Exercice 1 Analyse de données de débits et régime hydraulique. Nguyen Ha- Phong. Section génie civil 2012, Prof. Dr A. Schleiss

Dimension: px
Commencer à balayer dès la page:

Download "Exercice 1 Analyse de données de débits et régime hydraulique. Nguyen Ha- Phong. Section génie civil 2012, Prof. Dr A. Schleiss"

Transcription

1 Exercice 1 Analyse de données de débits et régime hydraulique Nguyen Ha- Phong Section génie civil 212, Prof. Dr A. Schleiss

2 A) Analyse hydrologique 1. Estimation des débits moyens journaliers de la station B pour la série de mesures du 1 er au 31 août 1968 à l aide des données limnimétrique et la courbe de tarage. Nous avons la courbe de tarage de la station B qui relie le niveau d eau avec le débit. 3.5 Courbe de tarrage sta7on B 1968 Pegelstand h [m] Q in [m3/s] Q [m3/s] Cette courbe peut être approximée par une équation de type puissance, c.à.d. qui est de la forme y = a * x n. Pour cela, traçons le graphe de Q en fonction de h et vice versa. Nous obtenons : y =.1522x y = x Q en foncfon de P Puissance (Q en foncfon de P) P en foncfon de Q Puissance (P en foncfon de Q) Comme on désire avoir une équation nous donnant le débit Q, on va utiliser y =.1522 * x ó Q =.1522 * h A partir de cette relation, on peut facilement calculer le débit moyen journalier. On obtient les valeurs ci-dessous. On représente en même temps la courbe de débit moyen journalier pour le mois d août 1968 à la station B. Nguyen Ha- Phong Génie civil 212 Page 1

3 Exercice 1 Analyse de données de débits et régime hydraulique Débits moyens journaliers sta7on B, août Jour du mois d'août 1968 Nguyen Ha- Phong Génie civil 212 Page 2

4 2. Détermination de la régression linéaire entre les débits de station B et C Tout d abord représentons le débit moyen journalier de la station B en fonction du débit moyen journalier de la station C. On fait ensuite une régression linéaire passant par l origine et on obtient la corrélation suivante. Débit B vs Débit C : août 1968 Débit B [m3/s] y =.4859x R² = Débit C [m3/s] On a donc une dépendance entre Q B et Q C qui est symbolisé par l équation de la droite linéaire (passant à l origine), à savoir y =.4859 * x ó Q B =.4859 * Q C. Le coefficient de corrélation multiple R 2 permet de mesurer la précision de l ajustement de la droite de régression. Mathématiquement, il s agit du rapport entre la variation de la variable dépendante (Q B dans notre cas) mesuré par le modèle de régression et sa variation totale. Cette définition est un peu délicate à comprendre, pour cela prenons un exemple. Dans notre cas on obtient un R square égale à 72%, cela signifie que 72% des variations de la variable dépendante Q B sont expliqués par le modèle de régression et que les 38% restant sont inexpliqués. Donc on peut dire que plus R 2 est proche de 1, plus notre modèle se rapproche de la perfection. Il serait intéressant de considérer Q C comme la variable dépendante, on remarque que R 2 est quasi-identique que pour le cas précédent. Débit C vs Débit B : août 1968 Débit C [m3/s] y = x R² = Débit B [m3/s] Nguyen Ha- Phong Génie civil 212 Page 3

5 3. Extrapolation des débits à la station A du projet a. Moyennes mensuelles, annuelles De la question 2, on a pu établir une relation linéaire entre Q B et Q C ó Q B =.4859 * Q C. Comme on s intéresse maintenant au débit en A, il faut trouver une relation liant Q A avec Q B. Comme on admet que les débits moyens sont proportionnels à la surface du bassin versant, le débit en A peut être estimé par un simple rapport de surface : Q A = E A /E B * Q B. En faisant cette hypothèse simplificatrice, on suppose que les bassins versants A et B ont les mêmes caractéristiques : Topographiques : relief, pente Réseau hydrographiques : ensemble des chenaux qui drainent les eaux de surface vers l'exutoire du bassin versant. Terrain Sol : perméabilité, infiltration, absorption, etc. Couverture végétale On peut donc s attendre à des imprécisions puisqu en réalité certaines de ses caractéristiques ne sont pas identiques en A et B. On a donc : Q A = E A /E B * Q B ó Q A =.669 * Q B. Pour la période on obtient les valeurs suivantes. Moyennes mensuelles ( ) [m3/s] QC QB QA Janvier Février Mars Avril Mai Juin Juillet Août Septembre Octobre Novembre Décembre Le graphe ci-dessous montre la moyenne mensuelle des débits de la station A pour la période Nguyen Ha- Phong Génie civil 212 Page 4

