Probabilités et statistiques dans le traitement de données expérimentales

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Probabilités et statistiques dans le traitement de données expérimentales"

Transcription

1 Probabilités et statistiques dans le traitement de données expérimentales S. LESECQ, B. RAISON IUT1, GEII 1 Module MC-M

2 Contenu de l enseignement Analyse combinatoire Probabilités Variables aléatoires Lois de probabilités Notions de statistiques Estimation de paramètres Fiabilité, Disponibilité 2

3 I - Analyse combinatoire Module MC-M

4 Plan de cette partie Quelques notions de vocabulaire Événements Dénombrements Quelques dénombrements Multiplets Arrangements Permutations Combinaisons 4

5 Vocabulaire événementiel Epreuve = expérience dont le résultat est imprévisible, aléatoire. Exemple : Jeter un dé et lire la face supérieure. Univers = l ensemble des résultats possibles, associé à une épreuve. Notation : Ω Exemple : pour le jet d un dé Ω = {1,2,3,4,5,6}. 5

6 Vocabulaire événementiel Evénement A = un sous-ensemble de Ω. Exemple : Si on appelle X le résultat du jet d un dé alors A = {X >= 4} est l événement {4,5,6} L univers Ω peut contenir un nombre fini, infini dénombrable, infini non dénombrable d événements. Si ce nombre est fini, on l appelle cardinal de Ω, noté card(ω). 6

7 Evénements et dénombrements Evénement Certain : A = Ω Evénement Impossible : A = Evénements Incompatibles : A1 I 2 A = Evénement Contraire : A = ð Ω ( A), où ð Ω est le complément par rapport à Ω Contraire Incompatible ; Incompatible Contraire Evénements Exhaustifs : A1 U 2 A = Ω Implication : A1 A2 A1 A2 A1 I A2 = A1 ( ) ( ) ( ) 7

8 Quelques définitions Analyse combinatoire = dénombrement de dispositions qui peuvent être formées avec les éléments d un ensemble fini Exemple 1 : les cartes d un jeu, les chiffres d un système de numération, Exemple 2 : les résistances de 10kΩ ou les ampli op. FL351 dans une boîte Ces éléments sont discernables (ex1) ou indiscernables (ex2) Certains éléments d un jeu de cartes peuvent être considérés comme discernables ou comme indiscernables. 8

9 Quelques définitions Disposition = façon de disposer les éléments Avec répétition ou sans répétition Ordonnée ou non ordonnée Exemple 1 : pour former tous les nombres entiers de 3 chiffres avec les dix chiffres de 0 à 9, on a besoin de réutiliser tous les chiffres. Exemple 2 : Combien y a-t-il de façons de remplir un damier de 64 cases inscernables avec 16 pions indiscernables? 9

10 Les multiplets (-> multiplication) Soient p ensembles distincts formés d élements complètement discernables, le 1er ensemble contient n1 éléments, le 2ème, n2, On appelle multiplet une disposition ordonnée de p éléments, le 1er appartenant au 1er ensemble et ainsi de suite jusqu au p-ième élément. Le nombre de multiplets est obtenu par la multiplication m = n1* n2*... * np 10

11 Exemples sur le multiplets Exemple 1 : Combien y a- t-il de mots possibles avec 2 lettres quelconques de l alphabet français (26 lettres), la première étant une majuscule et la seconde une minuscule? Même question avec la première lettre une consonne et la seconde une voyelle (6 voyelles dans l alphabet). Exemple 2 : Il y a 38 départements d IUT spécialisés en GE en France. Chacun accueille 5 groupes d étudiants en 1A. Chaque groupe peut comporter jusqu à 28 étudiants. Combien y a-til de places offertes? 11

12 Les arrangements avec répétition Soit un seul ensemble de n éléments discernables, l arrangement avec répétition de p éléments est une disposition ordonnée avec répétition éventuelle de p éléments choisis parmi n. Le nombre d arrangements avec répétition de p éléments choisis parmi n est : m = n p 12

13 Exemple sur les arrangements avec répétition Quel est le nombre de mots de 8 bits composés avec les deux chiffres du système binaire? Jusqu à combien peut-on compter avec 3 chiffres en décimal? A combien correspond en décimal le nombre hexadécimal FFFF? Combien y a-t-il au total de mots de 2, 3 et 4 lettres avec un alphabet comme le Morse? 13

14 Permutation sans répétition On appelle permutation de n éléments d un ensemble E, tout ensemble ordonné formé par ces n éléments. Le nombre de permutations est P n = n! Exemple : nombre de codes à 4 chiffres avec chacun de ces 4 chiffres 1, 2, 3, 4? 14

