Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique
|
|
- Émilie Joseph
- il y a 2 ans
- Total affichages :
Transcription
1 Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Résumé : A partir du problème de la représentation des droites sur un écran d ordinateur, on étudie la notion de droite discrète, et le mot binaire périodique associé. On met en évidence la relation biunivoque entre droites discrètes et certains mots binaires, puis entre ces mots et les nombres rationnels de [0,1]. Mots clefs : algorithmes, géométrie discrète, mots binaires, topologie Il est rappelé que le jury n exige pas une compréhension exhaustive du texte. Vous êtes laissé(e) libre d organiser votre discussion comme vous l entendez. Des suggestions de développement, largement indépendantes les unes des autres, vous sont proposées en fin de texte. Vous n êtes pas tenu(e) de les suivre. Il vous est conseillé de mettre en lumière vos connaissances à partir du fil conducteur constitué par le texte. Le jury appréciera que la discussion soit accompagnée d exemples traités sur ordinateur. 1. Représentation des segments en infographie L écran d ordinateur peut être assimilé à une partie finie du plan discret Z 2 sont à coordonnées entières positives. dont les points Nous voulons tracer le segment [AB], avec A de coordonnées entières (a 1,a 2 ) et B de coordonnées entières (b 1,b 2 ) où b 1 > a 1 et b 2 a 2. On pose n = b 1 a 1 > 0 : c est donc l étendue horizontale du segment à tracer. Le segment [AB] sera représenté par une suite de points [A 0,A 1,,A n ] où A 0 = A, A n = B. L abscisse de A i est x i = a 1 +i, pour chaque i : on a x 0 = a 1 et x n = b 1. L ordonnée géométrique du point A i = (x i = a 1 + i,y i ) est donnée par la formule y i = (b 2 a 2 ) (b 1 a 1 ) (x i a 1 )+a 2 Sauf dans certains cas très particuliers, par exemple aux extrémités, cette quantité n est pas un entier. On va donc choisir pour l ordonnée de A i soit la partie entière supérieure y i soit la partie entière inférieure y i, selon celle qui est la plus proche de l ordonnée géométrique. On appelle ỹ i la coordonnées choisie. On a par construction ỹ 0 = a 2 et ỹ n = b 2. On fait l hypothèse supplémentaire dans toute la suite de l article que la pente de la droite (AB), α = (b 2 a 2 )/(b 1 a 1 ) est strictement inférieure à 1. On a alors ỹ i+1 = ỹ i ou ỹ i+1 = ỹ i +1 suivant la position de A i et A i+1 par rapport aux lignes horizontales d ordonnées entières. Page 1/8 2012B1Y2F30
2 FIG. 1. Algorithme de Bresenham. Par convention, le point de référence des pixels est le point en bas à gauche. 2. Algorithme de Bresenham On peut implanter l idée de l algorithme précédent en évitant le calcul des valeurs exactes des y i. Cette idée a été introduite par Bresenham en On calcule incrémentalement ỹ i+1 à partir de ỹ i, en conservant une valeur d erreur e i = y i ỹ i, y i = α i+a 2 étant la valeur exacte du point d abscisse x i = a 1 + i de la droite. Au départ cette valeur d erreur e 0 est nulle. Si e i +m 1/2, on pose ỹ i+1 = ỹ i et e i+1 = e i +m. Si e i + m > 1/2, on pose ỹ i+1 = ỹ i + 1 et e i+1 = e i + m 1. Avec cette définition, e i est un rationnel multiple entier de 1/(b 1 a 1 ). On peut donc se ramener à travailler en entiers en considérant e i = e i (b 1 a 1 ). Exercice de programmation : Il vous est demandé de rédiger un programme conforme aux spécifications cidessous dans l un des langages C, Caml ou Java à votre choix. Ce programme devra être accompagné d un exemple d exécution permettant d en vérifier le bon fonctionnement. La clarté et la concision du programme seront des éléments importants d appréciation pour le jury. Écrire un programme permettant de représenter le segment [AB], où A = (a 1,a 2 ) et B = (b 1,b 2 ), en suivant l algorithme de Bresenham. On supposera que a 1 < b 1, a 2 b 2 et que la pente α de la droite est inférieure à 1. La sortie du programme sera la liste des couples (x i,y i ) des points représentant le segment. 2012B1Y2F30 Page 2/8
