La régression sur données de panel
|
|
|
- Gabrielle Rancourt
- il y a 10 ans
- Total affichages :
Transcription
1 La régression sur données de panel 1 I. Définition Les données utilisées en économétrie sont le plus souvent des séries chronologiques, tel le nombre de naissances enregistrées par an dans le département de la Mayenne de 1953 à On peut à l'inverse disposer de données concernant une période donnée, dites en coupe instantanée, tel le nombre de naissances enregistrées en 1971 dans chacun des départements français. Les données de panel, ou données croisées, possèdent les deux dimensions précédentes et rapportent les valeurs des variables considérées relevées pour un ensemble, ou panel, d'individus sur une suite de périodes. Ainsi la série de panel mesurant la natalité annuelle par département de 1953 à Remarque : si en marketing ou en statistique, le mot panel désigne généralement un échantillon fixe de consommateurs interrogés à différentes périodes, en économétrie, le terme de données de panel est simplement synonyme de données croisées ayant généralement une dimension temporelle. On utilise une notation naturelle à deux indices : x it note l'observation de la variable x pour l'individu i à la période t. Si on fixe l'individu observé, on obtient la série chronologique, ou coupe longitudinale, le concernant, tandis que si l'on fixe la période examinée, on obtient une coupe transversale, ou instantanée, pour l'ensemble des individus. Il est possible d'envisager des données croisées de plus de deux dimensions, on y reviendra dans l avant-dernier paragraphe. De nombreux modèles économétriques, notamment dans le domaine des études internationales, peuvent être confrontés à des données croisées, le caractère particulier de celles-ci invite à considérer des spécifications et des méthodes d'estimation adaptées. II. Modèles et méthodes Différents modèles ont été proposés, certains apparaissent également dans d'autres chapitres de l'économétrie et la terminologie n'est pas totalement
2 standardisée. Il convient par suite, lorsqu'on lit un article et plus encore si l'on souhaite mettre en œuvre la méthode indiquée, de s'assurer que l'on a bien identifié celle-ci. On considère, pour fixer les idées, l'équation économétrique (1) y = a + b.x + c.z + ε De variable endogène y, d'explicatives x et z (et la constante), de coefficients a, b et c, et d'aléa ε, supposée s'appliquer aux données de panel étudiées. La relation s'écrit encore, pour l'observation it : 2 (2) y it = a + b.x it + c.z it + ε it La modélisation particulière porte uniquement sur la spécification des aléas ε it. La forme de base s'écrit simplement : (3) ε it = u i + v t + w it où u i désigne un terme, constant au cours du temps, ne dépendant que de l'individu i, v t un terme ne dépendant que de la période t, et w it un terme aléatoire croisé. La suite dépend des hypothèses retenues quant aux composantes u i, v t et w it et à leurs relations Méthode "naïve" Une première méthode, naïve, consiste à appliquer simplement les mco sur l'ensemble des données mises bout-à-bout sans se préoccuper de leur nature particulière ni de celle de l'aléa ε. Modèle à effets fixes Ce modèle, également appelé modèle de la covariance, suppose que u i et v t sont des effets constants, non aléatoires, qui viennent donc simplement modifier la valeur de la constante a de l'équation (1) selon les valeurs de i et de t. L'estimation s'opère par les mco, après ajout aux explicatives des indicatrices, ou dummy variables, associées aux individus i et aux périodes t (moins un individu et une période pour ne pas créer de colinéarité avec la constante).