15 Les arrangements sans répétition On appelle arrangement de p éléments parmi n (p < n), d un ensemble E, tout sousensemble ordonné de E ayant p éléments. Le nombre d arrangements est p A = n( n 1) L( n p + 1) = n Exemple : 2 parmi 3 (a,b) (b,a) (a,c) (c,a) (b,c) (c,b) n! ( n p)! 15

16 Exemple sur les arrangements sans répétition Combien y a-t-il de tiercés dans l ordre possible à l arrivée d une course de 15 chevaux? Pour réaliser une fonction, un étudiant doit choisir de brancher 4 entrées d un circuit sur les 15 sorties d un autre circuit sans mise en parallèle. Combien y a-t-il de possibilités distinctes? 16

17 Les combinaisons sans répétition On appelle combinaison de p éléments parmi n (p < n), d un ensemble E, tout sousensemble de E ayant p éléments. Le nombre de combinaison est C p n p n( n 1) L( n p + 1) n! An = = = 1.2 L p p!( n p)! p! Exemple : 2 parmi 3 (a,b) (a,c), (b,c) ordre sans importance 17

18 Exemples sur les combinaisons sans répétition On doit tirer au hasard 5 étudiants pour faire le ménage de la salle de cours sur un groupe de 43. Combien y a-t-il de résultats possibles? Combien de mains différentes peut avoir un joueur de bridge (13 cartes parmi 52)? 17 candidats se présentent pour concourir pour 4 places. Combien y a-t-il de listes d admission possibles (sans tenir compte du rang d admission)? Combien parmi ces listes contiennent le candidat X? 18

COURS DE DENOMBREMENT

COURS DE DENOMBREMENT COURS DE DENOMBREMENT 1/ Définition des objets : introduction Guesmi.B Dénombrer, c est compter des objets. Ces objets sont créés à partir d un ensemble E, formé d éléments. A partir des éléments de cet

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien

Plus en détail

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités Chapitre II : Espaces probabilisés 1 Notions d événements 1.1 Expérience

Plus en détail

Chapitre 1 : Analyse Combinatoire

Chapitre 1 : Analyse Combinatoire Chapitre 1 : Analyse Combinatoire L2 éco-gestion, option AEM (L2 éco-gestion, option AEM) Chapitre 1 : Analyse Combinatoire 1 / 23 Question du jour Pensez-vous que dans cette assemblée, deux personnes

Plus en détail

Chapitre 3 : Combinatoire, Probabilités

Chapitre 3 : Combinatoire, Probabilités STAT03 : probabilités COURS Décembre 2000 Chapitre 3 : Combinatoire, Probabilités 1 Dénombrement 1.1 Introduction L étude statistique nous conduit à étudier une population finie et parfaitement déterminée

Plus en détail

1. Probabilités élémentaires

1. Probabilités élémentaires 1. Probabilités élémentaires MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: probabilités 1/48 Plan 1. Expériences aléatoires et événements 2. Probabilités 3. Analyse combinatoire

Plus en détail

Les trois sortes de tirages

Les trois sortes de tirages DERNIÈRE IMPRESSION LE 29 juin 2015 à 19:20 Les trois sortes de tirages Introduction Comme nous l avons vu, dans une loi équirépartie, il est nécessaire de dénombrer les cas favorables et les cas possibles.

Plus en détail

II. Eléments des probabilités

II. Eléments des probabilités II. Eléments des probabilités Exercice II.1 Définir en extension l ensemble fondamental Ω des résultats associé à chacune des expériences aléatoires suivantes: 1. jeter une pièce de monnaie et observer

Plus en détail

Cours de Probabilités et de Statistique

Cours de Probabilités et de Statistique Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles

Plus en détail

Probabilités et statistique

Probabilités et statistique Probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi Cette œuvre est mise à disposition selon les termes de la licence

Plus en détail

DENOMBREMENT. A Notion d ordre, de rangement à n!

DENOMBREMENT. A Notion d ordre, de rangement à n! DENOMBREMENT A Notion d ordre, de rangement à n! Exemple : de combien de façons différentes peut-on ranger ces 3 lettres? u Nombre de lettre s : 3 Alors, on fait 3! = 3x2x1 = 6 façons de ranger ces lettres

Plus en détail

Fiche méthodologique Les pièges dans les dénombrements

Fiche méthodologique Les pièges dans les dénombrements Fiche méthodologique Les pièges dans les dénombrements BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Dans cette fiche, on résume quelques points techniques sur les dénombrements et la théorie des probabilités.

Plus en détail

Statistiques II. Alexandre Caboussat alexandre.caboussat@hesge.ch. Classe : Mardi 11h15-13h00 Salle : C110. http://campus.hesge.