3 3. Une autre approche On se place encore dans les mêmes hypothèses qu en section 2. On veut tracer le segment [AB] où A = (a 1,a 2 ) et B = (b 1,b 2 ), de pente α = (b 2 a 2 )/(b 1 a 1 ), avec a 1 < b 1, a 2 b 2 et α < 1. On construit une liste de n+1 points à coordonnées entières A 0,,A n, avec A 0 = A, A n = B et n = b 1 a 1, mais cette fois-ci, les points sont juste en dessous de la droite. A i = (x i = a 1 + i,ỹ i = α i+a 2 ) Comme précédemment, l hypothèse α < 1 implique que ỹ i+1 = ỹ i ou ỹ i+1 = ỹ i + 1 : le saut est d au plus une unité entre les ordonnées successives. Posons r i = ỹ i ỹ i 1, pour i = 1,,n. La suite r 1,r 2,,r n code la suite des déplacements : on passe de A i 1 à A i soit en se déplaçant d une unité horizontalement vers la droite (r i = 0), soit en diagonale vers le haut (r i = 1). 4. Droites discrètes 4.1. Un exemple Considérons ici le segment [AB], où A = (0,0) et B = (9,4). La suite de 9 déplacements r i obtenue par l algorithme précédent est Si l on s intéresse maintenant à la demi-droite d équation y = 9 4 x, avec x 0, la suite des déplacements horizontaux ou diagonaux nécessaires pour longer inférieurement cette demi-droite, au plus près inférieurement à partir de l origine est le mot infini ( ) ω. Réciproquement, on peut se convaincre que la seule demi-droite d origine (0, 0) qui soit longée au plus près inférieurement par les déplacements codés par ( ) ω est celle de pente 4/9. On dira que le mot binaire périodique ( ) ω code le nombre rationnel 4/ Définitions équivalentes On représente habituellement la droite de pente a/b et d ordonnée à l origine γ/b comme les solutions (réelles) de l équation a.x b.y = γ. Dans le cas des droites discrètes, il est plus pratique de les représenter sous la forme des solutions (entières) d une double inéquation. Définition 1. Soient 0 < a < b deux entiers premiers entre eux et γ Z. La droite discrète de pente a/b et de borne inférieure γ est l ensemble des solutions (x,y) entières de la double inéquation diophantienne : γ a.x b.y < γ + b Page 3/8 2012B1Y2F30
4 FIG. 2. Algorithme de parcours inférieur. La pente est de 7/20. Le mot associé au segment est ( ). Une autre manière de voir cette droite discrète est l ensemble {(x, f(x)),x Z}, avec f(x) = a.x γ b On dit alors que cette droite (discrète) a pour équation y = (a.x γ)/b. Théorème 1. Les droites discrètes D 0 et D γ de paramétrages respectifs y = a.x/b et y = (a.x γ)/b se déduisent l une de l autre par une translation de vecteur u à coordonnées entières. Dans la suite on considèrera toujours que les paramètres a et b vérifient les hypothèses de la définition 1, à savoir : a et b sont premiers entre eux, et 0 < a < b. Remarque 1. Avec cette définition, on ne s intéresse qu aux droites discrètes de pente 0 < α < 1. Nous nous limiterons à ce cadre dans cet article, mais on pourrait néanmoins étendre cette définition pour les généralisations et les applications que l on peut tirer de ce concept. Remarque 2. Si f est la fonction { Z Z x a.x γ b alors, pour tout x Z, f(x+1) f(x) {0,1} Périodicité On considère une droite discrète d équation y = (a.x γ)/b. C est donc l ensemble des solutions des équations diophantiennes ax by = δ, avec δ entier compris entre γ et γ + b 1. Or, l équation diophantienne a.x b.y = δ est invariante par la translation de vecteur (b,a). 2012B1Y2F30 Page 4/8
5 La droite discrète est donc périodique, et sa période minimale est (b, a). Tout sous-segment de longueur b peut être pris pour période. Un période sera dite canonique si le premier point est solution de l équation a.x b.y = γ La 8-connexité Définition 2. Soit M = (x,y) un point de coordonnées entières. Le 8-voisinage (discret) de M est l ensemble des huit points entiers de coordonnées (x+ε 1,y+ε 2 ) où ε 1,ε 2 { 1,1,0} et (ε 1,ε 2 ) (0,0). On note cet ensemble V 8 (M). Définition 3. On appelle courbe discrète un ensemble de points de Z 2. Définition 4. Soit Γ une courbe discrète. On dit qu elle est 8-connexe (par arcs) si pour tout couple de points M,M de Γ, il existe une suite de points M 0 = M,M 1,,M n = M de Γ, et M i+1 V 8 (M i ) pour tout 0 i n 1. Théorème 2. Une droite discrète est une courbe 8-connexe. 5. Mots binaires On considère les mots binaires, c est à dire les mots du langage {0,1}. La longueur d un mot fini µ, notée l(µ) est le nombre de ses lettres et le poids de µ, noté p(µ) est la somme de ses lettres. Un mot infini de la forme σ = µ.(π) ω, où π est un mot fini est dit ultimement périodique, π étant une de ses périodes. Il est périodique s il est de la forme σ = (π) ω. On remarque que si σ est un mot périodique admettant π pour période, il est également ultimement périodique, toute permutation circulaire de π étant une période. (On rappelle que la notation (π) ω veut dire πππ.) Une période π d un mot ultimement périodique sera dite irréductible si et seulement s il n existe pas de mots µ et π avec l(π ) < l(π) tels que µ.(π ) ω = µ.(π) ω = σ. Définition 5. Un mot binaire (infini) σ est dit équilibré si : pour tout h N, pour tous µ,ν facteurs de σ de même longueur h, on a p(µ) p(ν) 1. Par exemple, le mot σ = ( ) ω est équilibré. On considère une demi-droite discrète d équation y = (a.x γ)/b. Soit (M i ) i la suite des points (i,y i = (a.i γ)/b ). On pose m i = y i y i 1 pour tout i > 0. La suite (m i ) i est donc la suite des déplacements élémentaires, 0 (vers la droite) ou 1 (en diagonale), pour longer au plus près inférieurement la droite demi-droite a.x b.y = γ. Page 5/8 2012B1Y2F30
