Techniques d Analyse par les Méthodes de Lyapunov (suite)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Techniques d Analyse par les Méthodes de Lyapunov (suite)"

Transcription

1 Techniques d Analyse par les Méthodes de Lyapunov (suite) Analyse et Commande des Systèmes Non Linéaires Cours SM II () Enseignant: Dr. Ph. Müllhaupt 1 / 24

2 Leçon 5 1 Désavantage de la définition de la stabilité 2 Méthode directe de Lyapunov Candidat de Lyapunov Fonction de Lyapunov 3 Equivalence avec la définition de la stabilité Démonstration (stabilité locale) 4 Exemple : Robot Lois de la mécanique Candidat de Lyapunov Fonction de Lyapunov 5 Systèmes linéaires et Lyapunov Démonstration de A T P + PA = Q Cours SM II () Enseignant: Dr. Ph. Müllhaupt 2 / 24

3 Désavantage de la définition de la stabilité Désavantages de la définition de la stabilité Inconvénients Il est nécessaire de pouvoir calculer de manière explicite chaque solution correspondant à chacune des conditions initiales. Le maniement de la définition est fastidieux. Par conséquent, des résultats permettant de déterminer la stabilité sans devoir intégrer les équations dynamiques seraient les bienvenus. Cours SM II () Enseignant: Dr. Ph. Müllhaupt 3 / 24

4 Méthode directe de Lyapunov Méthode directe de Lyapunov Pour la bille, le comportement est stable lorsque : L énergie E diminue et est minimum au point d équilibre. L énergie E est conservée et E est minimum à l équilibre Par contre, le comportement est instable lorsque : L énergie mécanique E augmente. L énergie E est conservée ou décroissante mais elle ne correspond pas à un minimum à l équilibre. Cours SM II () Enseignant: Dr. Ph. Müllhaupt 4 / 24

5 Méthode directe de Lyapunov Candidat de Lyapunov Candidat de Lyapunov Une fonction définie positive est une fonction : 1 V (.) : R N R 2 V (x) > 0 x 0 3 V (x) = 0, x = 0 Définition (Candidat de Lyapunov) : Une fonction définie positive et continue V (.) est un candidat de Lyapunov. Cours SM II () Enseignant: Dr. Ph. Müllhaupt 5 / 24

6 Méthode directe de Lyapunov Fonction de Lyapunov Fonction de Lyapunov V (x) = ( ) V T f(x) x Définition (Fonction de Lyapunov) : V (x) > 0 x 0, V (x) = 0 x = 0, V (x) 0 x 0, V (x) = 0 x = 0. Cours SM II () Enseignant: Dr. Ph. Müllhaupt 6 / 24

7 Equivalence avec la définition de la stabilité Equivalence avec la définition de la stabilité Théorème S il existe une boule B R0 telle que : 1 V (x) > 0 ( x 0 dans B R0 ) et V (0) = 0 2 V (x) = d V dx dtv (x) = x dt = V x ẋ = V x f(x) 0 (dans B R 0 ) alors le point d équilibre x = 0 est stable au sens de Lyapunov. Si en plus, V (x) < 0, x 0, alors la stabilité est asymptotique. Cours SM II () Enseignant: Dr. Ph. Müllhaupt 7 / 24

8 Equivalence avec la définition de la stabilité Démonstration (stabilité locale) Définitions préliminaires Définitions Une sphère de rayon r est notée S r, et une boule de même rayon est notée B r : S r = {x x = r} B r = {x x < r}. S B FIG.: Sphère S et boule B Cours SM II () Enseignant: Dr. Ph. Müllhaupt 8 / 24

9 Equivalence avec la définition de la stabilité Démonstration (stabilité locale) Ce qu il faut démontrer : B R B r X(x 0,.) FIG.: Système stable : B R, B r avec x 0 B r X(x 0, t) B R, t 0. Cours SM II () Enseignant: Dr. Ph. Müllhaupt 9 / 24

10 Equivalence avec la définition de la stabilité Démonstration (stabilité locale) Démonstration (stabilité locale) m = min x S R V (x). S R V = m B r FIG.: m représente le minimum de V (x) lorsque x parcourt la sphère S R. Le rayon r est alors choisit de telle sorte que x B r, V (x) < m. Cours SM II () Enseignant: Dr. Ph. Müllhaupt 10 / 24

11 Equivalence avec la définition de la stabilité Démonstration (stabilité locale) V (x) m S R 0 B r FIG.: Le choix de B r est rendu possible par la continuité de la fonction de Lyapunov et de son annulation au point d équilibre. Cours SM II () Enseignant: Dr. Ph. Müllhaupt 11 / 24

12 Equivalence avec la définition de la stabilité Démonstration (stabilité locale) La stabilité (simple) est une conséquence directe Comme il est vrai que : d dt V (x) 0 V (X(x 0,t)) V (x 0 ) t 0. x 0 B r V (x 0 ) < m, V (X(x 0,t)) < m, t 0 La stabilité est donc bien démontrée, car alors X(x 0,t) B R. Cours SM II () Enseignant: Dr. Ph. Müllhaupt 12 / 24