6 Moyennes mensuelles sta7on A La moyenne annuelle des débits est : m 3 /s. b. Courbes des débits classés Il s agit d un outil qui est souvent utilisé pour le dimensionnement des constructions hydrauliques. On construit la courbe en classant les débits mesurés selon leur valeur. Dans notre cas, on va représenter la courbe des débits classés pour une seule année, à savoir 21. On a les données de Q C pour tous les jours de l année 21. On utilise la relation en 2. Pour trouver Q B ó Q B =.4859 * Q C. Ensuite on utilise la relation Q A =.669 * Q B pour trouver les débits journalier à la station A. 3 Courbe des débits classés 21 sta7on A Pointe annuelle Courbe des débits classés Moyenne annuelle T [jours] Minimum annuel Nguyen Ha- Phong Génie civil 212 Page 5

7 Il serait intéressant de calculer aussi la courbe des débits classés pour 1968, toujours pour la station A. Courbe des débits classés 1968 sta7on A Pointe annuelle 15 1 Courbe des débits classés Moyenne annuelle T [jours] Minimum annuelle 39 A l aide de ces courbes, on peut facilement déterminer pendant combien de jours de l année un certain débit Q d est garanti. Souvent, on s intéresse à une série de plusieurs années, c.à.d. une courbe représentative du cours d eau et valable à long terme. Comme on ne dispose que des donnés pour 1968 et 21, effectuons simplement la courbe des débits classés pour 1968 et 21. Courbe débit classés 1968 et 21 sta7on A maximum Courbe débit classés Moyenne T [jours] Minimum Nguyen Ha- Phong Génie civil 212 Page 6

8 c. Débits maximaux annuels de la période d observation La procédure est la même que la précédente. On dispose des débits maximaux pour la période 1928 à 211 pour la station C. Pour trouver Q B ó Q B =.4859 * Q C. Comme ici on suppose que les débits de crues sont proportionnels à la surface du bassin versant à la puissance 2/3, on a : Q A = (E A /E B ) 2/3 * Q B Nguyen Ha- Phong Génie civil 212 Page 7

9 4. Evaluation des débits de crues a. Plus grande valeur observées Les débits maximaux annuels pour la période sont regroupés dans le tableau cidessous. On remarque qu elle on tout eu lieu en 199. Ceci est logique car nous avons déduit Q B et Q C à l aide des formules présenté auparavant. Q C max [m 3 /s] Q B max [m 3 /s] Q A max [m 3 /s] b. Analyse statistique de Gumbel L objectif est d estimer les débits de crues (débits maximaux) correspondants à un certain temps de retour, c est-à-dire à une certaine probabilité d apparition donnée. Pour notre cas, on utilisera les périodes de retour T = 1, 5, 1 ans. Voici la démarche suivie pour résoudre le problème. Etape 1 : Préparation de la série de données des débits de pointe. o Trier les valeurs dans l ordre croissant. o Attribuer un rang r à chaque valeur. Etape 2 : Calcul de la fréquence empirique pour chaque rang à l aide de la formule de Hazen : F =!!!.! où r est le rang dans la série de données classée par valeurs! croissantes, n est la taille de l échantillon. Etape 3 : Calcul de la variable réduite «u» du Gumbel à l aide de u = ln ( ln F x ). Etape 4 : Représentation graphique des couples (u i, x i ) de la série à ajuster. Les x i correspondent dans notre cas aux débits. Nguyen Ha- Phong Génie civil 212 Page 8

10 Débits de pointe observées u Etape 5 : Ajustement d une relation linaire de type aux couples (u i, x i ) et en déduire les deux paramètres a et b de la loi de Gumbel. Concrètement on va ajuster une droite qui passe le mieux par ces points. Avec un ajustement de type graphique (à l œil), on a alors une estimation des paramètres a et b : a = et b = Débits de pointe observées y = x u Nguyen Ha- Phong Génie civil 212 Page 9

11 Etape 6 : Utilisation du modèle statistique pour estimer des débits de pointe de différents temps de retour T. o Calcul de la fréquence de non-dépassement d après la relation T =!!!!(!! ) ó F x! = 1!! o Calcul de la variable réduite de Gumbel correspondante d après la relation u = ln ( ln F x ). o Calcul du quantile correspondant d après la relation linéaire (avec a et b fournis par l étape 5 précédente) : Q P = a + b * u. Période de retour T Probabilité de non dépassement F(xi) Variable réduite de Gumbel u QP pour période de retour T [m3/s] Coefficients a, b méthode graphique a b Etape 5 bis : Ajustement d une relation linaire de type aux couples (ui, xi) et en déduire les deux paramètres a et b de la loi de Gumbel. On utilise cette fois ci la méthode des moments qui consiste à égaler les moments des échantillons avec les moments théoriques de la loi. Par la méthode des moments les paramètres a et b sont calculés d après les formules : σ : écart-type des valeurs composant l échantillon µ : moyenne de l échantillon γ : constante d Euler (.5772) 6 b ˆ = ˆ σ π aˆ = ˆ µ bˆ γ. Il est possible d estimer les débits dont la représentation graphique est une droite d équation : Q = a + b u Coefficients a, b méthode moments a b Nguyen Ha- Phong Génie civil 212 Page 1