6 Définition 6. Considérons le mot binaire infini σ = m 1 m 2 formé par les déplacements successifs. On dira que c est le mot binaire associé à la demi-droite. 6. Transformation mot-courbe discrète Soit A un point fixé. On peut associer à un mot binaire σ = m 1 m 2 une suite de points (M i = (x i,y i )) i N, en choisissant M 0 = A, et pour tout i N, x i = x i 1 + 1, y i = y i 1 + m i. On obtient une courbe discrète 8-connexe. Par exemple, au mot σ = on associe la courbe discrète M 0,M 1,M 2,M 3,M 4,M 5 avec M 0 = (0,0), M 1 = (1,0), M 2 = (2,1), M 3 = (3,2), M 4 = (4,2), M 5 = (5,3). 7. Codage d un nombre rationnel 7.1. Mot associé à une demi-droite discrète Le mot associé à une demi-droite discrète d équation y = ax est un mot binaire, périodique b et équilibré. En effet, soit σ le mot binaire associé à cette demi-droite, σ = m 1 m 2,. On vérifie aisément qu il est périodique. En remarquant que, pour tout i, m i = ai 1) a(i, on a donc, b b pour tout h un entier strictement positif et µ,ν deux facteurs de σ de longueur h p(µ) p(ν) 1, ce qui prouve que σ est un mot équilibré. Il en est de même pour une demi-droite d équation y = ax γ. b 7.2. Un exemple Considérons la demi-droite d équation y = 2x 3. Le mot associé est σ = (011) ω. On remarque que 101 est également une période de ce mot, considéré en tant que mot ultimement périodique. Le mot σ = (101) ω est associé à la demi-droite discrète d équation y = 2x+1, qui se 3 déduit de la précédente par une translation entière. On peut dire que (011) ω et (101) ω codent le même rationnel, 2 3 (ainsi que (110)ω ). 2012B1Y2F30 Page 6/8
7 7.3. Mots associés à un rationnel de ]0,1[. Théorème 3. Soit a b un rationnel de ]0,1[. Soit σ = (π)ω le mot binaire associé à la demi-droite d équation y = ax b. Alors les mots de la forme (π ) ω, où π est une permutation circulaire de π sont tous associés à des demi-droites discrètes de pente a b. On a a b = p(π) l(π) Rationnel associé à un mot binaire, périodique et équilibré. Théorème 4. Soit σ = (π) ω un mot binaire, périodique et équilibré. Alors la courbe discrète associée (en prenant O comme point de départ) est une demi-droite discrète, de pente p(π) l(π), rationnel de [0,1]. Il est assez aisé de démontrer que la courbe discrète (Γ) associée à un tel mot est "fonctionnelle", c est à dire (Γ) = {(x, f(x)),x N}, (où f est une fonction de N dans N) et qu elle est incluse dans le premier octant du plan Z 2. Il est plus délicat de démontrer que c est effectivement une demi-droite discrète. A tout mot binaire, périodique et équilibré, on associe donc un unique rationnel de [0,1]. Suggestions pour le développement Soulignons qu il s agit d un menu à la carte et que vous pouvez choisir d étudier certains points, pas tous, pas nécessairement dans l ordre, et de façon plus ou moins fouillée. Vous pouvez aussi vous poser d autres questions que celles indiquées plus bas. Il est très vivement souhaité que vos investigations comportent une partie traitée sur ordinateur et, si possible, des représentations graphiques de vos résultats. Sur l algorithme de Bresenham et l exercice de programmation (1) Dans l algorithme de Bresenham que se passe-t-il dans le cas d une droite de pente 1 ou de pente 0? (2) Quel est l intérêt de se ramener au cas où e i est entier, plutôt que de calculer avec des rationnels? (3) Comment pourrait-on faire pour tracer des droites dans les autres quadrants? (4) Quelle est la complexité de l algorithme? (5) Comment pourrait-on adapter cette idée pour tracer d autres courbes, par exemple des cercles? Sur les droites discrètes. Page 7/8 2012B1Y2F30
8 (1) Vérifiez que le mot associé au rationnel 4/9 est bien ( ) ω. (2) Que se passerait-il si on considérait un rationnel a/b tel que a et b ne sont pas premiers entre eux? (3) Pourquoi n y a-t-il qu une seule demi-droite d origine (0, 0) qui soit longée au plus près inférieurement par les déplacements codés par ( ) ω? Donnez une interprétation géométrique. (4) Démontrez que la définition 1 correspond bien à l intuition de longer au plus près inférieurement la droite (réelle) de pente a/b et d ordonnée à l origine γ/b. (5) Démontrez que la définition 1 des droites (discrètes) est bien équivalente à la forme fonctionnelle présentée. (6) Démontrez le théorème 1. (7) Montrer qu une droite discrète est bien 8-connexe. Sur les mots binaires équilibrés et périodiques. (1) Détailler la démonstration du paragraphe 8.1. (2) Donner d autres exemples pour illustrer le propos de l exemple 8.2. (3) Démontrer le théorème 3. (4) Détailler les remarques du paragraphe 8.4. (Attention, c est difficile de démontrer que l on a une demi-droite discrète). (5) Proposer un algorithme qui donne le mot binaire associé à une demi-droite discrète. (6) Que se passe-t-il avec une droite (réelle) de pente non-rationnelle? 2012B1Y2F30 Page 8/8
