Risques hydrologiques & aménagement du territoire Projet d évaluation
|
|
|
- Thibault Juneau
- il y a 10 ans
- Total affichages :
Transcription
1 Risques hydrologiques & aménagement du territoire Professeur responsable : Christophe ANCEY Assistant responsable : Blaise DHONT Date de rendu : 8 janvier 2016 Conditions du projet : travail à rédiger seul. Il faut répondre de façon concise aux questions en traçant les figures demandées et en donnant les réponses trouvées. Il n est pas utile de fournir des explications détaillées sauf si cela est expressément demandé. Tout type de logiciel est autorisé pour répondre aux questions. Les étudiants sont encouragés à rendre une copie dactylographiée au format PDF (uniquement). Données disponibles : séries temporelles des pluies (datap.txt) et des débits (dataq.txt) disponibles à l adresse indiquée en cours ou en cliquant sur ce lien. Attention : on rappelle que les débits sont donnés en m 3 /s et les pluies en dixièmes de millimètre. [prendre les données sur le site web] Philosophie du projet : les problèmes 1 4 sont de difficulté croissante. Le dernier problème demande plus de réflexion et de compréhension de ce qui se passe dans le bassin-versant alors que les trois premiers sont des exercices visant à manipuler les outils vus en cours. EPFL/ENAC/SIE 1
2 Contexte. Vous étudiez un bassin-versant de la Lonza dans le Valais, au niveau du village de Blatten (la Lonza est un affluent du Rhône, qui coule dans le Lötschental pour rejoindre le Rhône au niveau du village de Steg) afin d assurer la protection d un village. Vous souhaitez établir les caractéristiques de la crue de projet. Dans ce projet, les caractéristiques d une onde de crue sont supposées entièrement reflétées à travers le débit de pointe journalier ; de plus, pour satisfaire aux obligations légales, la crue de projet doit être prise de période de retour 100 ans. Malheureusement, vous ne disposez que de 25 années de données aussi bien pour la pluie sur le bassin-versant que sur le débit de la rivière étudiée. Il faut donc réaliser une étude statistique détaillée pour arriver à la meilleure estimation possible du débit de projet. Figure 1 : vue en perspective reconstituée. Source : Google Earth. EPFL/ENAC/SIE 2
3 Objectifs du projet. - Les objectif du projet sont d arriver à faire des estimations des précipitations et débits sur un petit bassinversant sans données précises ; de calculer le débit de pointe de période de retour 100 ans en s aidant de séries temporelles. Pour cela, différentes méthodes basées sur l étude des pluies ou des débits doivent être utilisées. On va vous proposer d employer la théorie des valeurs extrêmes et une méthode de transformation pluie-débit (gradex). Problème 1 Étude simplifiée par prédétermination : estimation du débit de pointe centennal Donner des estimations des pluies décennales et centennales journalières à Blatten. Par la méthode de votre choix, estimer le débit décennal de pointe de la Lonza à Blatten. Par la méthode de votre choix, estimer le débit journalier centennal de la Lonza à Blatten. Ce problème est «qualitatif». Vous devez trouver des données (ne pas employer celles mises à disposition pour le reste du projet) et bien préciser leur source (les sites ci-dessous offrent des possibilités, mais votre choix est libre), vous devez opter pour une méthode de prédétermination des débits (justifier ce choix, qui peut être commandé par votre intuition, la nature du site, le type de données disponibles, etc.). Cette question doit servir à vous faire obtenir une première estimation des paramètres hydrologiques importants en l absence de séries temporelles (l exploitation de telles séries constitue la suite du projet). Vous pouvez consulter, par exemple, les sites wanderland, map.geo.admin.ch pour avoir une cartographie du bassin-versant à l amont de Blatten. Concernant l hydrologie, vous pouvez consulter (liste non exhautive) : les données hydrologiques de l OFEV : station de Blatten, les données de précipitations moyennes de Météo Suisse : poste de Blatten, l annuaire hydrologique de la Suisse (OFEV) : station de Blatten, l atlas hydrologique de la Suisse (HADES) : cartes de précipitations extrêmes, EPFL/ENAC/SIE 3
