RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES
|
|
|
- Tristan Olivier
- il y a 10 ans
- Total affichages :
Transcription
1 RAPPELS DE MATHEMATIQUES ORTHOPHONIE Première année Dr MF DAURES 1
2 RAPPELS DE MATHEMATIQUES I - LES FONCTIONS A - Caractéristiques générales des fonctions B - La fonction dérivée C - La fonction primitive D - La fonction puissance E - La fonction logarithme F - La fonction exponentielle G - Les fonctions trigonométriques II - LA CINEMATIQUE A - Le mouvement rectiligne B - Le mouvement circulaire uniforme C - Le mouvement sinusoïdal D - Le mouvement périodique quelconque 2
3 A - CARACTERISTIQUES GENERALES DES FONCTIONS 1. Notion de fonction 2. Propriétés des fonctions a) Définition b) Courbe représentative c) Domaine de définition d) Continuité d une fonction e) Croissance d une fonction f) Maximum et minimum g) Tableau de variation h) Fonction inverse i) Fonction composée 3. Etude d une fonction particulière : la droite a) Equation d une droite b) Tableau de variation c) Cas particuliers 3
4 A CARACTERISTIQUES GENERALES DES FONCTIONS 1. Notion de fonction Dépendance de 2 grandeurs Relation telle que la connaissance de l une permet de calculer l autre Y = f (x) «fonction» variable Exemple : «variation de la taille des garçons en fonction l âge» Age (an) N 1/ Taille (cm)
5 2. Propriétés des fonctions a) Définition mathématique La fonction f fait correspondre à tout élément X de l ensemble E un seul élément y de l ensemble F. La fonction f est une transformation qui fait correspondre à tout x un seul élément y. Certaines des ces relations ont été étudiées et correspondent à des lois simples : ce sont les fonctions mathématiques connues. b) Courbe représentative Permet de visualiser les variations respectives de x et de y. Pour la construire il faut : Choisir des axes Choisir une échelle sur chaque axe Choisir l origine de chaque axe Un point quelconque de la courbe sera parfaitement défini par son abscisse x et son ordonnée y dans le plan. 5
6 2 18 Exemple de courbe Taille (cm) c) Intervalle de variation et domaine de définition Limites des valeurs de x entre lesquelles à toute valeur de x on peut faire correspondre une valeur de y par la relation Y = f ( x ) Une fonction est toujours définie sur un domaine donné même si celui-ci est infini. Domaine mathématique Age (an) Domaine physique Conditions supplémentaires 6
7 d) Continuité d une fonction sur un intervalle Si x appartient à l intervalle [ab] qd x a y(x) y a qd x b y(x) y b y prend toutes les valeurs intermédiaires entre y a et y b Graphiquement : tracé sans interruption dans l intervalle. e) Croissance d une fonction dans l intervalle de définition Fonction strictement croissante y quand x y quand x Variation dans le même sens Fonction strictement décroissante y quand x y quand x Variation en sens inverse 7
8 f) Maximum et minimum dans l intervalle de définition y passe par le maximum puis y Y passe par le minimum puis y g) Tableau de variation Renseignements utiles à la construction de la courbe, on se limitera aux éléments suivants. Limite inf. Limite sup. x croissance y 8
9 h) Fonction inverse ou réciproque Fonction bijective f : y = f (x) Fonction inverse g telle que x = g (y) équivalente à x = f -1 (y) i) Fonction composée ou fonction de fonction image x y = g (x) z = f {g (x) } y image z = f (y) 9
10 3. Etude de la droite a) Définition Y = a x + b a coefficient angulaire «pente» >, <, nul, entier, fractionnaire b ordonnée à l origine intersection droite axe des y >, <, nul, entier, fractionnaire «a et b sont fixes pour une droite donnée». b) Tableau de variation a et b > x - - b/a + y - b + 1
11 Cas particuliers a < b > b < Passant par l origine Première bissectrice Deuxième bissectrice Droite horizontale Droite verticale Axe des abscisses Axe des ordonnées 11
12 B - LA FONCTION DERIVEE PLAN 1. Notion de taux de croissance 2. Notion de dérivée 3. Propriétés de la dérivée 4. Dérivées de certaines fonctions 5. Application : le vecteur vitesse 12
13 B LA FONCTION DERIVEE 1. Notion de taux de croissance T = Δy/Δx 1. Notion de dérivée Δ X alors Δy Δx dy dx valeur définie valeur dérivée de y / à x = dy/dx = y (x) = y 3. Propriétés Donne la tangente en un point de la courbe. Permet la définition des grandeurs physiques. Indique le sens de la croissance y > y croissante y < y décroissante y = y horizontale y y verticale 13
14 4. Dérivées de certaines fonctions de x a et b sont des constantes, u est une fonction de x Fonction y (x) Fonction dérivée y (x) a x 1 ax + b a sin x cos x cos x -sin x e x e x e u u e u sin u (x) u (x) cos u (x) cos u (x) -u (x) sin u (x) 14