3 Si on suppose que les perturbations aléatoires croisées w it satisfont aux hypothèses classiques des mco (ie elles sont centrées, homoscédastiques, indépendantes et normales), les estimations sont optimales et permettent notamment les tests de Fisher pour éprouver la nécessité des termes u i ou v t. Modèle à effets aléatoire 3 Ce modèle, encore appelé modèle à erreur composée, suppose les u i et v t véritablement aléatoires. La spécification de base suppose : - les u i, v t et w it centrés (ie d'espérance nulle) - les u i, v t et w it homoscédastiques et d'écarts type respectifs σ u, σ v et σ w - les u i, v t et w it non corrélés et indépendants les uns des autres. L'idée de cette modélisation est que les trois effets ne s'exercent plus sur la constante du modèle (1), mais véritablement sur la perturbation aléatoire ε. La méthode vise ensuite à préciser ces effets pour en tenir compte pour affiner l'estimation. Sous les hypothèses indiquées, la variance de l'alea ε est : (4) var(ε) = σ u ² + σ v ² + σ w ² L'estimation du modèle, tels les doubles moindres carrés ou la méthode des variables instrumentales, procède en deux étapes : la première estime les composantes de la variance apparaissant dans la relation (4), ces estimations sont ensuite utilisées pour estimer l'équation (1) par les moindres carrés généralisés, la structure de variance-covariance des aléas étant approximativement connue. Bien que les modèles à effets fixes et à effets aléatoires paraissent de nature différentes, le second est généralement recommandé. Des tests qu'on ne détaillera pas ici permettent d'éprouver les deux hypothèses. Si enfin l'objectif principal est l'estimation des coefficients des variables autres que la constante et s'ils différent peu, la question du choix perd de son acuité. En effets fixes comme en effets aléatoires, les économètres commencent généralement par estimer et tester un modèle avec le seul effet individu, l effet temps étant souvent inexistant ou très mineur. Modèle autorégressif On a vu dans les leçons précédentes la fréquence des problèmes d'autocorrélation lorsqu'on traite des séries chronologiques.
4 4 La spécification (3) est remplacée par la relation : (5) ε it = ρ i.ε i,t-1 + w it où ρ i est le coefficient d'autocorrélation temporelle associé à l'individu i et w it la part d'innovation dans l'aléa ε it, avec (6) var(ε it ) = σ i ² (homoscédasticité à i fixé) (7) cov(ε it, ε jt ) = σ ij ² (corrélation contemporaine stable à i et j fixés) Ce qui peut être déduit d'hypothèses convenables concernant l'innovation w it, notamment : - les w it sont centrés - les w it sont indépendants pour i fixé et t variant - les w it et w js sont indépendants pour s différent de t - les covariances cov(w it, w jt ) sont non nulles mais non dépendantes de t On ne détaillera pas davantage cet aspect mathématique des choses. La procédure d'estimation opère encore en deux étapes : la première estime les coefficients ρ i et σ ij,² que la seconde utilise pour estimer l'équation (1) par les moindres carrés généralisés. Autres modèles D'autres modèles plus raffinés ont été proposés, dérivés tels le précédent des méthodes élaborées de traitement des séries chronologiques; ils ne sont pas décrits ici. III. Modèles de gravité Inspirés librement du modèle physique de la gravitation universelle (qui voit celle-ci décroître comme le carré de la distance, selon la loi de Newton) les modèles de gravité, notamment utilisés pour expliquer les échanges internationaux, introduisent un ou plusieurs termes de nature géographique, ou politique, destinés à prendre en compte la proximité ou l éloignement entre les acteurs considérés. En formulation linéaire, les grandeurs étant le plus souvent mesurées par leur logarithme, la forme générale est :
5 5 (8) Y ij = a + b.x i + c.z j + f.d ij + ε ij Où Y ij est le flux du pays i vers le pays j pour le ou les biens étudiés, les variables explicatives X i et Z j, des variables économiques telles que le PNB, la population, et éventuellement d autres variables plus spécifiques liées au domaine considéré, et enfin D ij, la ou les variables de distance retenues. Cellesci peuvent être la distance des capitales ou encore la distance moyenne entre les deux pays, la longueur de frontière commune, une dummy variable notant l appartenance à une même organisation économique, etc. De par leur nature même, les modèles de gravité relèvent du domaine des données de panel. Si toutes les observations sont contemporaines, le choix d une formalisation (non temporelle) inspirée des modèles précédents permet l estimation, et en particulier la mesure de l effet-distance associé aux variables D ij. Si les observations sont en outre temporelles (Y ijt, X it, Z jt, D ijt ), les données sont à trois dimensions et il faut fixer i, j ou t pour utiliser les logiciels usuels qui n en admettent que deux, ou recourir à des procédures avancées ou à la programmation, après formalisation précise du modèle. IV. Mise en œuvre en SAS La procédure SAS de régression sur données de panel est la procédure TSCSREG (pour Time Series Cross Section REGression). Il est tout d'abord nécessaire que parmi les données figurent les séries ident des indicateurs i des individus et time dénotant la date t des observations, et que le fichier soit trié selon ces deux variables par une commande SORT préalable : PROC SORT; BY ident time; La suite ressemble à l'appel de la procédure REG classique : PROC TSCSREG [options]; ID ident time; MODEL y = x z / options; [label: TEST ;] Parmi les options de l'instruction MODEL : - FIXTWO indique le modèle à effets fixés.