4 Problème 2 Étude hydrologique des pluies : caractère iid des données (e) (f) (g) (h) Calculer la distribution des cumuls mensuels de pluie. Pour chaque mois de l année, on calculera la moyenne des cumuls de pluie mensuels. On tracera sous forme de diagramme «bâtons» le cumul mensuel de pluie en fonction du mois de l année. En examinant ce diagramme, qu en déduisez-vous sur l équidistribution des pluies sur ce bassin-versant? À quoi ce résultat peut-il servir par la suite? Calculer la moyenne des cumuls annuels de pluie. On considère toutes les pluies journalières dépassant 1 mm. Tracer la densité de probabilité empirique de l échantillon, puis la fonction de répartition empirique. On cherche ensuite à examiner si cet échantillon est distribué selon une loi exponentielle Exp(λ). Pour cela, on applique une méthode d ajustement (vous avez le choix) pour calculer le coefficient λ de la loi exponentielle ; on reporte la courbe ainsi ajustée sur les diagrammes (densité et fonction de répartition empiriques). Quel est l intervalle de confiance à 95 % de l estimateur ˆλ? Est-ce que la loi exponentielle est une bonne représentation de la loi de probabilité des chutes journalières de pluie? Est-ce que la série des chutes de pluie journalières est stationnaire? Pour chaque année de la série, calculer le nombre de chutes de pluie ayant dépassé un seuil de s = 1 mm. Réitérer le calcul avec un seuil de s = 20 mm. Tracer la distribution de probabilité sous la forme d un histogramme pour chaque seuil. On essaie d ajuster une loi de Poisson P(λ) par la méthode des moments, la méthode du maximum de vraisemblance, et l inférence bayesienne. Pour la méthode des moments, tracer la densité de probabilité de la loi de Poisson et comparer avec l histogramme pour chacun des seuils. Qu en concluez-vous? Pour la méthode du maximum de vraisemblance, calculer la log vraisemblance pour l échantillon des données avec un seuil de s = 20 mm et en déduire l estimateur ˆλ. Pour la méthode bayesienne, donner l algorithme de Metropolis permettant le calcul de la probabilité a posteriori de λ. On prendra un prior uniforme et une loi instrumentale gaussienne, dont les paramètres sont au choix de l étudiant. Simuler la densité a posteriori de λ en calculant un échantillon de valeurs. Vérifiez la convergence de l estimateur ; l estimateur est considéré être le mode de la densité de probabilité. Quelle différence avec les autres méthodes? EPFL/ENAC/SIE 4
5 Problème 3 Étude hydrologique des pluies : application de la théorie des valeurs extrêmes Calculer les maxima annuels des chutes de pluie. En appliquant la méthode du maximum de vraisemblance, déduire le type de loi représentant le mieux l échantillon de maxima? Est-ce que vous pensez qu une loi de Gumbel aurait été pertinente pour interpoler l échantillon. Représenter dans un diagramme (C, T ) la loi de probabilité (de dépassement) des pluies journalières en fonction de la période de retour T en reportant les données mesurées et la loi de valeurs extrêmes ajustée précédemment. Calculer le quantile de pluie correspondant à une période de retour T =100 ans. Afin d appliquer la méthode POT, on trace en premier lieu la moyenne conditionnelle E[C s C > s]. Où situez-vous le domaine linéaire? Qu en conclure sur le paramètre ξ? Quel seuil vous parait adéquat? Appliquer la méthode du maximum de vraisemblance. Comparer les méthodes POT et des maxima annuels. En tirer une évaluation de la pluie centennale. Problème 4 Étude hydrologique des débits : application de la méthode du gradex et de la théorie des valeurs extrêmes Évaluer le débit décennal avec les données à votre disposition. Par application de la méthode du gradex, évaluez le débit centennal. Déterminer la loi de probabilité des valeurs extrêmes (par la méthode de votre choix) pour les débits journaliers. Calculer le débit centennal. Quelle différence de comportement notez-vous avec les pluies? Tracer dans un diagramme les couples (P, Q) pour chaque journée de la chronique Que remarquez-vous? Pensez-vous qu il existe un lien direct entre la pluie tombée le jour précédant (ou les jours précédant la crue) et le débit de pointe? Si vous pensez que non, quel processus physique pourrait expliquer la valeur obtenue par les débits? EPFL/ENAC/SIE 5
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
PROBABILITES ET STATISTIQUE I&II
PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits
Méthodes de Simulation
Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents
Innovations Majeures de la Version 4
Innovations Majeures de la Version 4 Un nouvel environnement SIG avec de puissants outils graphiques. De nouveaux moteurs hydrologiques et hydrauliques plus sûrs et plus performants. De nouveaux modes
Soutenance de stage Laboratoire des Signaux et Systèmes
Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
" Gestion des données issues du réseau de mesures limnimétriques des cours d eau non navigables "
" Gestion des données issues du réseau de mesures par ir Sébastien Gailliez Plan de l exposé 1. Introduction 2. Réseau de mesures 3. Base de données AQUALIM 4. Gestion du réseau de mesures 5. Logiciels
SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases
SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout
Modélisation aléatoire en fiabilité des logiciels
collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision
Page n 1. Tests du χ 2 une des fonctions des statistiques est de proposer, à partir d observations d un phénomène aléatoire (ou modélisé comme tel) une estimation de la loi de ce phénomène. C est que nous
Table des matières. I Mise à niveau 11. Préface
Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3
1. Introduction 2. Localiser un séisme 3. Déterminer la force d un séisme 4. Caractériser le mécanisme de rupture d un séisme
Partie II Les paramètres des séismes Séisme: libération d énergie destructrice à partir de la magnitude 5 Prévision sismique: déterminer l aléa sismique Étude du mécanisme de rupture de la faille 1. Introduction
Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux
Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux hétérogènes Laurent Déjean Thales Airborne Systems/ENST-Bretagne Le 20 novembre 2006 Laurent Déjean Détection en
Température corporelle d un castor (une petite introduction aux séries temporelles)
Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
La survie nette actuelle à long terme Qualités de sept méthodes d estimation
La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg
Techniques d interaction dans la visualisation de l information Séminaire DIVA
Techniques d interaction dans la visualisation de l information Séminaire DIVA Zingg Luca, [email protected] 13 février 2007 Résumé Le but de cet article est d avoir une vision globale des techniques
Une comparaison de méthodes de discrimination des masses de véhicules automobiles
p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans
NON-LINEARITE ET RESEAUX NEURONAUX
NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
1. Vocabulaire : Introduction au tableau élémentaire
L1-S1 Lire et caractériser l'information géographique - Le traitement statistique univarié Statistique : le terme statistique désigne à la fois : 1) l'ensemble des données numériques concernant une catégorie
Statistique : Résumé de cours et méthodes
Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère
Chapitre 3. Mesures stationnaires. et théorèmes de convergence
Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée
Validation probabiliste d un Système de Prévision d Ensemble
Validation probabiliste d un Système de Prévision d Ensemble Guillem Candille, janvier 2006 Système de Prévision d Ensemble (EPS) (ECMWF Newsletter 90, 2001) Plan 1 Critères de validation probabiliste
Rappels sur les suites - Algorithme
DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................
Classe de première L
Classe de première L Orientations générales Pour bon nombre d élèves qui s orientent en série L, la classe de première sera une fin d étude en mathématiques au lycée. On a donc voulu ici assurer à tous
Estimation et tests statistiques, TD 5. Solutions
ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études
Correction du baccalauréat ES/L Métropole 20 juin 2014
Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)
Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé
Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H
Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.
Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté
Correction du baccalauréat STMG Polynésie 17 juin 2014
Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé
APPROCHES SIMPLIFIÉES POUR L ÉVALUATION DES PARAMÈTRES DE CONCEPTION POUR LES BASSINS DE FAIBLES DIMENSIONS. Gilles Rivard, ing. M. Sc.
APPROCHES SIMPLIFIÉES POUR L ÉVALUATION DES PARAMÈTRES DE CONCEPTION POUR LES BASSINS DE FAIBLES DIMENSIONS Gilles Rivard, ing. M. Sc. Québec 15 mars 2012 PRÉSENTATION Particularités des petits bassins
Modélisation intégrée des écoulements pour la gestion en temps réel d'un bassin versant anthropisé
1 TGR Modélisation intégrée des écoulements pour la gestion en temps réel d'un bassin versant anthropisé Simon Munier Institut des Sciences et Industries du Vivant et de l'environnement (AgroParisTech)
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
Calcul des pertes de pression et dimensionnement des conduits de ventilation
Calcul des pertes de pression et dimensionnement des conduits de ventilation Applications résidentielles Christophe Delmotte, ir Laboratoire Qualité de l Air et Ventilation CSTC - Centre Scientifique et
SOMMAIRE. 1. Préambule...2. 2. Le calendrier...2. 3. Trajectoire d un objet lancé...6. 4. Régression linéaire...9
SOMMAIRE 1. Préambule...2 2. Le calendrier...2 3. Trajectoire d un objet lancé...6 4. Régression linéaire...9 5. Calcul de commissions par tranches...12 6. Base de données...16 7. Valeur cible...19 ATTENTION
MÉTHODE DE MONTE CARLO.