12 Débit de pointe es7mées y = x u Etape 6 bis : idem qu avant. On obtient : Période de retour T Probabilité de non dépassement F(xi) Variable réduite de Gumbel u QP pour période de retour T [m3/s] On peut dire que les deux méthodes donnent des résultats très proches l une de l autre. La méthode des moments est nettement plus rapide à appliquer, elle présente cependant un désavantage par rapport à la méthode graphique. L ajustement graphique permet en effet de repérer d éventuels points qui ne sont pas bien alignés et de ne pas en tenir compte. On pourrait également voir si la série comportait une «rupture» c est-à-dire un changement de pente et donc un changement des paramètres de la loi statistique. De manière générale, l ajustement manuel donne souvent beaucoup d informations sur la série étudiée. c. Méthode empirique Formule HHQ=C*A 1/2 Hofbauer HHQ=C*A 2/3 Kürsteiner HHQ=C*A 1/2 Melli Bassin versant Plat Valeurs pour C Moyen Raide HHQ [m 3 /s] Montagnes 3 42 Montagnes moyennes Pays plat Au-dessus de la limite des forêts Près de la limite des forêts Région plus basse Nguyen Ha- Phong Génie civil 212 Page 11

13 B) Conséquence pour le projet 1. Débit maximal utilisable de la prise d eau en tenant compte : a. du débit résiduel de 1m 3 /s (choix) pour des raisons écologiques Le débit maximal utilisable est 2.65 m 3 /s 1 m 3 /s = m 3 /s. b. de l arrêt pour des débits de crues à fort transport solide Le , des prélèvements à Thörishaus (station C) ont montré que la qualité de l eau était acceptable. Ce jour-là, le débit moyen journalier s élevait à 35.2 m 3 /s. A l aide des formules précédent, on peut calculer le débit moyen journalier à la station A le Q A = m 3 /s Le débit maximal acceptable vaut donc m 3 /s 1m 3 /s = m 3 /s 2. Choix du débit d équipement Afin de fonctionner pendant 25 jours par année à plein régime et le reste du temps à débit réduit voire à installation à l arrêt, le débit d équipement doit être égale à 1.24 m 3 /s. Courbe débit classé , sta7on A Pointe T [jours] Courbes débit classé , stafon A Moyenne Nguyen Ha- Phong Génie civil 212 Page 12

14 3. Choix du débit de dimensionnement On choisira un débit de dimensionnement supérieur pour la protection des vannes que pour la protection des berges. En effet, un ouvrage hydraulique ne doit pas constituer un obstacle plus important. On choisira par exemple pour une période de 1 ans pour le débit le dimensionnement des berges (= 152 m 3 /s) et une période de retour de 2 ans pour le débit de dimensionnement des vannes (=167 m 3 /s). Nguyen Ha- Phong Génie civil 212 Page 13

15 Annexe Courbe débit classé , sta7on A Pointe Courbes débit classé , stafon A Moyenne T [jours] Nguyen Ha- Phong Génie civil 212 Page 14

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

Fiche HYDRAULIQUE. Pourquoi un caniveau. Pour évacuer rapidement l eau de pluie

Fiche HYDRAULIQUE. Pourquoi un caniveau. Pour évacuer rapidement l eau de pluie Fiche HYDRAULIQUE Pourquoi un caniveau Pour évacuer rapidement l eau de pluie Lors de la réalisation de grands espaces imperméabilisés, les maîtres d œuvre sont confrontés aux problèmes de l évacuation

Plus en détail

Exercice n HF 0201 - Corrigé

Exercice n HF 0201 - Corrigé ENAC/ISTE/HYDRAM HYDROTHEQUE : base de données d exercices en Hydrologie Cours : Hydrologie Fréquentielle / Thématique : Construction des courbes IDF Exercice n HF 0201 - Corrigé Logo optimisé par J.-D.Bonjour,

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Épreuve de mathématiques Terminale ES 200 minutes

Épreuve de mathématiques Terminale ES 200 minutes Examen 2 Épreuve de mathématiques Terminale ES 200 minutes L usage de la calculatrice programmable est autorisé. La bonne présentation de la copie est de rigueur. Cet examen comporte 7 pages et 5 exercices.