Statistiques II. Alexandre Caboussat alexandre.caboussat@hesge.ch. Classe : Mardi 11h15-13h00 Salle : C110. http://campus.hesge. Statistiques II Alexandre Caboussat alexandre.caboussat@hesge.ch Classe : Mardi 11h15-13h00 Salle : C110 http://campus.hesge.ch/caboussata 1 mars 2011 A. Caboussat, HEG STAT II, 2011 1 / 23 Exercice 1.1

Plus en détail

Feuille 1. L3 Maths Appliquées lagache@biologie.ens.fr 27 Janvier 2009. A le chambre des députés d un pays composé de 100 départements, chaque

Feuille 1. L3 Maths Appliquées lagache@biologie.ens.fr 27 Janvier 2009. A le chambre des députés d un pays composé de 100 départements, chaque Feuille 1 L3 Maths Appliquées lagache@biologie.ens.fr 27 Janvier 2009 1 Combinatoire 1.1 Exercice 1 A le chambre des députés d un pays composé de 100 départements, chaque département est représenté par

Plus en détail

Analyse combinatoire

Analyse combinatoire Mathématiques Générales B Université de Genève Sylvain Sardy 6 mars 2008 Le but de l analyse combinatoire (techniques de dénombrement est d apprendre à compter le nombre d éléments d un ensemble fini de

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire Rappels Symboles Combinatoires Tirage de p parmi n éléments avec remise sans remise ordre important Bn p n p A p n n! pn pq! ordre non-important - Cn p n! pn pq!p! Coefficients Binomiaux

Plus en détail

3D Compléments de cours. Guy GREISEN

3D Compléments de cours. Guy GREISEN 3D Compléments de cours Guy GREISEN 14 septembre 2009 3D 3 Table des matières 1 SECOND DEGRÉ 6 1.1 Introduction................................................ 6 1.2 Formule générale.............................................

Plus en détail

Exercices : Analyse combinatoire et probabilité

Exercices : Analyse combinatoire et probabilité Exercices : Analyse combinatoire et probabilité 1. Le jeu de Cluedo consiste à retrouver l assassin du Dr. Lenoir, l arme et le lieu du crime. Sachant qu il y a six armes, neuf lieux et six suspects, de

Plus en détail

b) Exprimer B à l aide des événements A n et en déduire la probabilité de B Exercice 1.4. Inégalité de Bonferroni.

b) Exprimer B à l aide des événements A n et en déduire la probabilité de B Exercice 1.4. Inégalité de Bonferroni. MP 205/6 Feuille d exercices - Probabilités généralités). Univers, généralités Exercice.. Langage des probabilités. Soit Ω, A) un espace probabilisable. Soit A n ) n N une famille d événements et A, B,

Plus en détail

Chapitre 1. Ensembles et sous-ensembles

Chapitre 1. Ensembles et sous-ensembles Chapitre 1 Ensembles et sous-ensembles 1. Notion d ensemble - Elément d un ensemble Un ensemble est une collection d objets satisfaisant un certain nombre de propriétés et chacun de ces objets est appelé

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Dénombrement et probabilités Version du juillet 05 Enoncés Exercice - YouTube Sur YouTube, les vidéos sont identifiées à l aide d une chaîne

Plus en détail

1. Un groupe de dix personnes comprend cinq hommes et cinq femmes.

1. Un groupe de dix personnes comprend cinq hommes et cinq femmes. Dénombrement Exercices 1. Un groupe de dix personnes comprend cinq hommes et cinq femmes. (a) Combien y a-t-il de manières de les disposer autour d une table ronde, en ne tenant compte que de leurs positions

Plus en détail

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J.

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J. Année 2013-2014 UNIVERSIÉ DE CERGY LICENCE d ÉCONOMIE et FINANCE LICENCE de GESION Seconde année - Semestre 3 PROBABILIÉS Cours de M. J. Stéphan ravaux Dirigés de Mme M. Barrié, M. J-M. Chauvet et M. J.