13 Equivalence avec la définition de la stabilité Démonstration (stabilité locale) La stabilité asymptotique est plus subtile à établir... Puisque V 0 et V 0, la fonction de Lyapunov tend vers une limite le long des solutions de ẋ = f(x), c-à-d. V (X(x 0,t)) V, V 0, t : Deux cas sont à envisager : Si V = 0 alors X(x 0,t) 0, étant donné que V (x) = 0 implique x = 0. La stabilité asymptotique est démontrée. V > 0. Cours SM II () Enseignant: Dr. Ph. Müllhaupt 13 / 24

14 Equivalence avec la définition de la stabilité Démonstration (stabilité locale) V > 0 V V x B r0 FIG.: Pour tout point dans B r0, V est garantit inférieur à V. Cours SM II () Enseignant: Dr. Ph. Müllhaupt 14 / 24

15 Equivalence avec la définition de la stabilité Démonstration (stabilité locale) V > 0 W = B R \ B r0 min V = ˇV max d dt V = γ FIG.: Une boule de taille r 0 est extraite de la boule de taille R. On y définit le minimum de V = ˇV et la décroissance la plus lente de V. Cours SM II () Enseignant: Dr. Ph. Müllhaupt 15 / 24

16 Equivalence avec la définition de la stabilité Démonstration (stabilité locale) V > 0 Démonstration par l absurde en supposant : X(x 0,t) W, t 0 En se restreignant à la fermuture W, il est évident que 0 W et que W est un compact (ensemble fermé et borné). ˇV = min V (x), (0 < ˇV < V ). x W De plus, V < 0 pour tout point de W et de W. Par conséquent, une décroissance minimum de V est atteinte en un point particulier de W, à savoir γ = min ( ddt ) V (x). x W Cours SM II () Enseignant: Dr. Ph. Müllhaupt 16 / 24

17 Equivalence avec la définition de la stabilité Démonstration (stabilité locale) V > 0 En intégrant, on obtient t 0 V (X(x 0,τ))dτ = V (X(x 0,t)) V (x 0 ) V (X(x 0,t)) = t Comme d dtv > γ, il est garantit que 0 V (X(x 0,τ))dτ + V (x 0 ) V (X(x 0,t)) < γtv (x 0 ) ce qui implique t 1 tel que V (X(x 0,t 1 )) < ˇV. Mais ceci contredit X(x 0,t) W, t 0, et donc que V = 0. Cours SM II () Enseignant: Dr. Ph. Müllhaupt 17 / 24

18 Exemple : Robot Exemple : Robot q 2 τ 2 τ 1 q 1 FIG.: Robot planaire Cours SM II () Enseignant: Dr. Ph. Müllhaupt 18 / 24

19 Exemple : Robot Lois de la mécanique Lois de la mécanique Energie cinétique : E c = 1 2 qt M(q) q Bilan de puissance : d dt E c = P d dt 1/2 ( q T M(q) q ) = q T τ. Cours SM II () Enseignant: Dr. Ph. Müllhaupt 19 / 24

20 Exemple : Robot Candidat de Lyapunov Candidat de Lyapunov V = 1 2 (q q)t K p (q q) qt M(q) q k p, k p, K p = k p,n Comme k p,i > 0, i = 1,...,n, on constate bien que V (.) est définie positive au sens où V (q, q) > 0, q q, q 0 et V (q,0) = 0. Cours SM II () Enseignant: Dr. Ph. Müllhaupt 20 / 24

21 Exemple : Robot Fonction de Lyapunov Fonction de Lyapunov V = q T K p (q q) + q T τ En introduisant la loi de commande τ = K p ( q q) K d q avec k d,i > 0, i = 1,...,n et k d, k d, K d = k d,n nous avons V = q T K p (q q) + q T ( K d q K p (q q)) = q T K d q 0, Ceci admet une généralisation avec des matrices définies positives arbitraires K p > 0, K d > 0. Cours SM II () Enseignant: Dr. Ph. Müllhaupt 21 / 24

22 Systèmes linéaires et Lyapunov Systèmes linéaires et Lyapunov Théorème Soit ẋ = Ax ayant toutes ses valeurs propres λ de A ( λi A = 0) à partie réelle strictement négative ( R(λ) < 0), alors pour toute matrice Q > 0 (définie positive), il existe une matrice P > 0 (définie positive) telle que A T P + PA = Q Cours SM II () Enseignant: Dr. Ph. Müllhaupt 22 / 24

23 Systèmes linéaires et Lyapunov Démonstration de A T P + PA = Q Démonstration de A T P + PA = Q Comme R (λ i (A)) < 0, i = 1,...,n, e At 0, lorsque t. En choisissant Q > 0 (une matrice définie positive) e tat Qe ta c Q e 2σt t 0, σ < 0. Ainsi, est bien définie. P = 0 e tat Qe ta dt Cours SM II () Enseignant: Dr. Ph. Müllhaupt 23 / 24