Plus en détail

Brevet de technicien supérieur Polynésie session mai 2012 - Informatique de gestion

Brevet de technicien supérieur Polynésie session mai 2012 - Informatique de gestion Brevet de technicien supérieur Polynésie session mai 2012 - Informatique de gestion A. P. M. E. P. ÉPREUVE OBLIGATOIRE Durée : 3 heures Coefficient : 2 Exercice 1 7 points Les parties A et B de cet exercice

Plus en détail

ORDRE DE RÉACTION : MÉTHODES DE

ORDRE DE RÉACTION : MÉTHODES DE ORDRE DE RÉACTION : MÉTHODES DE RÉSOLUTION Table des matières 1 Méthodes expérimentales 2 1.1 Position du problème..................................... 2 1.2 Dégénérescence de l ordre...................................

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2 BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES Durée : 2 heures Coefficient : 2 SUJET Dès que le sujet vous est remis, assurez-vous qu il

Plus en détail

Lecture graphique. Table des matières

Lecture graphique. Table des matières Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Classe : TES1 Le 12/05/2003 MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Durée : 3h Exercice 1: (5 points) Le tableau suivant donne l évolution du prix d un paquet de café

Plus en détail

ATELIER "STATISTIQUES "

ATELIER STATISTIQUES ATELIER "STATISTIQUES " Médiane et quartiles Se référer au document d'accompagnement des programmes de premières des séries générales, annexe "boîtes et quantiles". Médiane Me La définition à adopter est

Plus en détail

UNE ESTIMATION DU PARC AUTOMOBILE À L AIDE DES DURÉES DE VIE DES VÉHICULES

UNE ESTIMATION DU PARC AUTOMOBILE À L AIDE DES DURÉES DE VIE DES VÉHICULES UNE ESTIMATION DU PARC AUTOMOBILE À L AIDE DES DURÉES DE VIE DES VÉHICULES François JEGER Le parc de véhicules automobiles en service vieillit de trois mois par an depuis 1993 : la durée de vie médiane

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

CONCOURS POUR LE RECRUTEMENT DE :

CONCOURS POUR LE RECRUTEMENT DE : CONCOURS POUR LE RECRUTEMENT DE : Techniciens supérieurs de la météorologie de première classe, spécialité «instruments et installations» (concours interne et externe). ***************** SESSION 205 *****************

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Terminale ES Correction du bac blanc de Mathématiques (version spécialité).

Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Lycée Jacques Monod février 05 Exercice : Voici les graphiques des questions. et.. A 4 A Graphique Question. Graphique Question..

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

Population étudiante en médecine vétérinaire : projections

Population étudiante en médecine vétérinaire : projections Population étudiante en médecine vétérinaire : projections Assemblée Générale des étudiants de Louvain 17 juin 2015 1 Avant-propos Depuis quelques semaines, la question de la surpopulation dans les filières

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES Durée de l épreuve : 3 heures Coefficient : 7 (ES) ES : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques de poche sont autorisées conformément

Plus en détail

Leçon N 4 : Statistiques à deux variables

Leçon N 4 : Statistiques à deux variables Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

Exercice 1 : Balance des Paiements (4 points)

Exercice 1 : Balance des Paiements (4 points) Université Paris Ouest-Nanterre La Défense Master Economie U.F.R. SEGMI Premier Semestre 2009-2010 Macroéconomie Ouverte Chargé de T.D. : Romain Restout Cours de Olivier Musy Contrôle Continu (14/12/2009)

Plus en détail

Baccalauréat Mathématiques informatique corrigé Polynésie 10 juin 2010

Baccalauréat Mathématiques informatique corrigé Polynésie 10 juin 2010 Baccalauréat Mathématiques informatique corrigé Polynésie 10 juin 2010 EXERCICE 1 11 points Un institut de recherche désire relever des informations sur l état de l enneigement dans un massif montagneux.