Plus en détail

I. Qu est-ce qu une probabilité?

I. Qu est-ce qu une probabilité? I. Qu est-ce qu une probabilité? 1. Première approche : Une probabilité en mathématique est un chiffre compris entre 0 et 1. Ce chiffre représente une évaluation du caractère probable d un événement. Si

Plus en détail

Exercices de probabilités et statistique

Exercices de probabilités et statistique Exercices de probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi & Fabrice Le Lec Cette œuvre est mise à disposition

Plus en détail

COMBINATOIRE, PROBABILITÉS

COMBINATOIRE, PROBABILITÉS COMBINATOIRE, PROBABILITÉS ET STATISTIQUES Version 2006 Lang Fred 1 Table des matières 1 Factorielles et coefficients binômiaux 3 1.1 Définitions........................................ 3 1.2 Propriétés

Plus en détail

Cours de DEUG Probabilités et Statistiques. Avner Bar-Hen

Cours de DEUG Probabilités et Statistiques. Avner Bar-Hen Cours de DEUG Probabilités et Statistiques Avner Bar-Hen Université Aix-Marseille III 3 Table des matières Table des matières i Analyse combinatoire 1 1 Arrangements................................ 1 1.1

Plus en détail

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3 CHAPITRE : LOIS DISCRÈTES Sommaire Variable aléatoire discrète................................... Rappels........................................... Exemple......................................... Couples

Plus en détail

1 Exercices d introdution

1 Exercices d introdution 1 Exercices d introdution Exercice 1 (Des cas usuels) 1. Combien y a-t-il de codes possibles pour une carte bleue? Réponse : 10 4. 2. Combien y a-t-il de numéros de téléphone commençant par 0694? Réponse

Plus en détail

Dénombrement, opérations sur les ensembles.

Dénombrement, opérations sur les ensembles. Université Pierre et Marie Curie 2013-2014 Probabilités et statistiques - LM345 Feuille 1 (du 16 au 20 septembre 2013) Dénombrement, opérations sur les ensembles 1 Combien de façons y a-t-il de classer

Plus en détail

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental

Plus en détail

1 x 1 <x 2 < <x p n. p p. 1; k?

1 x 1 <x 2 < <x p n. p p. 1; k? Chapitre 1 Ensemble, dénombrement Programme ociel Ce chapitre a pour but : - d'introduire les notions d'ensemble, de sous-ensemble ; - de dénir une application, ses images directe et réciproque, ses propriétés

Plus en détail

CHAPITRE II NOTIONS DE PROBABILITES

CHAPITRE II NOTIONS DE PROBABILITES CHAPITRE II NOTIONS DE PROBABILITES II.1. Un exemple : le poker Distribuer une main de poker (5 cartes sur 52) revient à tirer au hasard 5 cartes parmi 52. On appelle expérience aléatoire une telle expérience

Plus en détail

PROBABILITÉS Variable aléatoire

PROBABILITÉS Variable aléatoire PROBABILITÉS Variable aléatoire I Langage des événements Lors d'un oral de mathématiques, quatre questions sont proposées : une question de probabilités (P) ; une question de statistiques (S) ; une question

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes

Plus en détail

Probabilités et statistiques

Probabilités et statistiques Probabilités et statistiques Denis Vekemans Table des matières 1 Combinatoire 5 1.1 Analyse combinatoire sans répétition..................................... 5 1.1.1 Cardinal de l ensemble des applications

Plus en détail

Probabilités conditionnelles

Probabilités conditionnelles 22 Probabilités conditionnelles Ω, B, P est un espace probabilisé. 22. Définition et propriétés des probabilités conditionnelles Considérons l expérience aléatoire qui consiste à lancer deux fois un dé

Plus en détail

Séquence 3. 1 ère partie : 2 e partie : Second degré. Probabilités (1) Séquence 3 MA12. Cned - Académie en ligne

Séquence 3. 1 ère partie : 2 e partie : Second degré. Probabilités (1) Séquence 3 MA12. Cned - Académie en ligne Séquence 3 1 ère partie : Second degré e partie : Probabilités (1) Séquence 3 MA1 1 1 ère partie Second degré Sommaire 1. Pré-requis. Forme canonique, étude d une fonction du second degré 3. Équation du

Plus en détail

Exercices supplémentaires

Exercices supplémentaires Exercices supplémentaires Christophe Lalanne Emmanuel Chemla Exercices Exercice 1 Un grand magasin a n portes d entrée ; r personnes arrivent à des instants divers et choisissent au hasard une entrée indépendamment

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Résumé : A partir du problème de la représentation des droites sur un écran d ordinateur,

Plus en détail

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements

Plus en détail

1 Introduction aux Probabilités

1 Introduction aux Probabilités Probabilités Mathématiques 218 1 Introduction aux Probabilités 1.1 Généralités Le hasard est le fait d évènements qu on ne peut pas prévoir et qui font partie de notre quotidien. Les exemples sont nombreux

Plus en détail

Theme 4 - Lois usuelles discrètes

Theme 4 - Lois usuelles discrètes L2 AES TD de statistique 2008/2009 Cours de Mme Mériot M.-A. Jambu & S.Turolla Theme 4 - Lois usuelles discrètes Exercice 1 (Loi binomiale) A et B sont deux avions ayant respectivement 4 et 2 moteurs.