24 Systèmes linéaires et Lyapunov Démonstration de A T P + PA = Q Démonstration de A T P + PA = Q De plus, A T P + PA = = 0 0 ( ) A T e tat Qe ta + e tat Qe ta A dt d(e tat Qe ta ) dt dt = lim t e tat Qe ta Q = Q Cours SM II () Enseignant: Dr. Ph. Müllhaupt 24 / 24

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer [http://mp.cpgedupuydelome.fr] édité le 9 décembre 05 Enoncés Familles sommables Ensemble dénombrable a) Calculer n+ Exercice [ 03897 ] [Correction] Soit f : R R croissante. Montrer que l ensemble des

Plus en détail

Master de Mathématiques M1 Analyse fonctionnelle Examen du 16 juin 2011 1 - durée : 3h

Master de Mathématiques M1 Analyse fonctionnelle Examen du 16 juin 2011 1 - durée : 3h Master de Mathématiques M1 Analyse fonctionnelle Examen du 16 juin 2011 1 - durée : 3h - Le seul document autorisé est un résumé manuscrit du cours de trois pages maximum. - Les téléphones portables et

Plus en détail

Le théorème du point xe. Applications

Le théorème du point xe. Applications 49 Le théorème du point xe. Applications 1 Comme dans le titre de cette leçon, le mot théorème est au singulier, on va s'occuper du théorème du point xe de Picard qui a de nombreuses applications. Le cas

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mathématiques 2 première partie : Analyse 2 DEUG MIAS 1 e année, 2 e semestre. Maximilian F. Hasler Département Scientifique Interfacultaire B.P. 7209 F 97275 SCHOELCHER CEDEX Fax : 0596 72 73

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité Corrrigé du sujet de Baccalaurat S Pondichery 2015 Spécialité EXERCICE 1 (4 points) commun à tous les candidats Partie A Soit f la fonction définie sur R par f(x) et la droite d équation et la droite d

Plus en détail

(Un) Corrigé du partiel Lundi 19 mars 2007. u u1 = Au = 1 2) 1 t forment une base des solutions de ce système,

(Un) Corrigé du partiel Lundi 19 mars 2007. u u1 = Au = 1 2) 1 t forment une base des solutions de ce système, Université Paris 7 Denis Diderot UFR de Mathématiques Licence L3 Equations différentielles 2006-2007 P. Perrin (Un) Corrigé du partiel Lundi 9 mars 2007 Eercice. On considère le système différentiel linéaire

Plus en détail

TS Physique Histoire de noyaux Exercice résolu

TS Physique Histoire de noyaux Exercice résolu P a g e 1 TS Physique Exercice résolu Enoncé Remarque : les deux premières parties sont indépendantes. A. Première partie : temps de demi-vie Le thorium 23 Th est utilisé dans la datation des coraux et

Plus en détail

Autour de Perron, Frobenius et Markov

Autour de Perron, Frobenius et Markov Université Claude Bernard Lyon 1-2007/2008 Préparation Capes - Algèbre et Géométrie - Devoir à rendre le 12 février 2008 - Autour de Perron Frobenius et Markov Rappels et notations On note M mn (K) le

Plus en détail

La commande par mode glissant

La commande par mode glissant 1. Introduction Les lois de commande classiques du type PID sont très efficaces dans le cas des systèmes linéaires à paramètres constants. Pour des systèmes non linéaires ou ayant des paramètres non constants,

Plus en détail

Travaux pratiques V Modèles retardés pour une seule espèce Modèles discrets à plusieurs espèces

Travaux pratiques V Modèles retardés pour une seule espèce Modèles discrets à plusieurs espèces Biomodélisation 1 Département Licence K1BE6W14 Mathématiques Ph. Thieullen Biomodélisation TP machine V Travaux pratiques V Modèles retardés pour une seule espèce Modèles discrets à plusieurs espèces TP

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé Baccalauréat ES/L Amérique du Sud 2 novembre 2 Corrigé A. P. M. E. P. EXERCICE Commun à tous les candidats 5 points. Diminuer le budget de 6 % sur un an revient à multiplier par 6 =,94. Diminuer le budget

Plus en détail

Épreuve de Mathématiques 8

Épreuve de Mathématiques 8 Lycée La Prat s Vendredi 10 avril 2015 Classe de PT Épreuve de Mathématiques 8 Durée 4 h L usage des calculatrices est interdit. La présentation, la lisibilité, l orthographe, la qualité de la rédaction

Plus en détail

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I ÉLÉMENTS D OPTIMISATION Complément au cours et au livre de MTH 1101 - CALCUL I CHARLES AUDET DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Hiver 2011 1 Introduction

Plus en détail

Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense.

Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense. 1 Feuille d exercices n o 1 1. Deuxième forme géométrique du théorème de Hahn-Banach Soient A E et B E deux convexes, non vides, disjoints (E est une espace vectoriel normé). On suppose que A est fermé

Plus en détail

Série n 5 : Optimisation non linéaire

Série n 5 : Optimisation non linéaire Université Claude Bernard, Lyon I Licence Sciences & Technologies 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France Option: M2AO 2007-2008 Série n 5 : Optimisation

Plus en détail

Corrigé du baccalauréat ES Asie 19 juin 2014

Corrigé du baccalauréat ES Asie 19 juin 2014 Corrigé du baccalauréat ES Asie 9 juin 4 EXERCICE 4 points Commun à tous les candidats Proposition : fausse f (4) est le coefficient directeur de la tangente à la courbe au point C ; cette droite passe

Plus en détail

EQUATIONS, INEQUATIONS

EQUATIONS, INEQUATIONS 1 sur 13 EQUATIONS, INEQUATIONS I. Résolution d équations Activité conseillée p126 activité1 : Notion d équation et d inéquation Activité conseillée p60 activité1 : Notion d équation et d inéquation -p140

Plus en détail

Planche n o 19. Applications linéaires continues, normes matricielles. Corrigé

Planche n o 19. Applications linéaires continues, normes matricielles. Corrigé Planche n o 19. Applications linéaires continues, normes matricielles. Corrigé n o 1 *I : 1 Soit P E. Si on pose P = + a k X k, il existe n N tel que k > n, a k =. Donc P = { k= P k } Sup k!, k N = Max{

Plus en détail

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 Durée : 3h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP)

concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP) SESSION DE 2005 concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP) section : mathématiques deuxième composition de mathématiques (épreuve de remplacement)

Plus en détail

MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE

MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE Pierre-Louis Gonzalez 1 I INTRODUCTION 1 variable qualitative. Tri à plat. Représentations graphiques. Modélisation : loi binomiale loi multinomiale

Plus en détail

Corrigé du baccalauréat ES Pondichéry 16 avril 2015

Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Exercice 1 Commun à tous les candidats 5 points Partie A On appelle B l événement «la batterie est défectueuse» ; l événement «le disque dur est défectueux».

Plus en détail

Topologie des espaces vectoriels normés

Topologie des espaces vectoriels normés Topologie des espaces vectoriels normés Cédric Milliet Version préliminaire Cours de troisième année de licence Université Galatasaray Année 2011-2012 2 Chapitre 1 R-Espaces vectoriels normés 1.1 Vocabulaire

Plus en détail

L3 Mathématique pour la physique Examen final 4 janvier 2011 : CORRIGE

L3 Mathématique pour la physique Examen final 4 janvier 2011 : CORRIGE Université Joseph Fourier L3 Physique Julia Meyer julia.meyer@ujf-grenoble.fr L3 Mathématique pour la physique Examen final 4 janvier 20 : CORRIGE Modalités : Notes de cours et TDs permis. NOTE IMPORTANTE

Plus en détail

Maximisation de la fonction d utilité exponentielleprix d indifférence dans un modèle avec défauts

Maximisation de la fonction d utilité exponentielleprix d indifférence dans un modèle avec défauts Maximisation de la fonction d utilité exponentielleprix d indifférence dans un modèle avec défauts Thomas Lim Université Paris 7-LPMA Travail en collaboration avec Marie-Claire Quenez Séminaire des jeunes

Plus en détail

Théorème de Rolle et égalité des accroissements finis. Applications

Théorème de Rolle et égalité des accroissements finis. Applications 0 Théorème de Rolle et égalité des accroissements finis. Applications 0. Le théorème de Rolle sur un espace vectoriel normé Pour ce paragraphe, on se donne un espace vectoriel normé (E, ). Le théorème

Plus en détail

e3a Mathématiques B PC 2008 Exercice 1

e3a Mathématiques B PC 2008 Exercice 1 .a) Soit (x; y) R e3a Mathématiques B PC 8 Exercice On a xy 6 (x + y ) () x + y xy > ce qui est vrai car x + y xy = (x y), De même (x + y ) 6 xy () 6 x + y + xy or x + y + xy = (x + y). Cas d égalité :

Plus en détail

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental

Plus en détail

3 Equations de Laplace et de Poisson

3 Equations de Laplace et de Poisson 3 Equations de Laplace et de Poisson 3. Formule d intégration par parties Soit un domaine borné à bord régulier de classe C. On note ν = ν(x) le vecteur normal extérieur au point x. Pour toutes fonctions

Plus en détail

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M Topologie 1 Espaces métriques 1.1 Distance Dans toute cette partie E représente un ensemble qui n est pas forcément un espace vectoriel. Définition

Plus en détail

Un Modèle de croissance de corail Structuré par taille

Un Modèle de croissance de corail Structuré par taille Un Modèle de croissance de corail Structuré par taille P-E Jabin (Univ. Nice) V. Lemesle (Univ. de la Méditerranée) D. Aurelle (Univ. de la Méditerranée) Objectifs Évolution d une population de corail

Plus en détail

Ax = b iff (B + N) x N

Ax = b iff (B + N) x N Chapitre 3 Algorithme du simplexe 3.1 Solution de base admissible P en forme standard. A = (a 1,...,a n ) Hypothèse : n m (plus de variables que d équations) et rg(a)=m (pas d équation inutile). Donc après