Agrégation externe de mathématiques, session 2005 Épreuve de modélisation, option Probabilités et Statistiques
Agrégation externe de mathématiques, session 2005 Épreuve de modélisation, option Probabilités et Statistiques (605) GESTION DE STOCK À DEMANDE ALÉATOIRE Résumé : Chaque mois, le gérant d un magasin doit
Cryptosystème de Chebychev
Préparation à l agrégation de Mathématiques 2009 ENS Cachan Ker Lann Epreuve de modélisation, option C : algèbre et calcul formel richard.leroy@univ-rennes1.fr http://perso.univ-rennes1.fr/richard.leroy/
concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP)
SESSION DE 2005 concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP) section : mathématiques deuxième composition de mathématiques (épreuve de remplacement)
Les paraboles. x ax 2 + bx + c.
1ES Résumé du cours sur le second degré. Les paraboles. On appelle fonction du second degré une fonction de la forme x ax 2 + bx + c. Bien sûr a doit être différent de 0 sinon ce n est pas une fonction
Le second degré. Table des matières
Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré......................... 1. Quelques exemples de formes canoniques................. 1.3 Forme canonique
Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1
Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré Table des matières I Exercices I-1 1................................................ I-1................................................
Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009
Second degré Christophe ROSSIGNOL Année scolaire 008/009 Table des matières 1 Polynômes du second degré 1.1 Définition................................................. 1. Forme canonique.............................................
Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année
Programme de Mathématique Préparation Maths-Physique Analyse et Géométrie Différentielle Première Année I NOMBRES REELS ET COMPLEXES, SUITES ET FONCTIONS 1 Nombres réels et complexes 2 Suites de nombres
Tracé de lignes et de courbes planes
Département d informatique Université de Toulon et du Var Plan 1 Introduction 2 Tracé de segments 3 Tracé de cercles 4 Tracé de courbes Définition Le processus de représentation d objets graphiques continus
Fonctions Nombre Dérivé Fonction dérivée
Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines
Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html
Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie III Algorithmes classiques 1 Coût de la multiplication et de la division 2 Exponentiation rapide 3 Algorithme d Euclide
Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016
Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 0 A. P. M. E. P. EXERCICE Commun à tous les candidats points Partie A Une boite contient 00 médailles souvenir dont 50 sont argentées, les autres dorées.
TP 5 & 6 : Graphique
L1-S1-IMP Informatique Année 2010-2011 Semestre 1 TP 5 & 6 : Graphique 1 Bases 1.1 Bibliothèque graphique Pour dessiner des figures géométriques (et autres), Caml offre une bibliothèque de fonctions graphiques.
Fonctions à deux variables
Fonctions à deux variables ECE Lcée Carnot 5 janvier Aspect graphique Définition. Une fonction à deux variables est une application f : D R, où D est une sous-ensemble du plan R appelé domaine de définition
Épreuve de Mathématiques 8
Lycée La Prat s Vendredi 10 avril 2015 Classe de PT Épreuve de Mathématiques 8 Durée 4 h L usage des calculatrices est interdit. La présentation, la lisibilité, l orthographe, la qualité de la rédaction
Mathématiques pour. l informatique
Xavier Chanet Patrick Vert Mathématiques pour l informatique Pour le BTS SIO Toutes les marques citées dans cet ouvrage sont des marques déposées par leurs propriétaires respectifs. Illustration de couverture
Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure.
Université d Artois Faculté des Sciences Jean Perrin Analyse Fonctionnelle (Licence 3 Mathématiques-Informatique Daniel Li Construction de la mesure de Lebesgue 28 janvier 2008 Dans ce chapitre, nous allons
Espaces affines. 2 Applications affines 7. 2.2 Projections et symétries affines ; affinités... 8 2.3 Alignement et parallélisme...