Plus en détail

Épreuve de Mathématiques 8

Épreuve de Mathématiques 8 Lycée La Prat s Vendredi 10 avril 2015 Classe de PT Épreuve de Mathématiques 8 Durée 4 h L usage des calculatrices est interdit. La présentation, la lisibilité, l orthographe, la qualité de la rédaction

Plus en détail

Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016

Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016 Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 0 A. P. M. E. P. EXERCICE Commun à tous les candidats points Partie A Une boite contient 00 médailles souvenir dont 50 sont argentées, les autres dorées.

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

Espaces de probabilités.

Espaces de probabilités. Université Pierre et Marie Curie 2010-2011 Probabilités et statistiques - LM345 Feuille 2 Espaces de probabilités. 1. Donner un exemple d'une famille de parties d'un ensemble qui ne soit pas une tribu.

Plus en détail

Feuille d exercices 1

Feuille d exercices 1 Université Paris 7 - Denis Diderot L2 - Probabilités PS4 Année 2014-2015 Feuille d exercices 1 Exercice 1 Combien y a-t-il de paires d entiers non consécutifs compris entre 1 et n (n 1)? Exercice 2 1.

Plus en détail

Probabilités conditionelles

Probabilités conditionelles Probabilités conditionelles Exercice 1 Cet exercice est un questionnaire à choix multiples constitué de six questions ; chacune comporte trois réponses, une seule est exacte On notera sur la copie uniquement

Plus en détail

Probabilité conditionnelle. Probabilités. Probabilité conditionnelle et indépendance. Julian Tugaut

Probabilité conditionnelle. Probabilités. Probabilité conditionnelle et indépendance. Julian Tugaut Probabilité conditionnelle et indépendance Télécom Saint-Étienne 2014 Sommaire 1 Probabilité conditionnelle Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Feuille TD 1 : Probabilités discrètes, dénombrement

Feuille TD 1 : Probabilités discrètes, dénombrement Université de Nice-Sophia Antipolis -L2 MASS - Probabilités Feuille TD 1 : Probabilités discrètes, dénombrement Exercice 1 : 1. On doit choisir 2 représentants dans une classe de 40 élèves. Quel est le

Plus en détail

Exemples d exercices de nature pédagogique pouvant être proposés lors de l épreuve d admissibilité de mathématiques au CAPLP externe Maths-Sciences.

Exemples d exercices de nature pédagogique pouvant être proposés lors de l épreuve d admissibilité de mathématiques au CAPLP externe Maths-Sciences. Exemples d exercices de nature pédagogique pouvant être proposés lors de l épreuve d admissibilité de mathématiques au CAPLP externe Maths-Sciences. Exemple 1 Voici une situation pouvant être utilisée

Plus en détail

Analyse combinatoire 1

Analyse combinatoire 1 Analyse combinatoire 1 Nous allons développer dans ce chapitre des techniques de dénombrements qui permettront de résoudre des problèmes du genre: combien existe-t-il de mains différentes de cinq cartes

Plus en détail

Mathématiques pour. l informatique

Mathématiques pour. l informatique Xavier Chanet Patrick Vert Mathématiques pour l informatique Pour le BTS SIO Toutes les marques citées dans cet ouvrage sont des marques déposées par leurs propriétaires respectifs. Illustration de couverture

Plus en détail

DOCUMENT PRÉPARATOIRE TEST DE FRANÇAIS ÉCRIT SEL VERSION B

DOCUMENT PRÉPARATOIRE TEST DE FRANÇAIS ÉCRIT SEL VERSION B DOCUMENT PRÉPARATOIRE TEST DE FRANÇAIS ÉCRIT SEL VERSION B CODE LINGUISTIQUE RÉDACTION Création : Mars 2005 Dernière révision : Mai2008 Table des matières Renseignements généraux. page 3 I. Première partie

Plus en détail

Terminologie. La théorie des probabilités fournit des modèles mathématiques permettant l'étude des expériences aléatoires.

Terminologie. La théorie des probabilités fournit des modèles mathématiques permettant l'étude des expériences aléatoires. Probabilités Terminologie Une expérience ou une épreuve est qualiée d'aléatoire si on ne peut pas prévoir son résultat et si, répétée dans des conditions identiques, elle peut donner des résultats diérents.