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Baccalauréat STMG Nouvelle-Calédonie 14 novembre 2014 Correction

Baccalauréat STMG Nouvelle-Calédonie 14 novembre 2014 Correction Baccalauréat STMG Nouvelle-alédonie 14 novembre 014 orrection EXERIE 1 7 points Dans cet exercice, les parties A, B et sont indépendantes. Le tableau suivant donne le prix moyen d un paquet de cigarettes

Plus en détail

Fonctions. Fonctions linéaires, affines et constantes

Fonctions. Fonctions linéaires, affines et constantes linéaires, affines et constantes 1. linéaires Comme il existe une infinité de fonctions différentes, on les classe par catégories. La première catégorie est constituée par les fonctions linéaires. Une

Plus en détail

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Probabilités et Statistiques Emmanuel PAUL Chapitre 1 : Statistique descriptive 1 Objectifs des statistiques. Il s agit d étudier un ou plusieurs

Plus en détail

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Calculatrice autorisée conformément à la circulaire n o 99-186 du 16 novembre 1999. Le candidat doit traiter les quatre exercices. Il

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 13. Théorie des options II Daniel Andrei Semestre de printemps 2011 Principes de Finance 13. Théorie des options II Printemps 2011 1 / 34 Plan I Stratégie de réplication dynamique

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

Rappel mathématique Germain Belzile

Rappel mathématique Germain Belzile Rappel mathématique Germain Belzile Note : à chaque fois qu il est question de taux dans ce texte, il sera exprimé en décimales et non pas en pourcentage. Par exemple, 2 % sera exprimé comme 0,02. 1) Les

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2 UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 Master d économie Cours de M. Desgraupes MATHS/STATS Document 4 : Les tests statistiques 1 Généralités sur les tests

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

MODÉLISATION DU FONCTIONNEMENT EN PARALLELE À DEUX OU PLUSIEURS POMPES CENTRIFUGES IDENTIQUES OU DIFFERENTES

MODÉLISATION DU FONCTIONNEMENT EN PARALLELE À DEUX OU PLUSIEURS POMPES CENTRIFUGES IDENTIQUES OU DIFFERENTES Annals of the University of Craiova, Electrical Engineering series, No. 30, 006 MODÉLISATION DU FONCTIONNEMENT EN PARALLELE À DEUX OU PLUSIEURS POMPES CENTRIFUGES IDENTIQUES OU DIFFERENTES Daniela POPESCU,

Plus en détail

A propos du calcul des rentabilités des actions et des rentabilités moyennes

A propos du calcul des rentabilités des actions et des rentabilités moyennes A propos du calcul des rentabilités des actions et des rentabilités moyennes On peut calculer les rentabilités de différentes façons, sous différentes hypothèses. Cette note n a d autre prétention que

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Baccalauréat STMG Polynésie 17 juin 2014

Baccalauréat STMG Polynésie 17 juin 2014 Baccalauréat STMG Polynésie 17 juin 2014 Durée : 3 heures EXERCICE 1 Cet exercice est un Q.C.M. 4 points Pour chaque question posée, quatre réponses sont proposées parmi lesquelles une seule est correcte.

Plus en détail

Exercice N 1 : Extrait du BEP secteur 1 session 2005

Exercice N 1 : Extrait du BEP secteur 1 session 2005 Exercice N 1 : Extrait du BEP secteur 1 session 2005 Tarifs Sam souhaite aller à la piscine municipale dont les tarifs sont présentés dans le tableau ci-contre : Normal 3,80 Groupe 3 On note x le nombre

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

" Gestion des données issues du réseau de mesures limnimétriques des cours d eau non navigables "

 Gestion des données issues du réseau de mesures limnimétriques des cours d eau non navigables " Gestion des données issues du réseau de mesures par ir Sébastien Gailliez Plan de l exposé 1. Introduction 2. Réseau de mesures 3. Base de données AQUALIM 4. Gestion du réseau de mesures 5. Logiciels

Plus en détail

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4 Chapitre Convexité TABLE DES MATIÈRES page -1 Chapitre Convexité Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Baccalauréat STG - Mercatique - CFE - GSI Métropole 13 septembre 2012 Correction

Baccalauréat STG - Mercatique - CFE - GSI Métropole 13 septembre 2012 Correction accalauréat STG - Mercatique - CFE - GSI Métropole 13 septembre 2012 Correction EXERCICE 1 4 points Selon un sondage réalisé sur un échantillon de personnes en France, 57 % des personnes interrogées sont

Plus en détail

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes.

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes. Plan Intérêts 1 Intérêts 2 3 4 5 6 7 Retour au menu général Intérêts On place un capital C 0 à intérêts simples de t% par an : chaque année une somme fixe s ajoute au capital ; cette somme est calculée

Plus en détail

Ministère de la Jeunesse et des Sports Institut Royal de Formation des Cadres Département des Sciences de la Vie. A. Arfaoui

Ministère de la Jeunesse et des Sports Institut Royal de Formation des Cadres Département des Sciences de la Vie. A. Arfaoui Ministère de la Jeunesse et des Sports Institut Royal de Formation des Cadres Département des Sciences de la Vie A. Arfaoui PLA Définitions Paramètres marginaux Covariance Coefficient de Corrélation Coefficient