Maths PCSI Cours Espaces affines Table des matières 1 Espaces et sous-espaces affines 2 1.1 Espaces affines et translations.................................... 2 1.2 Exemples d espaces affines......................................
Mathématiques et Philosophie en classe de seconde
Mathématiques et Philosophie en classe de seconde Intervention du Professeur de mathématiques. Effectif de la classe : 34 élèves. Intervention : quinze heures en alternance avec le cours de Philosophie.
Épreuve orale d Informatique Fondamentale
Épreuve orale d Informatique Fondamentale Patrick Baillot, Nicolas Ollinger, Alexis Saurin ULC MPI 2013 Résumé Ce document consiste en une sélection, à titre d exemples, de 3 sujets proposés à l épreuve
Mathématique - Cours
Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble
Mathématiques pour l informatique 1 notes de cours sur la première partie
1 Mathématiques pour l informatique 1 notes de cours sur la première partie L1 Université Paris-Est, Marne-la-Vallée Cyril Nicaud Organisation Ce demi-cours est composé de 6 séances de cours et 6 séances
RAPPELS ET COMPLÉMENTS CALCULATOIRES
RAPPELS ET COMPLÉMENTS CALCULATOIRES ENSEMBLES DE NOMBRES ENSEMBLES,,,ET: On rappelle que : désigne l ensembleprivé de 0 idem pour, et, + désigne l ensemble des réels positifs ou nuls et l ensemble des
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes
BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L
BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques
ÉCOLE POLYTECHNIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES FILIÈRE MP HORS SPÉCIALITÉ INFO
ÉCOLE POLYTECHNIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION 2012 FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE
Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option B : Calcul Scientifique
Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option (Public2014-B1) Résumé : On présente un exemple de système de deux espèces en compétition dans un environnement périodique.
GÉNÉRALITÉS SUR LES FONCTIONS
. Qu'est-ce qu'une fonction? Vocabulaire GÉNÉRALITÉS SUR LES FONCTIONS Définition Notion de fonction À chaque fois que l'on associe à une quantité une (autre) quantité, on dit que que l'on définit une
TRINÔME DU SECOND DEGRÉ
TRINÔME DU SECOND DEGRÉ Définition On appelle fonction trinôme du second degré, toute fonction f définie sur IR qui, à x associe f(x) = ax 2 + bx + c, a, b et c étant trois réels avec a 0. Exemple Les
Équations différentielles en physique
Fiche Mathématiques pour la Physique - Équations différentielles en physique - MPSI 1 Lycée Chaptal - 2012 Équations différentielles en physique On ne considère en physique en prépa (quasiment) que des
Machines de Turing. Chapitre 14 14.1. DÉFINITION ET FONCTIONNEMENT
Chapitre 4 Machines de Turing Dans ce chapitre on présente un modèle de calcul introduit dans les années 3 par Turing, les machines de Turing. Ces machines formalisent la notion de calculabilité. La thèse
Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales
Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin
Les théorèmes de Gerschgorin et de Hadamard
Localisation des valeurs propres : Quelques propriétés sur les disques de Gerschgorin. Jean-Baptiste Campesato 22 septembre 29 Gerschgorin est parfois retranscrit en Gershgorin, Geršgorin, Hershhornou
Devoir commun de Mathématiques 18 janvier 2014. Problème 1
Lycée Jean Bart MPSI & PCSI Année 213-214 Devoir commun de Mathématiques 18 janvier 214 La clarté des raisonnements, la précision de la rédaction et la présentation entreront pour une part non négligeable
2 Fonctions affines : définitions et propriétés fondamentales
Chapitre 3 : Fonctions affines Dans tout ce chapitre, le plan est muni d un repère. 1 Rappels sur les équations de droite Une droite qui n est pas verticale a une unique équation du type y = ax + b, qu
CHAPITRE 3 Repères, points et droites
CHAPITRE 3 Repères, points et droites A) Repères et coordonnées des points 1) Repères Pour représenter le plan en géométrie analytique, on a besoin de définir deux axes, qu'on appelle axe des abscisses
Renforcer ses compétences
Renforcer ses compétences en mathématiques Tome 1 AVANT PROPOS Vos études ou vos activités professionnelles vous ont peut-être éloignés des mathématiques et ceci, parfois depuis longtemps. Vous souhaitez
3e degré professionnel MINISTÈRE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE
3e degré professionnel MINISTÈRE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE Administration Générale de l Enseignement et de la Recherche Scientifique Service général des Affaires
Généralités sur les fonctions ( En seconde )
Généralités sur les fonctions ( En seconde ) Dernière mise à jour : Dimanche 31 Octobre 2010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2010-2011) Lycée Stendhal, Grenoble ( Document
Intégration de polynômes Points de Gauss
Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )
Problèmes à propos des nombres entiers naturels
Problèmes à propos des nombres entiers naturels 1. On dispose d une grande feuille de papier, on la découpe en 4 morceaux, puis on déchire certains morceaux (au choix) en 4 et ainsi de suite. Peut-on obtenir
Deuxième épreuve d admission. Exemples de sujets
Deuxième épreuve d admission. Exemples de sujets Thème : probabilités 1) On lance deux dés équilibrés à 6 faces et on note la somme des deux faces obtenues. 1.a) Donner un univers associé cette expérience.
TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien
TRAVAUX DIRIGÉS DE l UE MNBif Informatique 3A MÉTHODES NUMÉRIQUES DE BASE 2015-2016, Automne N. Débit & J. Bastien Document compilé le 13 novembre 2015 Liste des Travaux Dirigés Avant-propos iii Travaux
Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147
Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 14 Janvier 2015 2 Il est impossible d envisager l étude des méthodes
Le fer à cheval de Smale
Le fer à cheval de Smale Selim GHAZOUANI, ENS Lyon Novembre 2010, Groupe de lecture dirigé par Alexey GLUSTYUK sur les systèmes dynamiques Le fer à cheval de Smale est un exemple de transformation continue
TD Dérivation n 2 : étude des variations de fonctions
1) f (x) = 7x+3 TD Dérivation n : étude des variations de fonctions Étude de variations f est une fonction affine, de coefficient directeur négatif, on sait donc qu elle est décroissante surê. Le calcul
Chapitre 6 : Estimation d erreurs numériques
Chapitre 6 : Estimation d erreurs numériques Puisque les réels ne sont représentés en machine que sous la forme de flottants, ils ne sont connus que de manière approchée. De plus, la somme ou le produit
MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale
MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental
Baccalauréat S Centres étrangers 12 juin 2014
Durée : 4 heures Baccalauréat S Centres étrangers juin 04 A. P. M. E. P. Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse,
1. Description du cours
1. Description du cours Ce cours porte sur la généralisation de notions mathématiques par le biais d expériences, d applications et du développement de structures formelles et abstraites. Au moyen de la
1 Topologies, distances, normes
Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un
MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année.
MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polcopié conforme au programme 00, regroupe les documents distribués au élèves en cours d année. Année 0-0 Année 0-0 T le ES A. YALLOUZ (MATH@ES) TABLE DES MATIÈRES
VOLUME 3 ROBERT ET MICHEL LYONS. ( Octobre 2001 )
VOLUME 3 ROBERT ET MICHEL LYONS ( Octobre 2001 ) Introduction Si votre enfant a réussi les activités des deux volumes précédents, vous serez peut-être surpris, mais le plus difficile est fait. Son succès
Bissectrices. Daniel Perrin
Bissectrices Daniel Perrin Introduction Le but de ce texte est d essayer de donner une référence fiable sur la question des bissectrices, pour traiter notamment l exposé de CAPES intitulé Droites remarquables
TOPOLOGIE DE LA DROITE REELLE
TOPOLOGIE DE LA DROITE REELLE P. Pansu 16 mai 2005 1 Qu est-ce que la topologie? C est l étude des propriétés des objets qui sont conservées par déformation continue. Belle phrase, mais qui nécessite d
Expérimentation 2007
Mathématiques série S Épreuve pratique au baccalauréat Expérimentation 2007 - Banque de sujets - Ce document peut être utilisé librement dans le cadre des activités de l'enseignement scolaire, de la formation
Les matrices. 1 Définitions. 1.1 Matrice
Les matrices 2012-2013 1 Définitions 11 Matrice Définition 1 Une matrice m n est un tableau de nombres à m lignes et n colonnes Les nombres qui composent la matrice sont appelés les éléments de la matrice
Suites numériques. Sommaire :
Suites numériques I Activité n o 2 page 295 Sommaire : II Généralités sur les suites numériques III Variations et bornes IV Suites arithmétiques V Suites géométriques VI Suites convergentes VII Représentation
Théorème de Rolle et égalité des accroissements finis. Applications
0 Théorème de Rolle et égalité des accroissements finis. Applications 0. Le théorème de Rolle sur un espace vectoriel normé Pour ce paragraphe, on se donne un espace vectoriel normé (E, ). Le théorème
MATÉRIEL D APPRENTISSAGE SERVANT D APPUI AU NOUVEAU TABLEAU DE CORRESPONDANCE DU CURRICULUM À : MATHÉMATIQUES 11 NO P-0-257
MATÉRIEL D APPRENTISSAGE SERVANT D APPUI AU NOUVEAU CURRICULUM DE L ONTARIO : MATHÉMATIQUES, FONCTIONS, 11 e année, COURS PRÉUNIVERSITAIRE/PRÉCOLLÉGIAL (MCF3M) TABLEAU DE CORRESPONDANCE DU CURRICULUM À
Espaces de Sobolev. Résumé du cours de MEDP Maîtrise de mathématiques 2001 2002. medp-sobolev.tex (2001nov24)
Espaces de Sobolev Résumé du cours de MEDP Maîtrise de mathématiques 2001 2002 medp-sobolevtex (2001nov24) Sauf mention explicite du contraire, toutes les fonctions considérées seront à valeurs réelles
Couper en deux, encore et encore : la dichotomie
Couper en deux, encore et encore : la dichotomie I : Jeu du nombre inconnu Un élève volontaire choisit un nombre entier compris entre 0 et 56. Un autre élève cherche à deviner ce nombre, en adoptant la
EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES 2. Durée : 4 heures
SESSION 2003 PCM2007 EPEUVE SPECIFIQUE FILIEE PC MATHEMATIQUES 2 Durée : 4 heures L utilisation des calculatrices est autorisée. Les deux problèmes sont indépendants *** N.B. : Le candidat attachera la
Laurent Garcin MPSI Lycée Jean-Baptiste Corot. (a, b) + (c, d) = (a + c, b + d) (a, b) (c, d) = (ac bd, ad + bc) (a, 0) (b, 0) = (ab, 0)
NOMBRES COMPLEXES 1 Corps C des nombres complexes 1.1 Construction de C Construction de C On munit R de deux lois internes + et de la manière suivante. Pour (a, b, c, d) R 4, on pose (a, b) + (c, d) =
[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer
[http://mp.cpgedupuydelome.fr] édité le 9 décembre 05 Enoncés Familles sommables Ensemble dénombrable a) Calculer n+ Exercice [ 03897 ] [Correction] Soit f : R R croissante. Montrer que l ensemble des
4. Géométrie analytique du plan
GÉOMÉTRIE ANALYTIQUE DU PLAN 35 4. Géométrie analytique du plan 4.1. Un peu d'histoire René Descartes (La Haye en Touraine, 31/3/1596 - Stockholm, 11/2/1650) La géométrie analytique est une approche de
Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume.
Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit
Rapport de stage Mise à plat d'un polygone
Rapport de stage Mise à plat d'un polygone Stagiaire : Sejjil Olfa Tuteurs de stage: Luc BIARD et Bernard LACOLLE Laboratoire: Jean Kuntzmann (LJK) Equipe: Modélisation Géométrique & Multirésolution pour
Représentation des nombres en langage informatique et conséquences
CHAPITRE Représentation des nombres en langage informatique et conséquences La création de la numération est un des faits les plus marquants de l histoire de l humanité. Si la plupart des civilisations
Algorithmique et Structures de Données
1.1 Algorithmique et Structures de Données Jean-Charles Régin Licence Informatique 2ème année 1.2 Itérations Jean-Charles Régin Licence Informatique 2ème année Itération : définition 3 En informatique,
Test de sélection du 4 juin 2013
Test de sélection du 4 juin 2013 Vous étiez 270 candidat-e-s à ce test de sélection, et 62 d entre vous (23%) participeront au stage olympique de Montpellier, du 19 au 29 août 2013, dont 12 filles : la
Cours de Mathématiques 2
Cours de Mathématiques 2 première partie : Analyse 2 DEUG MIAS 1 e année, 2 e semestre. Maximilian F. Hasler Département Scientifique Interfacultaire B.P. 7209 F 97275 SCHOELCHER CEDEX Fax : 0596 72 73
Concevoir et analyser des tâches mathématiques dans un environnement logiciel : Quels objectifs d apprentissage? Quels choix de conception?
Concevoir et analyser des tâches mathématiques dans un environnement logiciel : Quels objectifs d apprentissage? Quels choix de conception? Semaine 2, auteurs Maha Abboud-Blanchard (ESPE de Versailles,
2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A
nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 013 Lectures graphiques (9 points) Les parties sont indépendantes Partie A Tous les clients d un petit restaurant ont opté pour la formule
Groupe : (h, k) ( 5, 12)
Fiche de soutien Les propriétés de la fonction racine carrée PROPRIÉTÉ FONCTION SOUS FORME CANONIQUE f(x) = a + k (ou f(x) = a 1 + k et a 1 = a ) EXEMPLE f(x) = 2 12 (ou f(x) = 6 12) Coordonnées du sommet
et Transversalité par Pierre Vogel
Université Paris 7 Denis Diderot Institut de Mathématiques de Jussieu Géométrie des Variétés et Transversalité par Pierre Vogel Introduction Ce cours est destiné à l étude des variétés différentiables
Plans projectifs, arithmétique modulaire et Dobble
Plans projectifs, arithmétique modulaire et Dobble M. Deléglise 27 février 2013 Résumé Le jeu de Dobble édité par Asmodée est une excellente occasion d introduire des objets mathématiques importants :
INFO-F-302 Informatique Fondamentale Exercices - Modélisation en SAT
INFO-F-302 Informatique Fondamentale Exercices - Modélisation en SAT Prof. Emmanuel Filiot Exercice 1 Modélisation autour des mots Dans ce problème, on va travailler sur les mots, vus de manière générale
OLYMPIADES FRANÇAISES DE MATHÉMATIQUES ÉPREUVE DE SÉLECTION 2012 CORRIGÉ EXERCICES POUR LES ÉLÈVES DE COLLÈGE ET DE SECONDE
OLYMPIADES FRANÇAISES DE MATHÉMATIQUES ÉPREUVE DE SÉLECTION 2012 CORRIGÉ EXERCICES POUR LES ÉLÈVES DE COLLÈGE ET DE SECONDE Exercice 1. Fred et Sarah sont les aînés d une même et grande famille. Fred a
Connaître les variations des fonctions polynômes de degré 2 (monotonie, extremum) et la propriété de symétrie de leurs courbes.