15 5. Application à la vitesse «espace parcouru pendant l unité de temps» v «vecteur vitesse» Origine Direction Sens Intensité le mobile la trajectoire le sens du mouvement dx / dt 15
16 C - FONCTION PRIMITIVE 1. Définition Une primitive Y (x) d une fonction y (x) est une fonction telle que sa dérivée Y (x) = la fonction y (x). 2. Calcul En utilisant les dérivées et en se rappelant qu une primitive n est alors connue qu à une constante près. 3. Quelques primitives Fonction y (x) Fonction primitive Y (x) 1 b sin x cos x b x + b ax + b - cos (x) + b sin (x) + b 16
17 D - FONCTION PUISSANCE 1. Définition Y = a x n a et n >, <, entiers, fractionnaires 2. Cas particulier : puissance de 1 1 n = 1 suivi de n zéros Par convention 1 = 1 n 1 n 3. Calcul sur les puissances x n.x m = x (n+m) x n x m = x n m (x n ) m = x nm 17
18 E - FONCTION LOGARITHME Définition Intérêt Types 1. Le logarithme népérien de x : Ln x a) Définition b) Propriétés c) Tableau de variation d) Courbe représentative e) Calcul 2. Le logarithme décimal de x : log x a) Définition b) Propriétés c) Application 3. Les échelles logarithmiques a) Définition b) Intérêts c) Représentation semi-log d) Représentation log - log 18
19 E - FONCTION LOGARITHME 1. Définition Y = a x x = log a y y > Y = log a x x = a y x > 2. Intérêt Simplification des calculs Fonction fréquente en biologie 3. Logarithmes étudiés log à base e ou log népérien : Ln x log à base 1 ou log décimal : log x 19
20 1. Le logarithme népérien de x : Ln x a) Définition La fonction logarithme népérien y = Ln x est la fonction primitive de 1/x définie pour tout x > et qui s annule pour x = 1. x > (Lnx)' = Ln1 = 1 x b) Propriétés définie de - à+ strictement croissante car (Ln x) toujours > < x 1 - < y x > 1 < y < + 2
21 c) Tableau de variation x y = 1/ x y = Ln x d) Courbe représentative A tracer e) Calcul a, b strictement > et n quelconque Ln (ab) = Ln a + Ln b Ln a b = Ln a Ln b Ln (a) n = n Ln a 21
22 2. Le logarithme décimal a) Définition y = log a x x = a y y = log 1 x x = 1 y log x Ln x = x > Ln 1 Log x = 2,3 log x b) Propriétés Les mêmes que Ln x log 1 n = n Réduit les échelles 1 x 1 n <log x n c) Courbes A tracer 22
23 3. Les échelles logarithmiques a) Définition «graduation proportionnelle au logarithme des nombres» Les puissances de 1 sont équidistantes, les log 1 x différent de 1 unité (-3) (-2) (-1) (1) (+ 2) (+ 3) b) Propriétés Pas de zéro sur cette échelle On ne peut pas insérer des nombres négatifs c) Intérêts Réduire les échelles pour les grandeurs variant beaucoup Transformer les fonctions exponentielles en fonctions linéaires 23
24 d) Représentation semi log Abscisse ou ordonnée avec une échelle logarithmique e) Représentation log log Abscisse et ordonnée avec des échelles logarithmiques 24
25 F-LA FONCTION EXPONENTIELLE 1. Définition «fonction réciproque de la fonction logarithme népérien» y = Ln x (x > ) x = e y > x = Ln y (y > ) y = e x > 2. Propriétés e = 1 e 1 e lnx = e = x Ln e y = y (e x ) = e x e u(x) = u (x) e u(x) 25
26 3. Courbe représentative A tracer 4. Calcul avec les exponentielles Les mêmes qu avec les puissances. e a e b = e (a + b) e a / e b = e (a-b) (e a ) n = e na 26
27 G-LES FONCTIONS TRIGONOMETRIQUES 1. Le cercle trigonométrique a) Définition b) Arc de cercle c) Abscisse curviligne d) Angles 2. Les fonctions circulaires a) Définitions b) Angles associés c) Etude de la fonction sin α d) Etude de cos α 27
28 G - LES FONCTIONS TRIGONOMETRIQUES 1. Cercle trigonométrique a) Définition «cercle orienté de rayon égal à l unité de longueur» b) Arc de cercle A M c) Abscisse curviligne S d) Les angles α α en degré α en radian π/2 π 3π/2 2π α angles(radian) : S = Rα (m) R rayon (m) 1 radian = angle au centre découpant sur le cercle trigonométrique un arc égal au rayon (1). 28
29 2. Les fonctions circulaires a) Fonction sinus : y = sin α α π/2 π 3 π/2 2π y = cos α y = sin α 1-1 Tracer le graphe de la fonction 29
30 b) Fonction cosinus α π/2 π 3 π/2 2 π y = - sin α -1 1 y = cos α Tracer le graphe de la fonction 3
31 II - CINEMATIQUE «Etude du déplacement d un corps en fonction du temps» A-LE MOUVEMENT RECTILIGNE Trajectoire Vitesse Accélération droite v= dx/dt γ = dv/dt Mouvement rectiligne uniforme v = cte si x = x = v t 31
32 B-MOUVEMENT CIRCULAIRE UNIFORME Trajectoire cercle Vitesse rectiligne v = ds dt (m/s) Abscisse curviligne S = v t si S o = (m) Angle α α = S R (rd) Vitesse angulaire ω = V R (rd/s) Fréquence f = ω 2Π (Hz) Période T 2Π = ω = 1 f (s) 32
33 C-LE MOUVEMENT SINUSOIDAL 1) Définition x = a sin (ω t + ϕ ) 2) x = a sin ω t a π/2 π 3 π/2 2 π t T / 4 T / 2 3 T / 4 T x a -a T période du mouvement circulaire uniforme 3) Courbe A tracer 33