Plus en détail

L HYDRAULIQUE. 1) Formules de notions de base. Différence de température départ/retour en K

L HYDRAULIQUE. 1) Formules de notions de base. Différence de température départ/retour en K L HYDRAULIQUE 1) Formules de notions de base Puissance nécessaire pour élever une certaine quantité d eau d un différentiel de température Puissance (W) = 1.163 x Volume (l) x T ( C) Débit nécessaire en

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Dérivées et applications. Equation

Dérivées et applications. Equation Dérivées et applications. Equation I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

( x )= 2 3 ( x 1) f 3 ( x)=( x+1)2 ( x 1) ( x+1) f 4. ( x )=5 x 2 1. ( x)=3 2 x f 2. 212 nom: DS ( 1h) : Sujet A fonctions affines droites

( x )= 2 3 ( x 1) f 3 ( x)=( x+1)2 ( x 1) ( x+1) f 4. ( x )=5 x 2 1. ( x)=3 2 x f 2. 212 nom: DS ( 1h) : Sujet A fonctions affines droites 212 nom: DS ( 1h) : Sujet A fonctions affines droites Exercice 1: 1 ) Dans chacun des cas suivants,: Dire si la fonction est affine ou non. Préciser si elle est linéaire. Si la fonction est affine, donner

Plus en détail

Exercice 1 Métropole juin 2014 5 points

Exercice 1 Métropole juin 2014 5 points Le sujet comporte 6 pages. Seule l annexe est à rendre avec la copie. BAC BLANC MATHÉMATIQUES TERMINALE STMG Durée de l épreuve : 3 heures Les calculs doivent être détaillés. Les calculatrices sont autorisées,

Plus en détail

MATHÉMATIQUES ET SCIENCES HUMAINES

MATHÉMATIQUES ET SCIENCES HUMAINES MATHÉMATIQUES ET SCIENCES HUMAINES B. MARCHADIER Dépendance et indépendance de deux aléas numériques images Mathématiques et sciences humaines, tome 25 (1969), p. 2534.

Plus en détail

TECHNICIEN SUPERIEUR TERRITORIAL. CONCOURS INTERNE ET DE 3 ème VOIE SESSION 2008

TECHNICIEN SUPERIEUR TERRITORIAL. CONCOURS INTERNE ET DE 3 ème VOIE SESSION 2008 TECHNICIEN SUPERIEUR TERRITORIAL CONCOURS INTERNE ET DE 3 ème VOIE SESSION 2008 Vérification des connaissances mathématiques des candidats, au moyen de tableaux ou graphiques à constituer ou compléter,

Plus en détail

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION Dans les leçons précédentes, nous avons modélisé des problèmes en utilisant des graphes. Nous abordons dans cette leçon un autre type de modélisation.

Plus en détail

M1/UE CSy - module P8 1

M1/UE CSy - module P8 1 M1/UE CSy - module P8 1 PROJET DE SIMULATION AVEC MATLAB RÉGULATION DU NIVEAU ET DE LA TEMPÉRATURE DANS UN BAC En vue de disposer d un volume constant de fluide à une température désirée, un processus

Plus en détail

Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S

Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S Durée heures. Calculatrice autorisée. Exercice 1 : Une entreprise italienne de fabrication de scooters veut optimiser les bénéfices de

Plus en détail

Correction du baccalauréat STMG Polynésie 17 juin 2014

Correction du baccalauréat STMG Polynésie 17 juin 2014 Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé

Plus en détail

LES FONCTIONS : GENERALITES ET VARIATIONS

LES FONCTIONS : GENERALITES ET VARIATIONS 1 sur 10 LES FONCTIONS : GENERALITES ET VARIATIONS Activité conseillée p42 n 1 : Évolution du climat Activité conseillée p22 n 1 : Évolution du climat p61 n 5 p74 n 82 p61 n 7 p43 n 19 p44 n 20 p44 n 21

Plus en détail

Baccalauréat STG CGRH Métropole 13 septembre 2012 Correction

Baccalauréat STG CGRH Métropole 13 septembre 2012 Correction Baccalauréat STG CGRH Métropole 3 septembre 202 Correction La calculatrice est autorisée. EXERCICE Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, trois réponses sont proposées,

Plus en détail

Baccalauréat ST2S Antilles Guyane juin 2013 Correction

Baccalauréat ST2S Antilles Guyane juin 2013 Correction Baccalauréat ST2S Antilles Guyane juin 2013 Correction EXERCICE 1 6 points Le tableau ci-dessous donne le nombre d abonnements au service de téléphonie mobile en France entre fin 2001 et fin 2009, exprimé