6 - FIXONE le même sans effet temps. - RANTWO indique le modèle à effets aléatoires, c'est le choix par défaut. - RANONE le même sans effet temps. - PARKS indique le modèle autorégressif. 6 Exemple /* Exemple repris et modifié de la doc SAS */ /* Analyzing Demand for Liquid Assets */ DATA ts; INPUT state $ year d y rd rt rs; LABEL d = 'Per Capita Demand Deposits' y = 'Permanent Per Capita Personal Income' rd = 'Service Charge on Demand Deposits' rt = 'Interest on Time Deposits' rs = 'Interest on S & L Association Shares'; DATALINES; Ca Ca Ca (7 états fois 11 ans) ; PROC REG DATA = ts; MODEL d = y rd rt rs; PROC SORT DATA = ts; BY state year; PROC TSCSREG DATA = ts; MODEL d = y rd rt rs / rantwo parks; ID state year; RUN; Résultats résumés On se limite à donner en un tableau les coefficients estimés par les trois méthodes demandées; on a figuré les t de Student sous les coefficients estimés.
7 Méthode constante y rd rt rs mco (-6.15) (15.86) (-13.57) (0.02) (-0.82) Rantwo (-1.70) (10.23) (-5.53) (1.42) (-2.86) Parks (-8.49) (28.87) (-21.71) (1.97) (-4.08) ===ooooo===---- ( )
TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.
STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,
Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens
Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques
Évaluation de la régression bornée
Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement
Le modèle de régression linéaire
Chapitre 2 Le modèle de régression linéaire 2.1 Introduction L économétrie traite de la construction de modèles. Le premier point de l analyse consiste à se poser la question : «Quel est le modèle?». Le
SAS ENTERPRISE MINER POUR L'ACTUAIRE
SAS ENTERPRISE MINER POUR L'ACTUAIRE Conférence de l Association des Actuaires I.A.R.D. 07 JUIN 2013 Sylvain Tremblay Spécialiste en formation statistique SAS Canada AGENDA Survol d Enterprise Miner de
Introduction à la Statistique Inférentielle
UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique
Table des matières. I Mise à niveau 11. Préface
Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
Chapitre 1 Régime transitoire dans les systèmes physiques
Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer
1 Complément sur la projection du nuage des individus
TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent
Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS
Formations EViews FORMATIONS GENERALES INTRODUCTIVES DEB : DECOUVERTE DU LOGICIEL EVIEWS INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS FORMATIONS METHODES ECONOMETRIQUES VAR : MODELES
Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES
LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,
STATISTIQUES. UE Modélisation pour la biologie
STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres
Analyse de la relation entre primes de terme et prime de change dans un cadre d équilibre international
ANNALES D ÉCONOMIE ET DE STATISTIQUE. N 46 1997 Analyse de la relation entre primes de terme et prime de change dans un cadre d équilibre international Hubert de LA BRUSLERIE, Jean MATHIS * RÉSUMÉ. Cet
FOAD COURS D ECONOMETRIE 1 CHAPITRE 2 : Hétéroscédasicité des erreurs. 23 mars 2012.