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

TOPOLOGIE DE LA DROITE REELLE

TOPOLOGIE DE LA DROITE REELLE TOPOLOGIE DE LA DROITE REELLE P. Pansu 16 mai 2005 1 Qu est-ce que la topologie? C est l étude des propriétés des objets qui sont conservées par déformation continue. Belle phrase, mais qui nécessite d

Plus en détail

Espaces vectoriels normés

Espaces vectoriels normés Espaces vectoriels normés Essaidi Ali 19 octobre 2010 K = R ou C. E un K-espace vectoriel. 1 Normes et distances : 1.1 Normes et distances : Définition : On appelle semi-norme sur E toute application N

Plus en détail

Exercices du chapitre VI avec corrigé succinct

Exercices du chapitre VI avec corrigé succinct Exercices du chapitre VI avec corrigé succinct Exercice VI. Ch6-Exercice Montrer par récurrence que En déduire que puis que k =,,..., n, d k dx k xn = n(n ) (n + k)x n k, d n dx n xn = n! d k dx k xn =

Plus en détail

Cours MP. Espaces vectoriels normés

Cours MP. Espaces vectoriels normés Table des matières Espaces vectoriels normés B. Seddoug. Médiane Sup, Oujda I Norme et distance 1 I.1 Définitions..................... 1 I.2 Evn produit.................... 12 I.3 Notions topologiques

Plus en détail

La dynamique du système est donnée par (1)

La dynamique du système est donnée par (1) Master d Ingénierie Mathématique Contrôle des systèmes non-linéaires Examen, durée 3h Sujet donné par Pierre Rouchon, tous les documents sont autorisés. Comme le montre la figure ci-contre, ce robot marcheur

Plus en détail

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009 Second degré Christophe ROSSIGNOL Année scolaire 008/009 Table des matières 1 Polynômes du second degré 1.1 Définition................................................. 1. Forme canonique.............................................

Plus en détail

Statistiques et estimation

Statistiques et estimation DERNIÈRE IMPRESSION LE 23 juillet 2014 à 16:35 Statistiques et estimation Table des matières 1 Intervalle de fluctuation 2 1.1 Simulation................................. 2 1.2 Définition.................................

Plus en détail

Statistiques des lois à queue régulière avec l application sur les perturbations des comètes

Statistiques des lois à queue régulière avec l application sur les perturbations des comètes Statistiques des lois à queue régulière avec l application sur les perturbations des comètes Shuyan LIU Université Paris - SAMM Youri DAVYDOV et Radu STOICA Université Lille - Laboratoire Paul Painlevé

Plus en détail

Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012

Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012 Lycée Marlioz - Aix les Bains Bac Blanc 2012 Mathématiques - Terminale E Candidats n ayant pas choisi la spécialité maths 16 mai 2012 Pour cette épreuve, la rédaction, la clarté et la précision des explications

Plus en détail

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin.

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin. Exo7 Développements ités Corrections d Arnaud Bodin. Calculs Exercice Donner le développement ité en 0 des fonctions :. cosx expx à l ordre 2. ln + x)) 2 à l ordre 4 shx x. x à l ordre 6 4. exp sinx) )

Plus en détail

Cours d Analyse Réelle 4M003

Cours d Analyse Réelle 4M003 Cours d Analyse Réelle 4M003 Jean SAINT RAYMOND Université Pierre et Marie Curie Avant-propos Ce texte a été rédigé pour servir de support écrit à un cours de Master 1 de l Université Pierre-et-Marie Curie.

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

Introduction au cours de physique (1)

Introduction au cours de physique (1) Introduction au cours de physique () Exercices : Petites variations, valeurs moyennes Calculs de petites variations Méthode De manière générale : il est souvent plus simple de faire une différentiation

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES. Semestre d accueil, le 30 mars 2006

ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES. Semestre d accueil, le 30 mars 2006 ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES. Semestre d accueil, le 30 mars 2006 MODÈLES DE DYNAMIQUE DES POPULATIONS N désigne l effectif d une population isolée. dn(t) dt MODÈLE DE MALTHUS (1766-1834) dn(t)

Plus en détail

Introduction à l optimisation

Introduction à l optimisation Université du Québec à Montréal Introduction à l optimisation Donnée dans le cadre du cours Microéconomie II ECO2012 Baccalauréat en économique Par Dominique Duchesneau 21 janvier septembre 2008 Ce document

Plus en détail

TD Dérivation n 2 : étude des variations de fonctions

TD Dérivation n 2 : étude des variations de fonctions 1) f (x) = 7x+3 TD Dérivation n : étude des variations de fonctions Étude de variations f est une fonction affine, de coefficient directeur négatif, on sait donc qu elle est décroissante surê. Le calcul

Plus en détail

Epreuve de Physique I-B Durée 4 h

Epreuve de Physique I-B Durée 4 h * Banque filière PT * BANQUE PT - EPREUVE I-B. Epreuve de Physique I-B Durée 4 h Etude d'une micropompe électrostatique Indications générales : On donnera tous les résultats avec leur unité. Les candidats

Plus en détail

Espérances et variances

Espérances et variances [http://mp.cpgedupuydelome.fr] édité le 29 décembre 201 Enoncés 1 Espérances et variances Exercice 1 [ 04018 ] [Correction] Soit X une variable aléatoire discrète à valeurs dans [a ; b]. a Montrer que