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h A. P. M. E. P. Le problème se compose de 4 parties. La dernière page sera à rendre avec

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Hydraulique industrielle Correction TD 3

Hydraulique industrielle Correction TD 3 Hydraulique industrielle Correction TD 3 1 Etude d un limiteur de pression 1.1 Identification des fonctions Les différents élements assurant le fonctionnement du composant sont listés ci dessous : - Orifice

Plus en détail

L offre DualSun pour l eau chaude et le chauffage (SSC)

L offre DualSun pour l eau chaude et le chauffage (SSC) L offre DualSun pour l eau chaude et le chauffage (SSC) SSC signifie : Système Solaire Combiné. Une installation SSC, est une installation solaire qui est raccordée au circuit de chauffage de la maison,

Plus en détail

RAPPORT SUR L ETUDE DES DONNEES FINANCIERES ET STATISTIQUES A L AIDE DU LOGICIEL SCILAB

RAPPORT SUR L ETUDE DES DONNEES FINANCIERES ET STATISTIQUES A L AIDE DU LOGICIEL SCILAB RAPPORT SUR L ETUDE DES DONNEES FINANCIERES ET STATISTIQUES A L AIDE DU LOGICIEL SCILAB PAR : MAROOF ASIM DAN BENTOLILA WISSAM ESSID GROUPE 1 LM206 Lundi 10H45 INTRODUCTION : ( Ce rapport est un compte

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Chapitre I :Seuil de rentabilité. Encadré par: Dr. HOURIA ZAAM

Chapitre I :Seuil de rentabilité. Encadré par: Dr. HOURIA ZAAM Chapitre I :Seuil de rentabilité Encadré par: Dr. HOURIA ZAAM PLA N I- Introduction II- Charges 1- Charges variables 2- Charges fixes 3- Charges mixtes III- Le compte de résultat différentiel IV- Seuil

Plus en détail

Chapitre 3 : Le budget des ventes. Marie Gies - Contrôle de gestion et gestion prévisionnelle - Chapitre 3

Chapitre 3 : Le budget des ventes. Marie Gies - Contrôle de gestion et gestion prévisionnelle - Chapitre 3 Chapitre 3 : Le budget des ventes Introduction 2 Rappel des différents budgets opérationnels - budget des ventes (chapitre 3) - budget de production (chapitre 4) - budget des approvisionnements et des

Plus en détail

LE LOGICIEL PEACH, UN OUTIL DE VALORISATION DES PCH

LE LOGICIEL PEACH, UN OUTIL DE VALORISATION DES PCH Logiciel PEACH 1 LE LOGICIEL PEACH, UN OUTIL DE VALORISATION DES PCH Sommaire I. Présentation d'ensemble du logiciel... 1 I.1. Les objectifs... 1 I.2. La démarche d'étude par PEACH... 2 II. PEACH Programme

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

La gestion des ventes.

La gestion des ventes. I. La prévision des ventes. A. Principe. La gestion des ventes. Elle consiste à déterminer les ventes futures à la fois en quantité et en valeur en tenant compte des tendances et contraintes imposées à

Plus en détail

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7.

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7. BACCALAURÉAT GENÉRAL Session 2011 MATHÉMATIQUES Série ES Enseignement de Spécialité Durée de l épreuve : 3 heures Coefficient : 7 Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

Les formules de proratisation, de décote et de surcote. Secrétariat général du Conseil d orientation des retraites

Les formules de proratisation, de décote et de surcote. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 25 septembre 2012 à 14 h 30 «I - Avis technique sur la durée d assurance de la génération 1956 II - Réflexions sur les règles d acquisition des droits

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Soit f la fonction définie sur l intervalle [1,5 ; 6] par : f (x)=(5x )e x On note C la courbe représentative

Plus en détail

Aide au dimensionnement Pompes de circulation

Aide au dimensionnement Pompes de circulation Aide au dimensionnement Pompes de circulation 1 Généralités Les pompes à haut rendement équipées de moteurs à aimant permanent ou de «moteurs EC» (Electronic Commutation) sont jusqu à 3x plus efficientes

Plus en détail

CORRIGES DES CAS TRANSVERSAUX. Corrigés des cas : Emprunts

CORRIGES DES CAS TRANSVERSAUX. Corrigés des cas : Emprunts CORRIGES DES CAS TRANSVERSAUX Corrigés des cas : Emprunts Remboursement par versements périodiques constants - Cas E1 Objectifs : Construire un échéancier et en changer la périodicité, Renégocier un emprunt.