MÉTHODE DE MONTE CARLO. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) Méthode de Monte Carlo. 1 / 95 PLAN DU COURS 1 MÉTHODE DE MONTE CARLO 2 PROBLÈME DE SIMULATION Théorème fondamental
MASTER de sciences et technologies, Mention MATHÉMATIQUES ET APPLICATIONS Université Pierre et Marie Curie (Paris VI) Année 2012-2013
MASTER de sciences et technologies, Mention MATHÉMATIQUES ET APPLICATIONS Université Pierre et Marie Curie (Paris VI) Année 2012-2013 [version du 29 juin 2012] 2 Table des matières 1 Master 2, Spécialité
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
Sciences de Gestion Spécialité : SYSTÈMES D INFORMATION DE GESTION
Sciences de Gestion Spécialité : SYSTÈMES D INFORMATION DE GESTION Classe de terminale de la série Sciences et Technologie du Management et de la Gestion Préambule Présentation Les technologies de l information
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau
Apport des modèles de krigeage à la simulation numérique K Ammar, F Bachoc, JM Martinez CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette, France Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des
Loi binomiale Lois normales
Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli
La gestion opérationnelle de la météosensibilité. La prévision météorologique et hydrologique au cœur de l Économie et de la Société
La gestion opérationnelle de la météosensibilité La prévision météorologique et hydrologique au cœur de l Économie et de la Société La société METNEXT METNEXT en bref Notre métier : L assistance aux entreprises
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA
Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université
Smart Energy & Power Quality Solutions. www.energy-portal.com. La solution Cloud pour votre gestion d Energie
Smart Energy & Power Quality Solutions www.energy-portal.com La solution Cloud pour votre gestion d Energie ENERGY-PORTAL Energy-Portal Vos avantages La solution cloud développée spécifiquement pour les
Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS
Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
VI. Tests non paramétriques sur un échantillon
VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes
Résumé des communications des Intervenants
Enseignements de la 1ere semaine (du 01 au 07 décembre 2014) I. Titre du cours : Introduction au calcul stochastique pour la finance Intervenante : Prof. M hamed EDDAHBI Dans le calcul différentiel dit
Web Science. Master 1 IFI. Andrea G. B. Tettamanzi. Université de Nice Sophia Antipolis Département Informatique andrea.tettamanzi@unice.
Web Science Master 1 IFI Andrea G. B. Tettamanzi Université de Nice Sophia Antipolis Département Informatique [email protected] 1 Annonce : recherche apprenti Projet Géo-Incertitude Objectifs
Utilisation du module «Geostatistical Analyst» d ARCVIEW dans le cadre de la qualité de l air
Etude n 10 Assistance en modélisation (Rapport 3/3) Utilisation du module «Geostatistical Analyst» d ARCVIEW dans le cadre de la qualité de l air Novembre 2004 Convention : 04000087 Giovanni CARDENAS Utilisation
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
OPTIMISATION À UNE VARIABLE
OPTIMISATION À UNE VARIABLE Sommaire 1. Optimum locaux d'une fonction... 1 1.1. Maximum local... 1 1.2. Minimum local... 1 1.3. Points stationnaires et points critiques... 2 1.4. Recherche d'un optimum
Guidance de Statistique : Epreuve de préparation à l examen
Guidance de Statistique : Epreuve de préparation à l examen Durée totale : 90 min (1h30) 5 questions de pratique (12 pts) 20 décembre 2011 Matériel Feuilles de papier De quoi écrire Calculatrice Latte
APPORT DES RESEAUX BAYESIENS DANS LA PREVENTION DE LA DELINQUANCE
SûretéGlobale.Org La Guitonnière 49770 La Meignanne Téléphone : +33 241 777 886 Télécopie : +33 241 200 987 Portable : +33 6 83 01 01 80 Adresse de messagerie : [email protected] APPORT DES
Chapitre 4 : cas Transversaux. Cas d Emprunts
Chapitre 4 : cas Transversaux Cas d Emprunts Échéanciers, capital restant dû, renégociation d un emprunt - Cas E1 Afin de financer l achat de son appartement, un particulier souscrit un prêt auprès de
Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I
Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques
REGIONALISATION DE L'ECOULEMENT MAXIMAL DU BASSIN VERSANT DE CRISULALB
REGIONALISATION DE L'ECOULEMENT MAXIMAL DU BASSIN VERSANT DE CRISULALB MIC Rodica, INMH Bucarest OBERLIN Guy, CEMAGREF Lyon OANCEA Victor, INMH Bucarest PRUDHOMME Christel, CEMAGREF Lyon Abstract The paper
Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes
de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,[email protected]
Le calcul du barème d impôt à Genève
Le calcul du barème d impôt à Genève Plan : 1. Historique Passage d un système en escalier à une formule mathématique 2. Principe de l imposition Progressivité, impôt marginal / moyen ; barème couple/marié
Rivière Saint-Charles Tronçon 2 Ville de Québec
Rivière Saint-Charles Tronçon 2 Ville de Québec Mise à jour des cotes de crues Rapport final Pour plus de renseignements, contactez la Direction de l expertise hydrique du Centre d expertise hydrique du
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie
Partie I : Séries statistiques descriptives univariées (SSDU) A Introduction Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie et tous sont organisés selon le même
La surveillance appliquée à la gestion des risques géotechniques miniers
Symposium on Innovation and Technology in The Phosphate Industry - SYMPHOS May 6-10, 2013 Agadir, Marocco La surveillance appliquée à la gestion des risques géotechniques miniers Méthodes et Technologies
Manipulation de données avec SAS Enterprise Guide et modélisation prédictive avec SAS Enterprise Miner
Le cas Orion Star Manipulation de données avec SAS Enterprise Guide et modélisation prédictive avec SAS Enterprise Miner Le cas Orion Star... 1 Manipulation de données avec SAS Enterprise Guide et modélisation
Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.
Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences
TABLE DES MATIÈRES. Avant-propos... Remerciements... CHAPITRE 1 LA COMPTABILITÉ DE MANAGEMENT... 1
TABLE DES MATIÈRES Avant-propos........................................................... Remerciements......................................................... V VII CHAPITRE 1 LA COMPTABILITÉ DE MANAGEMENT................
Transmission d informations sur le réseau électrique
Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en
http://mondomaine.com/dossier : seul le dossier dossier sera cherché, tous les sousdomaines
Principales fonctionnalités de l outil Le coeur du service suivre les variations de position d un mot-clé associé à une URL sur un moteur de recherche (Google - Bing - Yahoo) dans une locale (association
Statistique inférentielle TD 1 : Estimation
POLYTECH LILLE Statistique inférentielle TD : Estimation Exercice : Maîtrise Statistique des Procédés Une entreprise de construction mécanique fabrique de pièces demoteurdevoiturepourungrandconstructeur
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57
Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation
RÉALISATION DE GRAPHIQUES AVEC OPENOFFICE.ORG 2.3
RÉALISATION DE GRAPHIQUES AVEC OPENOFFICE.ORG 2.3 Pour construire un graphique : On lance l assistant graphique à l aide du menu Insérer è Diagramme en ayant sélectionné au préalable une cellule vide dans
L essentiel du tableau de bord
Alain Fernandez L essentiel du tableau de bord Méthode complète et mise en pratique avec Microsoft Excel Quatrième édition 7273_.indb 3 04/03/13 17:35 Sommaire Introduction...1 Une méthode en 5 étapes
F7n COUP DE BOURSE, NOMBRE DÉRIVÉ
Auteur : S.& S. Etienne F7n COUP DE BOURSE, NOMBRE DÉRIVÉ TI-Nspire CAS Mots-clés : représentation graphique, fonction dérivée, nombre dérivé, pente, tableau de valeurs, maximum, minimum. Fichiers associés
TRACKER GT400 Une nouveauté Techdigitale
Vos proches en totale sécurité! Techdigitale Une marque déposée en France par Amri World Trading www.techdigitale.com spécialisée dans la vente de matériel de surveillance et protection de la personne.