Plus en détail

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq»

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Guy Perrière Pôle Rhône-Alpes de Bioinformatique 14 novembre 2012 Guy Perrière (PRABI) Tests statistiques 14 novembre 2012 1 / 40 Plan

Plus en détail

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé)

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des questions posées, une seule des quatre réponses

Plus en détail

Exercice 3.1.1 Si f est une fonction continue sur [0, 1], montrer que l équation différentielle

Exercice 3.1.1 Si f est une fonction continue sur [0, 1], montrer que l équation différentielle Chapitre 3 FORMULATION VARIATIONNELLE DES PROBLÈMES ELLIPTIQUES Exercice 3.. Si f est une fonction continue sur [, ], montrer que l équation différentielle { d 2 u = f pour < x < dx 2 (3.) u() = u() =.

Plus en détail

Suites et Convergence

Suites et Convergence Suites et Convergence Une suite c est se donner une valeur (sans ambigüité) pour chaque N sauf peutêtre les premiers n. Donc une suite est une fonction : I R où I = N: = N. Notation : On note ( ) I R pour

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Dérivées et applications. Equation

Dérivées et applications. Equation Dérivées et applications. Equation I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de

Plus en détail

Partie I : Manipulation d inégalités. n k. k=0. (1 + a) n 1 + na. 27. Indication : On pourra utiliser les fonctions f(x) = (x+b+c)3.

Partie I : Manipulation d inégalités. n k. k=0. (1 + a) n 1 + na. 27. Indication : On pourra utiliser les fonctions f(x) = (x+b+c)3. Mathématiques Devoirs de Vacances MPSI/PCSI août 5 Partie I : Manipulation d inégalités Eercice Soit m un réel Déterminer l'ensemble E des réels tels que e + e l'ensemble E des réels tels que (m + + m

Plus en détail

ET - FONCTIONS D ONDE DANS LES ETATS LIES D UN PUITS DE POTENTIEL

ET - FONCTIONS D ONDE DANS LES ETATS LIES D UN PUITS DE POTENTIEL ET - FONCTIONS D ONDE DANS LES ETATS LIES D UN PUITS DE POTENTIEL Dans ce qui suit on adopte les notations suivantes : désigne une constante universelle h = π = 6,60 34 Joules par seconde est la constante

Plus en détail

Agrégation externe de mathématiques, session 2005 Épreuve de modélisation, option Probabilités et Statistiques

Agrégation externe de mathématiques, session 2005 Épreuve de modélisation, option Probabilités et Statistiques Agrégation externe de mathématiques, session 2005 Épreuve de modélisation, option Probabilités et Statistiques (605) GESTION DE STOCK À DEMANDE ALÉATOIRE Résumé : Chaque mois, le gérant d un magasin doit

Plus en détail

Unicité et minimalité des solutions d une équation de Ginzburg-Landau.

Unicité et minimalité des solutions d une équation de Ginzburg-Landau. Unicité et minimalité des solutions d une équation de Ginzburg-Landau. Gilles arbou.m.l.a Ecole Normale Supérieure de achan 61, avenue du Président Wilson 9435 achan edex Résumé. - On étudie les solutions

Plus en détail

Tests d homogénéité dans les modèles de mélange

Tests d homogénéité dans les modèles de mélange Tests d homogénéité dans les modèles de mélange A. Autin, C. Pouet Université de Provence Rennes, 29 Août 2008 Plan 1. 2. non-adaptatifs et adaptatifs 3. Idées des preuves 4. Modèle de mélange Modèle Cadre

Plus en détail

Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif

Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif Chapitre 6 Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique 6.1.1 Exemple introductif Problème : n matrices M i (m i, m i+1 ) à multiplier en minimisant le nombre de multiplications,

Plus en détail

Algorithme du simplexe

Algorithme du simplexe Algorithme du simplexe Une solution à la programmation linéaire Hugues Talbot Laboratoire A2SI 18 mars 2008 Plan Algèbre linéaire Algorithme du simplexe Formulation et forme standard Notations Recherche

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Ó Ø Ó Ö ¾¼½ PSI Aurélien Monteillet ii Ce document contient les notes d un cours de mathématiques pour la classe de PSI. Les démonstrations non exigibles ou hors programme sont explicitement

Plus en détail

Intégrale de Lebesgue

Intégrale de Lebesgue Intégrale de Lebesgue ÉCOLE POLYTECHNIQUE Cours 4 : intégrale de Lebesgue Bertrand Rémy 1 / 50 1. Motivations et points de vue ÉCOLE POLYTECHNIQUE Cours 4 : intégrale de Lebesgue Bertrand Rémy 2 / 50 Deux

Plus en détail

Nombre dérivé, interprétations géométrique et cinématique

Nombre dérivé, interprétations géométrique et cinématique CHAPITRE 4 DÉRIVATION ET PRIMITIVATION Nombre dérivé, interprétations géométrique et cinématique 08. Nombre dérivé Soit f une fonction numérique, définie sur un intervalle ou une réunion d intervalles,