FOAD COURS D ECONOMETRIE CHAPITRE 2 : Hétéroscédasicité des erreurs. 23 mars 202. Christine Maurel Maître de conférences en Sciences Economiques Université de Toulouse - Capitole Toulouse School of Economics-ARQADE
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
Modélisation des carrières salariales. dans Destinie
INSTITUT NATIONAL DE LA STATISTIQUE ET DES ÉTUDES ÉCONOMIQUES Série des documents de travail de la Direction des Etudes et Synthèses Économiques G 990 Modélisation des carrières salariales dans Destinie
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
FORMULAIRE DE STATISTIQUES
FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
(51) Int Cl.: H04L 29/06 (2006.01) G06F 21/55 (2013.01)
(19) TEPZZ 8 8 4_A_T (11) EP 2 838 241 A1 (12) DEMANDE DE BREVET EUROPEEN (43) Date de publication: 18.02.1 Bulletin 1/08 (1) Int Cl.: H04L 29/06 (06.01) G06F 21/ (13.01) (21) Numéro de dépôt: 141781.4
Chapitre 3 : Le budget des ventes. Marie Gies - Contrôle de gestion et gestion prévisionnelle - Chapitre 3
Chapitre 3 : Le budget des ventes Introduction 2 Rappel des différents budgets opérationnels - budget des ventes (chapitre 3) - budget de production (chapitre 4) - budget des approvisionnements et des
L Econométrie des Données de Panel
Ecole Doctorale Edocif Séminaire Méthodologique L Econométrie des Données de Panel Modèles Linéaires Simples Christophe HURLIN L Econométrie des Données de Panel 2 Figure.: Présentation Le but de ce séminaire
CAPTEURS - CHAINES DE MESURES
CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,
23. Interprétation clinique des mesures de l effet traitement
23. Interprétation clinique des mesures de l effet traitement 23.1. Critères de jugement binaires Plusieurs mesures (indices) sont utilisables pour quantifier l effet traitement lors de l utilisation d
INITIATION AU LOGICIEL SAS
INITIATION AU LOGICIEL SAS (version 9.1.3 sous Windows) Hélène HAMISULTANE Bibliographie : Initiation au logiciel SAS(9) pour Windows, Coqué N. (juin 2006). www.agroparistech.fr/img/pdf/polysas.pdf SAS
Modèles pour données répétées
Résumé Les données répétées, ou données longitudinales, constituent un domaine à la fois important et assez particulier de la statistique. On entend par données répétées des données telles que, pour chaque
Relation entre deux variables : estimation de la corrélation linéaire
CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence
L'intelligence d'affaires: la statistique dans nos vies de consommateurs
L'intelligence d'affaires: la statistique dans nos vies de consommateurs Jean-François Plante, HEC Montréal Marc Fredette, HEC Montréal Congrès de l ACFAS, Université Laval, 6 mai 2013 Intelligence d affaires
Le risque Idiosyncrasique
Le risque Idiosyncrasique -Pierre CADESTIN -Magali DRIGHES -Raphael MINATO -Mathieu SELLES 1 Introduction Risque idiosyncrasique : risque non pris en compte dans le risque de marché (indépendant des phénomènes
Régression linéaire. Nicolas Turenne INRA [email protected]
Régression linéaire Nicolas Turenne INRA [email protected] 2005 Plan Régression linéaire simple Régression multiple Compréhension de la sortie de la régression Coefficient de détermination R
UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE
UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN ÉCONOMIE PAR MATHIEU SISTO NOVEMBRE
Température corporelle d un castor (une petite introduction aux séries temporelles)
Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature
O b s e r v a t o i r e E V A P M. Taxonomie R. Gras - développée
O b s e r v a t o i r e E V A P M É q u i p e d e R e c h e r c h e a s s o c i é e à l ' I N R P Taxonomie R. Gras - développée Grille d'analyse des objectifs du domaine mathématique et de leurs relations
Statistiques Appliquées à l Expérimentation en Sciences Humaines. Christophe Lalanne, Sébastien Georges, Christophe Pallier
Statistiques Appliquées à l Expérimentation en Sciences Humaines Christophe Lalanne, Sébastien Georges, Christophe Pallier Table des matières 1 Méthodologie expérimentale et recueil des données 6 1.1 Introduction.......................................