Plus en détail

Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch

Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch Pre-MBA Statistics Seances #1 à #5 : Benjamin Leroy-Beaulieu Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch Mise à niveau statistique Seance #1 : 11 octobre Dénombrement et calculs de sommes 2 QUESTIONS

Plus en détail

1 Premiers pas avec Rstudio

1 Premiers pas avec Rstudio Université Paris Descartes UFR de Mathématiques et Informatique Probabilités et Statistiques pour l informatique- Licence MIA 2e année Travaux Pratiques - 1 ère séance Le but de cette première séance est

Plus en détail

Institution Stanislas Brevet Blanc de Mathématiques Mai 2010 1

Institution Stanislas Brevet Blanc de Mathématiques Mai 2010 1 BREVET BLANC DE MATHEMATIQUES Mai 2010 La calculatrice est autorisée. Le soin et la qualité de la rédaction seront pris en compte dans la notation. N candidat : Observations Présentation et rédaction :

Plus en détail

Chapitre 5 Les Probablilités

Chapitre 5 Les Probablilités A) Introduction et Définitions 1) Introduction Chapitre 5 Les Probablilités De nombreuses actions provoquent des résultats qui sont dus en partie ou en totalité au hasard. Il est pourtant nécessaire de

Plus en détail

1) On appelle expérience aléatoire tout phénomène qui a plusieurs résultats possibles, la réalisation de chacun étant due au hasard.

1) On appelle expérience aléatoire tout phénomène qui a plusieurs résultats possibles, la réalisation de chacun étant due au hasard. PROBABILITÉS 1 1 Définitions 1) On appelle expérience aléatoire tout phénomène qui a plusieurs résultats possibles, la réalisation de chacun étant due au hasard. exemple : L'expérience qui consiste à lancer

Plus en détail

Programmation : Exercices

Programmation : Exercices Programmation : Exercices IUT de Villetaneuse R&T 1 ère année Laure Petrucci 6 novembre 2007 1 Premiers programmes Exercice 1.1 : Machine à dessiner On souhaite écrire un programme pour afficher des dessins.

Plus en détail

Textes de lois et règlements relatifs au concours d internat de médecine

Textes de lois et règlements relatifs au concours d internat de médecine d Textes de lois et règlements relatifs au concours d internat de médecine Septembre 2013 1 DECRET RELATIF A LA SITUATION DES INTERNES ET DES RESIDENTS DES CENTRES HOSPITALIERS DECRET N 2.91.527 DU 21

Plus en détail

1. Rappels de 5 ème 5 h + 1 h DS. 2. L intensité du courant 4 h + 1 h DS. 3. La tension électrique 4 h + 1 h DS

1. Rappels de 5 ème 5 h + 1 h DS. 2. L intensité du courant 4 h + 1 h DS. 3. La tension électrique 4 h + 1 h DS En classe de 5 ème : Comprendre, réaliser et représenter un circuit électrique simple Comprendre ce qu est un courant électrique et déterminer le sens du courant dans un circuit électrique Distinguer conducteur

Plus en détail

Période 3 Les tableaux

Période 3 Les tableaux Département Génie Électrique et Informatique Industrielle Période 3 Les tableaux 1/ Recopie de certains éléments d un tableau Soit les déclarations suivantes : int Tabint[10]={65,21, 9,23, 1,32,5, 69,12,

Plus en détail

Informatique 1ère Année 2012-2013

Informatique 1ère Année 2012-2013 SERIE D EXERCICES N 1 INTRODUCTION, STRUCTURE CONDITIONNELLE : IF..ELSE Exercice 1 Ecrire le programme qui lit deux entiers saisis et affiche leur produit. Modifier ensuite ce programme pour saisir des

Plus en détail

PROBABILITÉS. I Vocabulaire des événements 2 I.1 Vocabulaire... 2 I.2 Intersection et réunion d événements... 2 I.3 Représentation des évenements...

PROBABILITÉS. I Vocabulaire des événements 2 I.1 Vocabulaire... 2 I.2 Intersection et réunion d événements... 2 I.3 Représentation des évenements... PROBABILITÉS Table des matières I Vocabulaire des événements 2 I.1 Vocabulaire.............................................. 2 I.2 Intersection et réunion d événements................................ 2

Plus en détail

Mathématiques Pour l Informatique I : Théorie des Ensembles et Relations. Serge Iovleff

Mathématiques Pour l Informatique I : Théorie des Ensembles et Relations. Serge Iovleff Mathématiques Pour l Informatique I : Théorie des Ensembles et Relations Serge Iovleff 13 septembre 2004 Quelques références Ma Page http ://www.iut-info.univ-lille1.fr/ iovleff Un Cours réalisé par des

Plus en détail

Exercices chapitre 8. Probabilités.