Plus en détail

Baccalauréat Blanc 10 février 2015 Corrigé

Baccalauréat Blanc 10 février 2015 Corrigé Exercice Commun à tous les candidats Baccalauréat Blanc février 25 Corrigé. Réponse d. : e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e 5,4. 2. Réponse b. : positif

Plus en détail

Baccalauréat ES Pondichéry 21 avril 2016

Baccalauréat ES Pondichéry 21 avril 2016 Exercice 1 Commun à tous les candidats Baccalauréat ES Pondichéry 21 avril 216 4 points Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des quatre questions posées, une seule des

Plus en détail

Inférence via distribution asymptotique Objective : Construction des intervalles de confiance (approximatifs) c 2 µ 2 m (2) σ 2

Inférence via distribution asymptotique Objective : Construction des intervalles de confiance (approximatifs) c 2 µ 2 m (2) σ 2 Inférence via distribution asymptotique Objective : Construction des intervalles de confiance (approximatifs) Soit h = c n 1/5. Donc, par conséquent d un TCL, pour n : Estimateur localement linéaire :

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S ÉPREUVE DU JEUDI 19 JUIN 2014 Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont

Plus en détail

Les systèmes hybrides stochastiques généraux (GSHS)

Les systèmes hybrides stochastiques généraux (GSHS) Groupe de travail SDH (GdR MACS) Exposé pour la réunion du 20 septembre 2007 Les systèmes hybrides stochastiques généraux (GSHS) et leur équation de Fokker-Planck-Kolmogorov Julien Bect Département Signaux

Plus en détail

Devoir commun de Mathématiques 18 janvier 2014. Problème 1

Devoir commun de Mathématiques 18 janvier 2014. Problème 1 Lycée Jean Bart MPSI & PCSI Année 213-214 Devoir commun de Mathématiques 18 janvier 214 La clarté des raisonnements, la précision de la rédaction et la présentation entreront pour une part non négligeable

Plus en détail

Introduction aux Systèmes Dynamiques

Introduction aux Systèmes Dynamiques Introduction aux Systèmes Dynamiques Introduction Deux grands chapitres : Les équations différentielles ordinaires dans IR Les systèmes d équations différentielles dans IR² Applications : Dynamique des

Plus en détail

FONCTIONS CONVEXES. Chapitre 3. 3.1 Notations et définitions préliminaires

FONCTIONS CONVEXES. Chapitre 3. 3.1 Notations et définitions préliminaires Chapitre 3 FONCTIONS CONVEXES 3.1 Notations et définitions préliminaires L étude des fonctions convexes montrera que celles ci sont continues sur tout l intérieur de leur domaine de définition et qu elles

Plus en détail

Les paraboles. x ax 2 + bx + c.

Les paraboles. x ax 2 + bx + c. 1ES Résumé du cours sur le second degré. Les paraboles. On appelle fonction du second degré une fonction de la forme x ax 2 + bx + c. Bien sûr a doit être différent de 0 sinon ce n est pas une fonction

Plus en détail

Techniques fondamentales de calcul

Techniques fondamentales de calcul Chapitre Techniques fondamentales de calcul. Inégalités dans R On rappelle que (R, +,, ) est un corps totalement ordonné, d où : x, y R, x y ou y x, x, y, z R, x y = x + z y + z, x, y R, x 0ety 0 = xy

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Espaces métriques complets. Espaces de Banach

Espaces métriques complets. Espaces de Banach Chapitre 5 Espaces métriques complets. Espaces de Banach La droite réelle est complète, car toute suite numérique de Cauchy converge. Cette propriété n est plus vraie pour le corps des nombres rationneles,

Plus en détail

Classe : TES1 Le 11/03/2003 MATHEMATIQUES Devoir N 6 Calculatrice et formulaire autorisés. Durée : 3h

Classe : TES1 Le 11/03/2003 MATHEMATIQUES Devoir N 6 Calculatrice et formulaire autorisés. Durée : 3h Classe : TES1 Le 11/03/003 MATHEMATIQUES Devoir N 6 Calculatrice et ormulaire autorisés Durée : 3h Exercice 1 : (5 points) (correction) Un magasin de distribution vend deux types de téléphones portables

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

Définition d une norme

Définition d une norme Définition d une norme Définition E est un K-ev. L application N : E R + est une norme sur E ssi 1. x E, N(x) = 0 x = 0. 2. k K, x E, N(k.x) = k N(x). 3. x, y E, N(x + y) N(x) + N(y) Notation N,. Propriété

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x [ttp://mp.cpgedupuydelome.fr] édité le 29 décembre 205 Enoncés Dérivation Dérivabilité Eercice [ 0354 ] [Correction] Étudier la dérivabilité des fonctions suivantes : a) 2 3 b) 2 ) arccos 2 ) Eercice 2

Plus en détail

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6 Probabilités et Statistiques Raphaël KRIKORIAN Université Paris 6 Année 2005-2006 2 Table des matières 1 Rappels de théorie des ensembles 5 1.1 Opérations sur les ensembles................... 5 1.2 Applications