www.mathsenligne.com 2N3 - FONCTION CARRE ET SECOND DEGRE COURS (1/6) CONTENUS CAPACITES ATTENDUES COMMENTAIRES Expressions algébriques Transformations d expressions algébriques en vue d une résolution
Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.
TES/spé TL Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la rédaction
Fonctions homographiques
Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.
Fonctions affines. Notation1 Notation 2
I/ Fonctions affines 1 ) Définition Fonctions affines Une fonction est affine lorsque l image d un nombre où a et b sont deux nombres quelconques connus. peut s écrire sous la forme Les nombres a et b
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
C k A C. x 5 4 + Signe de f (x) + 0 0 + x 4 2 2 + Variations
nde Eléments de correction du DNS 1 Lectures graphiques Soient f et g deux fonctions définies sur IR. Leurs représentations graphiques, notées respectivement C f et C g, sont tracées dans le repère ci-dessous.
Chapitre 4 : Géométrie plane
hapitre 4 : Géométrie plane I Rappels et compléments sur les vecteurs I Vecteurs et géométrie Égalité de deux vecteurs : = D ssi D est un parallélogramme (éventuellement aplati) D ddition de vecteurs :
Compteurs, variables et afficheurs dans Automgen
Section : S Option : Sciences de l ingénieur Discipline : Génie Électrique Compteurs, variables et afficheurs dans Automgen Domaine d application : Traitement programmé de l information Type de document
1 Extrait du DNB Juin 2014 3ème
Exemples d activités et extraits d évaluations Pour chacune des évaluations et activités suivantes, 1 résoudre le problème et anticiper les différentes démarches que les élèves pourraient envisager 2 déterminer,
Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve...
Sommaire Descriptif de l épreuve............................................. Conseils pour l épreuve............................................ Les pourcentages FICHES Pages 1 Pourcentage Proportions....................................7
Synthèse d analyse Avril 2011
Snthèse d analse Avril 20 Cette snthèse d analse a été rédigée suite à une suggestion de M le Professeur E Delhez Elle est destinée à aider les étudiants à préparer l eamen d admission au études d ingénieur
Régression linéaire et corrélation
CHAPITRE 10 Régression linéaire et corrélation 1. Introduction Dans ce chapitre, nous regarderons comment vérifier si une variable à un influence sur une autre variable afin de prédire une des variables
Représentation d un entier en base b
Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir
Les calculatrices sont interdites.
Les calculatrices sont interdites. NB. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui
Baccalauréat Série S Métropole, juin 2014
Baccalauréat Série S Métropole, juin 4 Sujet et Corrigé Stéphane PASQUET Disponible sur http://www.mathweb.fr juin 4 Exercice (5 points) - Commun à tous les candidats Partie A Dans le plan muni d un repère
Multiplication rapide : Karatsuba et FFT
Université Bordeaux 1 Préparation à l agrégation Mathématiques Année 2009 2010 Multiplication rapide : Karatsuba et FFT Il est rappelé que le jury n exige pas une compréhension exhaustive du texte. Vous
119 exercices de mathématiques pour 1 re S
mai 06 9 exercices de mathématiques pour re S Stéphane PASQUET Sommaire Disponible sur http: // www. mathweb. fr mai 06 I Le second degré.................................. I. Calcul de discriminant et
Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes.
Au menu Cours 7: Classes Probabilistes Olivier Bournez bournez@lix.polytechnique.fr LIX, Ecole Polytechnique Retours sur quelques algorithmes Quelques résultats INF561 Algorithmes et Complexité 1 2 Sous
Cours polycopié pour le module Mathématique II
Université Paul Sabatier - UFR MIG - Département de Mathématique. Année scolaire 2009/2010. Cours polycopié pour le module Mathématique II Conventions. Dans ce qui suit, les mots en italiques sont ceux
Le théorème du point xe. Applications
49 Le théorème du point xe. Applications 1 Comme dans le titre de cette leçon, le mot théorème est au singulier, on va s'occuper du théorème du point xe de Picard qui a de nombreuses applications. Le cas
Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé)
Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des questions posées, une seule des quatre réponses