étude : par équation différentielle.. Définition On s inspire de la définition de l exponentielle vue en terminale. Théorème (admis) Il existe

Plus en détail

Intégrale d une fonction : Exercices Corrigés en vidéo avec le cours sur jaicompris.com

Intégrale d une fonction : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Intégrale et aire On considère la fonction affine f dont la courbe ci-contre passe par les points A et B. ) Déterminer l epression de f(). ) En déduire une primitive F de f. ) a) Déterminer l intégrale

Plus en détail

Fonction logarithme - Correction

Fonction logarithme - Correction Eercice 1 Fonction logarithme - Correction Déterminer l ensemble de définition des fonctions suivantes : 1. f() = ln + ln(2 ) On sait, d après le cours que la fonction ln est définie sur R +. Autrement

Plus en détail

Fonctions logarithmes

Fonctions logarithmes La fonction logarithme népérien. Définition et propriétés Fonctions logarithmes La fonction eponentielle est continue et strictement croissante sur R. Le corollaire du théorème des valeurs intermédiaires

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 11

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 11 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation ) Définition et interprétation géométrique : Soient f une fonction définie sur un intervalle I de R et a I. La fonction est dérivable

Plus en détail

Analyse 1 re année IUT GEA Notes de cours

Analyse 1 re année IUT GEA Notes de cours Analyse re année IUT GEA Notes de cours Jean-Marie Favreau Année 200 20 Remarque : l introduction de ce cours, présentée en quelques minutes, de manière interactive, permet de placer quelques rappels simples,

Plus en détail

FICHE METHODE sur la DERIVATION I) A quoi sert la «fonction dérivée» d une fonction?

FICHE METHODE sur la DERIVATION I) A quoi sert la «fonction dérivée» d une fonction? FICHE METHODE sur la DERIVATION I) A quoi sert la «fonction dérivée» d une fonction? a) Eemples :. Un solide se déplace sur un ae gradué ( en m ) et son abscisse en fonction du temps t ( en s ) est (t)

Plus en détail

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire Terminale S Problème de synthèse n f est la fonction définie sur par f() = orthonormal (O; i ; j )(unité graphique : 2 cm). A. Etude de la fonction f + - et C sa courbe représentative dans un repère ²

Plus en détail

Leçon 5 Les fonctions numériques

Leçon 5 Les fonctions numériques Leçon 5 Les fonctions numériques Cette leçon en contient 3 en fait : les généralités, la dérivation et les limites. Il y a beaucoup de théorèmes à apprendre et de méthodes à mémoriser. Voici quelques eercices

Plus en détail

Correction des exercices (Terminale S)

Correction des exercices (Terminale S) Correction des eercices (Terminale S) Merci de me signaler les erreurs éventuelles. Eercice Soit f la fonction définie par : f() = + 5 Avant tout, déterminons l ensemble de définition D f de la fonction

Plus en détail