Plus en détail

Optimisation numérique. Outline. Introduction et exemples. Daniele Di Pietro A.A. 2012-2013. 1 Dénitions et notations

Optimisation numérique. Outline. Introduction et exemples. Daniele Di Pietro A.A. 2012-2013. 1 Dénitions et notations Optimisation numérique Introduction et exemples Daniele Di Pietro A.A. 2012-2013 Outline 1 Dénitions et notations 2 Applications Exemples en recherche opérationnelle Exemples en algèbre linéaire Exemples

Plus en détail

5) Une équation de la tangente à la courbe représentative de la fonction exponentielle au point d abscisse 0 est de la forme ( )( ) ( )

5) Une équation de la tangente à la courbe représentative de la fonction exponentielle au point d abscisse 0 est de la forme ( )( ) ( ) Amérique du Nord Eercice ) Le coeicient multiplicateur associé à une hausse de % est égal à + =, Le coeicient multiplicateur associé à une hausse de % est égal à + =, Donc le coeicient multiplicateur associé

Plus en détail

Calcul Stochastique et Applications Financières

Calcul Stochastique et Applications Financières 0 Calcul Stochastique et Applications Financières Aurélia Istratii Luis Macavilca Taylan Kunal M I.E.F. SOMMAIRE I. MODELE DE COX-ROSS-RUBINSTEIN II. III. INTRODUCTION AUX METHODES DE MONTE CARLO EQUATION

Plus en détail

Chapitre 5 Le logarithme néperien

Chapitre 5 Le logarithme néperien A) La fonction ln(x) Chapitre 5 Le logarithme néperien ) Définition Nous avons vu que nous ne savions pas exprimer la primitive de la fonction inverse avec des fonctions connues. Alors inventons cette

Plus en détail

Centres étrangers 2014. Enseignement spécifique

Centres étrangers 2014. Enseignement spécifique Centres étrangers 214. Enseignement spécifique EXERCICE 3 (7 points) (commun à tous les candidats) Les parties A et B sont indépendantes Une image numérique en noir et blanc est composée de petits carrés

Plus en détail

Les théorèmes de Gerschgorin et de Hadamard

Les théorèmes de Gerschgorin et de Hadamard Localisation des valeurs propres : Quelques propriétés sur les disques de Gerschgorin. Jean-Baptiste Campesato 22 septembre 29 Gerschgorin est parfois retranscrit en Gershgorin, Geršgorin, Hershhornou

Plus en détail

Épreuve orale d Informatique Fondamentale

Épreuve orale d Informatique Fondamentale Épreuve orale d Informatique Fondamentale Patrick Baillot, Nicolas Ollinger, Alexis Saurin ULC MPI 2013 Résumé Ce document consiste en une sélection, à titre d exemples, de 3 sujets proposés à l épreuve

Plus en détail

OPTIMISATION DE PORTEFEUILLE ET TEMPS D ARRÊT OP

OPTIMISATION DE PORTEFEUILLE ET TEMPS D ARRÊT OP OPTIMISATION DE PORTEFEUILLE ET TEMPS D ARRÊT OPTIMAL ÉCOLE POLYTECHNIQUE CMAP March 7, 2007 Outline 1 Notations 2 Un Problème Classique Objectif. Optimisation de portefeuille. Résolution. 3 Un problème

Plus en détail

Modélisation et Simulation

Modélisation et Simulation Cours de modélisation et simulation p. 1/77 Modélisation et Simulation G. Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Cours de modélisation et simulation

Plus en détail

Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016

Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016 Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 0 A. P. M. E. P. EXERCICE Commun à tous les candidats points Partie A Une boite contient 00 médailles souvenir dont 50 sont argentées, les autres dorées.

Plus en détail

Amérique du Sud, novembre 2006

Amérique du Sud, novembre 2006 Exercice 1 ( 5 points) Commun à tous les candidats Un hôpital est composé de trois services : service de soins A, service de soins B, service de soins C. On s intéresse aux prises de sang effectuées dans

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques 7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux

Plus en détail

Inde, avril 2014, exercice 1

Inde, avril 2014, exercice 1 Sujet 1 Inde, avril 2014, exercice 1 4 points Dans cet exercice, sauf indication contraire, les résultats seront arrondis au centième. 1 La durée de vie, exprimée en années, d un moteur pour automatiser

Plus en détail

Correction. Mathématique Élémentaire. Test n 2 (26 septembre 2011) Question 1. Calculez. (a) (1 + i)(3 i) = 1 3 i 2 + 3i i = 4 + 2i.

Correction. Mathématique Élémentaire. Test n 2 (26 septembre 2011) Question 1. Calculez. (a) (1 + i)(3 i) = 1 3 i 2 + 3i i = 4 + 2i. Question 1. Calculez (a) (1 + i)(3 i) = 1 3 i + 3i i = 4 + i. (b) l inverse dans C de i : i 1 = i car ( i) i = i = 1. (c) l inverse dans C de ( i) : par une formule du cours, ( i) 1 = (d) 1 + 7i = 1 +

Plus en détail