Gestion obligataire passive
Finance 1 Université d Evry Séance 7 Gestion obligataire passive Philippe Priaulet L efficience des marchés Stratégies passives Qu est-ce qu un bon benchmark? Réplication simple Réplication par échantillonnage
Exemples d application
AgroParisTech Exemples d application du modèle linéaire E Lebarbier, S Robin Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations 4 2 Régression linéaire simple 7 21 Présentation 7 211 Objectif
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Théorie des sondages : cours 5
Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne e-mail : [email protected] Master Besançon-2010 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur
Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI
1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
Modélisation aléatoire en fiabilité des logiciels
collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.
MODELE A CORRECTION D ERREUR ET APPLICATIONS
MODELE A CORRECTION D ERREUR ET APPLICATIONS Hélène HAMISULTANE Bibliographie : Bourbonnais R. (2000), Econométrie, DUNOD. Lardic S. et Mignon V. (2002), Econométrie des Séries Temporelles Macroéconomiques
Les effets d une contrainte de crédit sur la convergence économique : Le cas des pays de l UEMOA
Les effets d une contrainte de crédit sur la convergence économique : Le cas des pays de l UEMOA Auteurs : Abdoulaye DIAGNE et Abdou-Aziz NIANG Introduction Ceci devrait contribuer à réduire l écart entre
Programmation Linéaire - Cours 1
Programmation Linéaire - Cours 1 P. Pesneau [email protected] Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.
Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données
Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données et le Data Mining Nous suivons le plan suivant : Fonctionnement de Spad Catalogue des méthodes (statistiques
Statistique Descriptive Élémentaire
Publications de l Institut de Mathématiques de Toulouse Statistique Descriptive Élémentaire (version de mai 2010) Alain Baccini Institut de Mathématiques de Toulouse UMR CNRS 5219 Université Paul Sabatier
Débouchés professionnels
Master Domaine Droit, Economie, Gestion Mention : Monnaie, Banque, Finance, Assurance Spécialité : Risque, Assurance, Décision Année universitaire 2014/2015 DIRECTEUR de la spécialité : Monsieur Kouroche
Précision d un résultat et calculs d incertitudes
Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................
Filtrage stochastique non linéaire par la théorie de représentation des martingales
Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
Mémoire d actuariat - promotion 2010. complexité et limites du modèle actuariel, le rôle majeur des comportements humains.
Mémoire d actuariat - promotion 2010 La modélisation des avantages au personnel: complexité et limites du modèle actuariel, le rôle majeur des comportements humains. 14 décembre 2010 Stéphane MARQUETTY
Le montant des garanties constituées aux fins du STPGV est-il excessif?
Le montant des garanties constituées aux fins du STPGV est-il excessif? Kim McPhail et Anastasia Vakos* L e système canadien de transfert des paiements de grande valeur (STPGV) sert à effectuer les paiements
COURS CALCULS FINANCIERS STATISTIQUE
UNIVERSITÉ JOSEPH FOURIER M1 MIAGE UFR IMA COURS DE CALCULS FINANCIERS ET STATISTIQUE Serge Dégerine 4 octobre 2007 INTRODUCTION Ce document comporte trois parties consacrées à deux thèmes très indépendants
Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage
Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage Journées de Méthodologie Statistique Eric Lesage Crest-Ensai 25 janvier 2012 Introduction et contexte 2/27 1 Introduction
LE ROLE DES INCITATIONS MONETAIRES DANS LA DEMANDE DE SOINS : UNE EVALUATION EMPIRIQUE.