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE Hiver 2 009

BACCALAURÉAT TECHNOLOGIQUE Hiver 2 009 blabla BACCALAURÉAT TECHNOLOGIQUE Hiver 2 009 Épreuve : MATHÉMATIQUES Série SCIENCES ET TECHNOLOGIES DE LA GESTION Spécialités : Comptabilité et finance d entreprise (coefficient : 3) Gestion des systèmes

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (2) Variables aléatoires & Lois de probabilité R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

Leçon N 1 : Taux d évolution et indices

Leçon N 1 : Taux d évolution et indices Leçon N : Taux d évolution et indices En premier un peu de calcul : Si nous cherchons t [0 ;+ [ tel que x 2 = 0,25, nous trouvons une solution unique x = 0, 25 = 0,5. Nous allons utiliser cette année une

Plus en détail

Analyse de la variance à deux facteurs

Analyse de la variance à deux facteurs 1 1 IRMA, Université Louis Pasteur Strasbourg, France Master 1 Psychologie du développement 06-10-2008 Contexte Nous nous proposons d analyser l influence du temps et de trois espèces ligneuses d arbre

Plus en détail

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques.

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques. Lycée Alexis de Tocqueville BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé Série S.T.M.G. Février 2015 Épreuve de mathématiques Durée 3 heures Le candidat traitera obligatoirement les quatre exercices ******

Plus en détail

La régression linéaire et ses conditions d application

La régression linéaire et ses conditions d application Nº 752 BULLETIN DE L UNION DES PHYSICIENS 353 La régression linéaire et ses conditions d application par R. JOURNEAUX GHDSO/LIREST Université Paris XI, 91400 Orsay Dans un article récent publié dans le

Plus en détail

Baccalauréat STG CGRH Polynésie corrigé

Baccalauréat STG CGRH Polynésie corrigé EXERCICE 1 Baccalauréat STG CGRH Polynésie corrigé 8 points Le tableau ci-dessous donne les dépenses, en millions d euros, des ménages en France de 2000 à 2009 pour les programmes audio-visuels. cinéma

Plus en détail

APPROCHES SIMPLIFIÉES POUR L ÉVALUATION DES PARAMÈTRES DE CONCEPTION POUR LES BASSINS DE FAIBLES DIMENSIONS. Gilles Rivard, ing. M. Sc.

APPROCHES SIMPLIFIÉES POUR L ÉVALUATION DES PARAMÈTRES DE CONCEPTION POUR LES BASSINS DE FAIBLES DIMENSIONS. Gilles Rivard, ing. M. Sc. APPROCHES SIMPLIFIÉES POUR L ÉVALUATION DES PARAMÈTRES DE CONCEPTION POUR LES BASSINS DE FAIBLES DIMENSIONS Gilles Rivard, ing. M. Sc. Québec 15 mars 2012 PRÉSENTATION Particularités des petits bassins

Plus en détail

9. Équations différentielles

9. Équations différentielles 63 9. Équations différentielles 9.1. Introduction Une équation différentielle est une relation entre une ou plusieurs fonctions inconnues et leurs dérivées. L'ordre d'une équation différentielle correspond

Plus en détail

Baccalauréat STG Mercatique Polynésie 8 juin 2012 Correction

Baccalauréat STG Mercatique Polynésie 8 juin 2012 Correction Baccalauréat SG Mercatique Polynésie 8 juin 2012 Correction La calculatrice (conforme à la circulaire N o 99-186 du 16-11-99) est autorisée. EXERCICE 1 4 points Cet exercice est un questionnaire à choix

Plus en détail

Mathématiques Financières Exercices

Mathématiques Financières Exercices Mathématiques Financières Exercices Licence 2, 2015-16 - Université Paris 8 J.CORIS & C.FISCHLER & S.GOUTTE 1 TD 1 : Suites numériques et somme de suites Exercice 1. Pour chacune des suites ci-dessous,

Plus en détail

AEROCLUB DE BORDEAUX FORMATION A LA LICENCE PPL ETUDE STATISTIQUE

AEROCLUB DE BORDEAUX FORMATION A LA LICENCE PPL ETUDE STATISTIQUE AEROCLUB DE BORDEAUX FORMATION A LA LICENCE PPL ETUDE STATISTIQUE Jean-Pierre Duvivier octobre 23 1. INTRODUCTION 2 Cette petite étude présente les résultats d'une enquête effectuée auprès des membres

Plus en détail

Baccalauréat SMTG Pondichéry 8 avril 2014 Sciences et technologies du management et de la gestion correction

Baccalauréat SMTG Pondichéry 8 avril 2014 Sciences et technologies du management et de la gestion correction Baccalauréat SMTG Pondichéry 8 avril 0 Sciences et technologies du management et de la gestion correction EXERCICE points Les deux parties de cet exercice peuvent être traitées de manière indépendante.

Plus en détail