Exercices chapitre 8. Probabilités. Lycée Descartes PC 2014-15 M. Besbes Exercices chapitre 8. Probabilités. Exercice 1. Soit (Ω, B, P ) un espace probabilisé. Montrer que l ensemble : A = {A B; P (A) = 0 ou P (A) = 1} est une tribu. Exercice

Plus en détail

Objets Combinatoires élementaires

Objets Combinatoires élementaires Objets Combinatoires élementaires 0-0 Permutations Arrangements Permutations pour un multi-ensemble mots sous-ensemble à k éléments (Problème du choix) Compositions LE2I 04 1 Permutations Supposons que

Plus en détail

Les cartes de tralala. de l alphabet. 5 jeux pour manipuler l alphabet de A à Z!

Les cartes de tralala. de l alphabet. 5 jeux pour manipuler l alphabet de A à Z! Les cartes de tralala L de l alphabet 5 jeux pour manipuler l alphabet de A à Z! Les conseils de l orthophoniste Pourquoi connaître son alphabet? Connaître l ordre alphabétique est indispensable pour pouvoir

Plus en détail

Sous-groupes additifs de Z. Résolution dans Z d une équation de la forme ax+by=c.

Sous-groupes additifs de Z. Résolution dans Z d une équation de la forme ax+by=c. Sous-groupes additifs de Z. Égalité de Bézout. Résolution dans Z d une équation de la forme ax+by=c. Il s agit de l exposé de CAPES numéro 12 (2006). Les prérequis principaux sont les suivants : Le fait

Plus en détail

Éléments de logique et de théorie des ensembles

Éléments de logique et de théorie des ensembles 1 Éléments de logique et de théorie des ensembles Pour les exemples et exercices traités dans ce chapitre les ensembles usuels de nombres entiers, rationnels réels et complexes sont supposés connus, au

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

PROBABILITÉS. I) Introduction, aperçu historique. Loi de probabilité

PROBABILITÉS. I) Introduction, aperçu historique. Loi de probabilité Table des matières PROBABILITÉS Résumé de cours I) Introduction, aperçu historique 1 II) Loi de probabilité 1 III)Probabilité d évènement 2 1. Le vocabulaire des probabilités................................

Plus en détail

Codes linéaires. Distance d un code linéaire

Codes linéaires. Distance d un code linéaire Distance d un code linéaire Un code binaire C est linéaire si la somme de deux mots quelconques du code est encore un mot du code : w 1, w 2 C, w 1 + w 2 C Un code linéaire est donc un sous-espace vectoriel

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

Le fer à cheval de Smale

Le fer à cheval de Smale Le fer à cheval de Smale Selim GHAZOUANI, ENS Lyon Novembre 2010, Groupe de lecture dirigé par Alexey GLUSTYUK sur les systèmes dynamiques Le fer à cheval de Smale est un exemple de transformation continue

Plus en détail

Chapitre 4 Automates à pile et langages hors-contexte

Chapitre 4 Automates à pile et langages hors-contexte Chapitre 4 Automates à pile et langages hors-contexte 87 Introduction Langage a n b n n est pas accepté par un automate fini. Par contre L k = {a n b n n k} est accepté. Mémoire finie, mémoire infinie,

Plus en détail

Circuits triphasés équilibrés

Circuits triphasés équilibrés Chapitre 3 Circuits triphasés équilibrés Les circuits triphasés forment la base du réseau de distribution de l électricité. On se sert de circuits triphasés entre les génératrices et les réseaux industriels

Plus en détail

2 nde CORRIGE : DEVOIR COMMUN DE

2 nde CORRIGE : DEVOIR COMMUN DE 2 nde CORRIGE : DEVOIR COMMUN DE MATHEMATIQUES Exercice 1 : (4 points) 1. Compléter le tableau à double entrée ci-dessous. Elèves vaccinés Elèves non vaccinés Total Elèves ayant eu la grippe 14 133 147

Plus en détail

Contrôle commun : 4 heures

Contrôle commun : 4 heures Exercice 1 (5 points) Contrôle commun : 4 heures PARTIE A On considère la fonction f définie sur l intervalle ]0 ; + [ par f(x) = ln x + x. 1. Déterminer les limites de la fonction f en 0 et en +.. Étudier

Plus en détail

Définitions. Si E = F on dit. (x, y) / G R signifie que x n est pas en relation avec y. 32/137. Exemple

Définitions. Si E = F on dit. (x, y) / G R signifie que x n est pas en relation avec y. 32/137. Exemple I Introduction II Wims Cours de Mathématiques IUT Orsay DUT INFORMATIQUE 1A - Semestre 1 III Calcul ensembliste IV Relations binaires, applications V Logique VI Raisonnement par récurrence, suites récurrentes

Plus en détail

Mathématiques Discrétes. Hatem MASRI

Mathématiques Discrétes. Hatem MASRI Mathématiques Discrétes Hatem MASRI Septembre 2003 Contents Introduction 3 1 Théorie des ensembles et calcul propositionnel 4 1.1 Introduction... 4 1.1.1 Ensembleetélément... 4 1.1.2 Universetensemblevide...