LE ROLE DES INCITATIONS MONETAIRES DANS LA DEMANDE DE SOINS : UNE EVALUATION EMPIRIQUE. Synthèse des travaux réalisés 1. Problématique La question D7 du plan d exécution du Programme National de Recherches
Le modèle de Black et Scholes
Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un
DYNAMIQUE DE FORMATION DES ÉTOILES
A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,
Le théorème des deux fonds et la gestion indicielle
Le théorème des deux fonds et la gestion indicielle Philippe Bernard Ingénierie Economique& Financière Université Paris-Dauphine mars 2013 Les premiers fonds indiciels futent lancés aux Etats-Unis par
Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke
www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3
Modèles Estimés sur Données de Panel
Modèles Estimés sur Données de Panel Introduction Il est fréquent en économétrie qu on ait à composer avec des données à deux dimensions : - une dimension chronologique - une dimension spatiale Par exemple,
INCIDENCE DU COMMERCE EXTÉRIEUR SUR LE COMMERCE INTÉRIEUR : NOUVELLE ANALYSE DE LA COURBE EN «L» NOUVELLE ANALYSE DE LA COURBE EN «L»
INCIDENCE DU COMMERCE EXTÉRIEUR SUR LE COMMERCE INTÉRIEUR : NOUVELLE ANALYSE DE LA COURBE EN «L» INCIDENCE DU COMMERCE EXTÉRIEUR SUR LE COMMERCE INTÉRIEUR : NOUVELLE ANALYSE DE LA COURBE EN «L» ARTICLE
Impact du mobile banking sur les comportements d épargne et de transferts à Madagascar. Florence Arestoff Baptiste Venet
Impact du mobile banking sur les comportements d épargne et de transferts à Madagascar Florence Arestoff Baptiste Venet 1 Introduction : contexte du contrat de recherche Ce contrat de recherche fait suite
Le Modèle Linéaire par l exemple :
Publications du Laboratoire de Statistique et Probabilités Le Modèle Linéaire par l exemple : Régression, Analyse de la Variance,... Jean-Marc Azaïs et Jean-Marc Bardet Laboratoire de Statistique et Probabilités
ERRATA ET AJOUTS. ( t) 2 s2 dt (4.7) Chapitre 2, p. 64, l équation se lit comme suit : Taux effectif = 1+
ERRATA ET AJOUTS Chapitre, p. 64, l équation se lit comme suit : 008, Taux effectif = 1+ 0 0816 =, Chapitre 3, p. 84, l équation se lit comme suit : 0, 075 1 000 C = = 37, 50$ Chapitre 4, p. 108, note
TD1 Signaux, énergie et puissance, signaux aléatoires
TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver
Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes
Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire
Christophe CANDILLIER Cours de DataMining mars 2004 Page 1
Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
Annexe 6. Notions d ordonnancement.
Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. [email protected] Résumé Ce document
Cours de méthodes de scoring
UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-
Le Data Mining au service du Scoring ou notation statistique des emprunteurs!