34 3) La vitesse linéaire v = a ω sin (ω t + π/2) t T/4 T2 3 T / 4 T ω t π / 2 π 3 π / 2 2 π Cos ω t v a ω -a ω a ω 34
35 4) Cas où x = a sin (ω t + ϕ) 3Π a + sin(φ ) 2 2 Π x a sin ϕ) sin( φ ) a sin (ϕ + π) a + a sin (ϕ+2 π) t T / 4 T / 2 3 T / 4 T Courbe à tracer 35
36 5) Déphasage entre 2 vibrations sinusoïdales de même période Décalage horaire θ : temps que met un mobile à partir de t = pour se trouver dans la position du mobile en avance lorsqu il était à t = ϕ ϕ θ = t t = ω a) Opposition de phase ω 1 - ω 2 = π ϑ = T / 2 Sin ω 1 = - sin ω 2 36
37 b) Vibrations en quadrature ϕ 1 ϕ 2 = Π/2 θ = T / 4 sin ϕ 1 = sin (ϕ 2 + Π/2) A tracer c) Vibrations en phase ϕ 1 ϕ 2 = 2 Π θ = T A tracer 37
38 D-LE MOUVEMENT PERIODIQUE QUELCONQUE 1) Définition Au bout du temps T le mobile M se retrouve pour la première fois au même endroit qu au départ. x (t) = x (t + T) = x (t + 2T) = = x (t + kt) 2) Théorème de Fourier x = a 1 sin (2 Π ft + ϕ 1 ) + a 2 sin (4 Π ft + ϕ 2 ) + 3) Harmoniques Harmonique 1 ou fondamentale : fréquence f Harmonique 2 : fréquence 2 f Harmonique 3 : fréquence 3 f Harmonique 4 : fréquence 4 f 38
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Cercle trigonométrique et mesures d angles
Cercle trigonométrique et mesures d angles I) Le cercle trigonométrique Définition : Le cercle trigonométrique de centre O est un cercle qui a pour rayon 1 et qui est muni d un sens direct : le sens inverse
Chapitre 0 Introduction à la cinématique
Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Chapitre 2 : Caractéristiques du mouvement d un solide
Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Fonction réciproque. Christelle MELODELIMA. Chapitre 2 :
UE4 : Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Analyse Chapitre 2 : Fonction réciproque Christelle MELODELIMA Année universitaire 2011/2012 Université Joseph
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
Mathématiques I Section Architecture, EPFL
Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Fonctions de plusieurs variables
Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les
Chapitre 2 Les ondes progressives périodiques
DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Nombre dérivé et tangente
Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Développements limités usuels en 0
Développements limités usuels en 0 e x sh x ch x sin x cos x = + x! + x! + + xn n! + O ( x n+) = x + x3 3! + + xn+ (n + )! + O ( x n+3) = + x! + x4 4! + + xn (n)! + O ( x n+) = x x3 3! + + ( )n xn+ (n
Michel Henry Nicolas Delorme
Michel Henry Nicolas Delorme Mécanique du point Cours + Exos Michel Henry Maître de conférences à l IUFM des Pays de Loire (Le Mans) Agrégé de physique Nicolas Delorme Maître de conférences à l université
C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au
1 2 C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position est constant et il est égal au rayon du cercle. = 3 A- ouvement circulaire non uniforme
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Repérage d un point - Vitesse et
PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
TP 7 : oscillateur de torsion
TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
F411 - Courbes Paramétrées, Polaires
1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié [email protected] http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases
SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout
LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE
LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE 2. L EFFET GYROSCOPIQUE Les lois physiques qui régissent le mouvement des véhicules terrestres sont des lois universelles qui s appliquent
Chapitre 1 Régime transitoire dans les systèmes physiques
Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer
Etude de fonctions: procédure et exemple
Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
Equations cartésiennes d une droite
Equations cartésiennes d une droite I) Vecteur directeur d une droite : 1) Définition Soit (d) une droite du plan. Un vecteur directeur d une droite (d) est un vecteur non nul la même direction que la
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :
Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point
Corrigé du baccalauréat S Pondichéry 12 avril 2007
Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires
Equations différentielles linéaires à coefficients constants
Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
C f tracée ci- contre est la représentation graphique d une
TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe
Oscillations libres des systèmes à deux degrés de liberté
Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .
MESURE ET PRECISIO La détermination de la valeur d une grandeur G à partir des mesures expérimentales de grandeurs a et b dont elle dépend n a vraiment de sens que si elle est accompagnée de la précision
PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau
PHYSIQUE-CHIMIE L absorption des radiations lumineuses par la matière dans le domaine s étendant du proche ultraviolet au très proche infrarouge a beaucoup d applications en analyse chimique quantitative
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
DUT Techniques de commercialisation Mathématiques et statistiques appliquées
DUT Techniques de commercialisation Mathématiques et statistiques appliquées [email protected] Université de Caen Basse-Normandie 3 novembre 2014 [email protected] UCBN MathStat
Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2
Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Traceur de courbes planes
Traceur de courbes planes Version 2.5 Manuel d utilisation Patrice Rabiller Lycée Notre Dame Fontenay le Comte Mise à jour de Janvier 2008 Téléchargement : http://perso.orange.fr/patrice.rabiller/sinequanon/menusqn.htm
ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.
L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.
Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.
Union générale des étudiants de Tunisie Modèle de compte-rendu de TP Dipôle RC Ce document a été publié pour l unique but d aider les étudiants, il est donc strictement interdit de l utiliser intégralement
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
O, i, ) ln x. (ln x)2
EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b
I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Nathalie Barbary SANSTABOO. Excel 2010. expert. Fonctions, simulations, Groupe Eyrolles, 2011, ISBN : 978-2-212-12761-4
Nathalie Barbary Nathalie Barbary SANSTABOO Excel 2010 Fonctions, simulations, bases bases de de données expert Groupe Eyrolles, 2011, ISBN : 978-2-212-12761-4 Du côté des mathématiciens 14 Il n est pas
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières
BACCALAUREAT GENERAL MATHÉMATIQUES
BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la
Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques
Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de
Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme
Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle
Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé
Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H
Fonction inverse Fonctions homographiques
Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................
Correction du baccalauréat ES/L Métropole 20 juin 2014
Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)
Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES
Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Chapitre 1 Cinématique du point matériel
Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la
Examen d informatique première session 2004
Examen d informatique première session 2004 Le chiffre à côté du titre de la question indique le nombre de points sur 40. I) Lentille électrostatique à fente (14) Le problème étudié est à deux dimensions.
Baccalauréat technique de la musique et de la danse Métropole septembre 2008
Baccalauréat technique de la musique et de la danse Métropole septembre 008 EXERCICE 5 points Pour chacune des cinq questions à 5, trois affirmations sont proposées dont une seule est exacte. Pour chaque
Capes 2002 - Première épreuve
Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : [email protected] Mots-clés : équation fonctionnelle, série
10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)
0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
Utiliser des fonctions complexes
Chapitre 5 Utiliser des fonctions complexes Construire une formule conditionnelle avec la fonction SI Calculer un remboursement avec la fonction VPN Utiliser des fonctions mathématiques Utiliser la fonction
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE
ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
M2 IAD UE MODE Notes de cours (3)
M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de
Correction du baccalauréat S Liban juin 2007
Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
Caractéristiques des ondes
Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace
Notion de fonction. Résolution graphique. Fonction affine.
TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................
Loi binomiale Lois normales
Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli
Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2
Les parties A et B sont indépendantes. Partie A Exercice 3 (5 points) Commun à tous les candidats On considère la fonction A définie sur l'intervalle [1 ; + 00 [ par A(x) = 1-e -0039' ' x 1. Calculer la
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