Plus en détail

MAT-1102-3 CENTRE : Centre de formation des Maskoutains Julie Gauthier, Josée Thériault CS : Commission scolaire de Saint-Hyacinthe

MAT-1102-3 CENTRE : Centre de formation des Maskoutains Julie Gauthier, Josée Thériault CS : Commission scolaire de Saint-Hyacinthe MAT-1102-3 SIGLE Étude statistique et probabiliste «Les jeux télévisés» TITRES de la situation et du cours NOM DES MEMBRES DE L ÉQUIPE : Monique Lamoureux CENTRE : Geneviève Boileau Centre de formation

Plus en détail

C k A C. x 5 4 + Signe de f (x) + 0 0 + x 4 2 2 + Variations

C k A C. x 5 4 + Signe de f (x) + 0 0 + x 4 2 2 + Variations nde Eléments de correction du DNS 1 Lectures graphiques Soient f et g deux fonctions définies sur IR. Leurs représentations graphiques, notées respectivement C f et C g, sont tracées dans le repère ci-dessous.

Plus en détail

Nature des épreuves et programmes

Nature des épreuves et programmes Le concours comporte : Nature des épreuves et programmes - 4 épreuves écrites obligatoires : composition d'ordre général, mathématiques, statistique (étude d'une documentation statistique) et économie

Plus en détail

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 Statistiques IUT Biotechnologie 2ème année Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 version du 04 octobre 2008 Table des matières 1 Lois de probabilité usuelles 1 1.1 Dénombrement................................

Plus en détail

MATHÉMATIQUES (1 heure)

MATHÉMATIQUES (1 heure) NE RIEN ÉCRIRE DANS CE CADRE Académie : Session : Modèle E.N. Examen : Série : Spécialité/option : Repère de l épreuve : Epreuve/sous épreuve : NOM (en majuscule, suivi s il y a lieu, du nom d épouse)

Plus en détail

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S CLASSES DE PREMIERES GÉNÉRALES ET TECHNOLOGIQUES OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 01 Durée : 4 heures Série S Les calculatrices sont autorisées. Ce sujet comporte 4 exercices

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17

2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17 STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES Exercice n. Les 5 élèves d'une classe ont composé et le tableau ci-dessous donne la répartition des diverses notes. Recopier et compléter ce tableau en calculant

Plus en détail

MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités

MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités Master Génie des Systèmes Industriels, mentions ACCIE et RIM Université du Littoral - Côte d Opale, La Citadelle Laurent SMOCH (smoch@lmpa.univ-littoral.fr)

Plus en détail

Mesures et analyses statistiques de données - Probabilités. Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION

Mesures et analyses statistiques de données - Probabilités. Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION MASTER 1 GSI- Mentions ACCIE et RIM La Citadelle - ULCO Mesures et analyses statistiques de données - Probabilités Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION Exercice 1 Partie I 12pts 1 Étude

Plus en détail

VII- Enumérations dans l ordre alphabétique

VII- Enumérations dans l ordre alphabétique VII- Enumérations dans l ordre alphabétique Prenons un dictionnaire. Comment savoir si un mot se trouve avant ou après un autre? On commence par comparer la première lettre de ces deux mots. Si elles sont

Plus en détail

[ Baccalauréat S Nouvelle-Calédonie \ 19 novembre 2015

[ Baccalauréat S Nouvelle-Calédonie \ 19 novembre 2015 Durée : 4 heures [ Baccalauréat S Nouvelle-Calédonie \ 19 novembre 015 A. P. M. E. P. EXERCICE 1 7 points Une usine produit de l eau minérale en bouteilles. Lorsque le taux de calcium dans une bouteille

Plus en détail

Probabilités, cours pour la classe de Terminale STG

Probabilités, cours pour la classe de Terminale STG Probabilités, cours pour la classe de Terminale STG F.Gaudon 16 février 2008 Table des matières 1 Probabilités (rappels) 2 2 Événements 3 3 Calculs de probabilités 4 4 Probabilités conditionnelles 5 4.1

Plus en détail

1. Description du cours

1. Description du cours 1. Description du cours Ce cours porte sur la généralisation de notions mathématiques par le biais d expériences, d applications et du développement de structures formelles et abstraites. Au moyen de la

Plus en détail