Prospective: Champ de gravité, méthodes spatiales
Prospective: Champ de gravité, méthodes spatiales Richard Biancale Conseil Scientifique du GRGS Observatoire de Paris, 10 avril 2008 L état de l art des modèles CHAMP: modèles 50 fois moins précis que
Apprentissage par renforcement (1a/3)
Apprentissage par renforcement (1a/3) Bruno Bouzy 23 septembre 2014 Ce document est le chapitre «Apprentissage par renforcement» du cours d apprentissage automatique donné aux étudiants de Master MI, parcours
NOTE SUR LA MODELISATION DU RISQUE D INFLATION
NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui
LOGICIEL DE MODÉLISATION INTEGRÉE 1D/2D POUR LA GESTION DES EAUX PLUVIALES ET DES EAUX USÉES. drainage. Micro Drainage
LOGICIEL DE MODÉLISATION INTEGRÉE 1D/2D POUR LA GESTION DES EAUX PLUVIALES ET DES EAUX USÉES drainage Micro Drainage QUELS SONT LES DOMAINES D APPLICATION DE XPSWMM? Gestion des eaux pluviales: Modélisation
La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites
La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur
Chapitre 3 : Le budget des ventes. Marie Gies - Contrôle de gestion et gestion prévisionnelle - Chapitre 3
Chapitre 3 : Le budget des ventes Introduction 2 Rappel des différents budgets opérationnels - budget des ventes (chapitre 3) - budget de production (chapitre 4) - budget des approvisionnements et des
1 Importer et modifier des données avec R Commander
Université de Nantes 2015/2016 UFR des Sciences et Techniques Département de Mathématiques TP1 STATISTIQUE DESCRIPTIVE Frédéric Lavancier Avant propos Ouvrir l application R Saisir dans la console library(rcmdr)
Une fréquence peut-elle être instantanée?
Fréquence? Variable? Instantané vs. local? Conclure? Une fréquence peut-elle être instantanée? Patrick Flandrin CNRS & École Normale Supérieure de Lyon, France Produire le temps, IRCAM, Paris, juin 2012
Excel 2010 Module 13. Comment créer un tableau d amortissement dégressif d une immobilisation. Enseignant : Christophe Malpart
Excel 2010 Module 13 Comment créer un tableau d amortissement dégressif d une immobilisation Enseignant : Christophe Malpart Excel 2010. Module 13. Christophe Malpart Sommaire 1 Introduction 3 2 Calcul
CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING
CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING SÉLECTION DES RISQUES PRÉVISION DES DÉFAUTS SUIVI ET CONTRÔLE Pierre-Louis GONZALEZ Différents types de
PERSONNE DEPENDANTE Fugue - Risque d agression
PERSONNE DEPENDANTE Fugue - Risque d agression Celui qui protège pour gérer et traiter les informations Positions continues Où est-il toutes les minutes? G200 Intervalle modifiable, minimum 10 secondes
Construction bayésienne de prévisions probabilistes à partir des sorties d'un modèle déterministe pluie-débit
Construction bayésienne de prévisions probabilistes à partir des sorties d'un modèle déterministe pluie-débit Marie Courbariaux, Éric Parent & Pierre Barbillon INRA/AgroParisTech, UMR518 MIA, 75231 Paris,
De la mesure à l analyse des risques
De la mesure à l analyse des risques Séminaire ISFA - B&W Deloitte Jean-Paul LAURENT Professeur à l'isfa, Université Claude Bernard Lyon 1 [email protected] http://laurent.jeanpaul.free.fr/ 0 De
ALERTE ET GESTION DES CRUES ÉCLAIRS SUR LES PETITS BASSINS VERSANTS URBAINS
ALERTE ET GESTION DES CRUES ÉCLAIRS SUR LES PETITS BASSINS VERSANTS URBAINS Utilisation du radar HYDRIX et de la plateforme RAINPOL sur la commune d ANTIBES JUAN-LES-PINS European Local Authorities Rencontres
FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc)
87 FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc) Dans le cadre de la réforme pédagogique et de l intérêt que porte le Ministère de l Éducation