France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
Introduction à l économétrie : Spécifications, formes fonctionnelles, hétéroscédasticité et variables instrumentales
Introduction à l économétrie : Spécifications, formes fonctionnelles, hétéroscédasticité et variables instrumentales Pierre Thomas Léger IEA, HEC Montréal 2013 Table des matières 1 Introduction 2 2 Spécifications
Introduction au Data-Mining
Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
1 Imputation par la moyenne
Introduction au data mining L3 MIS - STA 1616-2010 V. Monbet Données manquantes L'objectif de ce TD est de manipuler et de comparer plusieurs méthodes d'imputation de données manquantes. La première partie
METHODOLOGIE GENERALE DE LA RECHERCHE EPIDEMIOLOGIQUE : LES ENQUETES EPIDEMIOLOGIQUES
Enseignement du Deuxième Cycle des Etudes Médicales Faculté de Médecine de Toulouse Purpan et Toulouse Rangueil Module I «Apprentissage de l exercice médical» Coordonnateurs Pr Alain Grand Pr Daniel Rougé
Rapport d'analyse des besoins
Projet ANR 2011 - BR4CP (Business Recommendation for Configurable products) Rapport d'analyse des besoins Janvier 2013 Rapport IRIT/RR--2013-17 FR Redacteur : 0. Lhomme Introduction...4 La configuration
Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels
Etab=MK3, Timbre=G430, TimbreDansAdresse=Vrai, Version=W2000/Charte7, VersionTravail=W2000/Charte7 Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels
TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie
PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux [email protected] www.pressesagro.be
Classe de première L
Classe de première L Orientations générales Pour bon nombre d élèves qui s orientent en série L, la classe de première sera une fin d étude en mathématiques au lycée. On a donc voulu ici assurer à tous
STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes
STA108 Enquêtes et sondages Sondages àplusieurs degrés et par grappes Philippe Périé, novembre 2011 Sondages àplusieurs degrés et par grappes Introduction Sondages à plusieurs degrés Tirage des unités
M2 IAD UE MODE Notes de cours (3)
M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de
Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS
Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence
VI. Tests non paramétriques sur un échantillon
VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes
Cours Marché du travail et politiques d emploi
Cours Marché du travail et politiques d emploi L offre de travail Pierre Cahuc/Sébastien Roux ENSAE-Cours MTPE Pierre Cahuc/Sébastien Roux (ENSAE) L offre de travail 1 / 48 Introduction Introduction Examen
ANTISELECTION ET CHOIX D'ASSURANCE : LE CAS DU VOL EN HABITATION UNE APPROCHE DE LA MESURE DU PHENOMENE
ANTISELECTION ET CHOIX D'ASSURANCE : LE CAS DU VOL EN HABITATION UNE APPROCHE DE LA MESURE DU PHENOMENE Yannick MACÉ Statisticien-Economiste Responsable du Secteur Analyses Techniques, Groupama (C.C.A.M.A.)
Données longitudinales et modèles de survie
ANALYSE DU Données longitudinales et modèles de survie 5. Modèles de régression en temps discret André Berchtold Département des sciences économiques, Université de Genève Cours de Master ANALYSE DU Plan
La survie nette actuelle à long terme Qualités de sept méthodes d estimation
La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg
TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION
TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun
Carl-Louis-Ferdinand von Lindemann (1852-1939)
Par Boris Gourévitch "L'univers de Pi" http://go.to/pi314 [email protected] Alors ça, c'est fort... Tranches de vie Autour de Carl-Louis-Ferdinand von Lindemann (1852-1939) est transcendant!!! Carl Louis
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction.
Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Etudes et traitements statistiques des données : le cas illustratif de la démarche par sondage INTRODUCTION
1 Définition de la non stationnarité
Chapitre 2: La non stationnarité -Testsdedétection Quelques notes de cours (non exhaustives) 1 Définition de la non stationnarité La plupart des séries économiques sont non stationnaires, c est-à-direqueleprocessusquiles
Incertitudes expérimentales
Incertitudes expérimentales F.-X. Bally et J.-M. Berroir Février 2013 Table des matières Introduction 4 1 Erreur et incertitude 4 1.1 Erreurs............................................. 4 1.1.1 Définition
EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG
Exploitations pédagogiques du tableur en STG Académie de Créteil 2006 1 EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Commission inter-irem lycées techniques contact : [email protected] La maquette
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour [email protected] Une grande partie des illustrations viennent
Exercice : la frontière des portefeuilles optimaux sans actif certain
Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué
