BONJOUR et BIENVENUE
|
|
|
- Lucile Morency
- il y a 9 ans
- Total affichages :
Transcription
1 BONJOUR et BIENENUE Intervenants : Eric DAALLE, Dr Ingénieur civil EPFL Chef du Service de l électricité de la ille de Lausanne avec les assistants du LSMS 1
2 Semaines N Jour Mardi Chapitres 7.10 et suivants Titres Propriétés mécaniques des matériaux Traction plastique Jeudi 15,4 Flexion plastique plane Flexion plastique plane Programme des semaines 1 à 4 Mardi Torsion uniforme Jeudi Torsion uniforme Contraintes dues à l'effort tranchant 3 4 Mardi Contraintes dues à l'effort tranchant Jeudi Contraintes dues à l'effort tranchant MS (3) Formes intégrales d'équilibre et cinématique - Travaux virtuels Mardi Énergie (forces et déformations associées) Déformation des poutres soumises à la flexion simple Jeudi 10.3 Déformation des poutres soumises à la flexion simple
3 9. Contraintes dues à l effort tranchant 3
4 Présentation du cours T A B L E D E S M A T I E R E S N semaines Chapitres (vol. ) Titres Traction plastique 15.4 Flexion plastique plane Flexion plastique plane 7.10 et compléments Propriétés mécaniques des matériaux Torsion uniforme Torsion uniforme Contraintes dues à l'effort tranchant Contraintes dues à l'effort tranchant Contraintes dues à l'effort tranchant Déformée des poutres soumises à flexion simple 7 MS (vol. 3) Formes intégrales d'équilibre et cinématique - Travaux virtuels Energie Déformée des poutres soumises à flexion simple 11.1 Sollicitations composées et 1.7 Principes des travaux virtuels et calcul des déplacements (1) 4
5 CALCUL des CONTRAINTES dans les POUTRES N M T CONTRAINTES σ = N A? σ = M I τ = T r Ip T J t T Ω t CINEMA - TIQUE BERNOULLI Sections planes? BERNOULLI -NAIER Sections planes Les sections GAUCHISSENT théorie exacte de Saint - enant LIAISON! ( toujours!) 5
6 Théorie élémentaire Issu des équations d équilibre on sait en flexion simple que : x B A dx γ D C dv τ dv γ = = dx = cste dm dx γ seuls ( losange ) τ uniformes τ τ = γ = = A G GA ( Hooke ) Section CD glisse en restant plane! théorie pas admissible!!! Problème de réciprocité des τ Libre de toute force! (comme en TORSION! ) 6
7 On constate donc : Théorie relative à l effort rasant ( Equilibre ) pas de loi simple pour représenter la déformation : les sections gauchissent (comme en torsion). Sachant que = - dm /d x on peut procéder par équilibre si on admet a priori connue la répartition des σ de flexion (pure) on prend σ = - M / I (Bernoulli & Hooke) on ne fait aucune hpothèse sur la répartition des ε ij on vérifie après coup que ces hpothèses sont acceptables Hpothèses : application de la loi de Hooke poutre admise prismatique (h pas lentement variable) considère que les axes principaux 7
8 Théorie relative à l effort rasant ( Equilibre ) Par l équilibre longitudinal, on fait apparaître l effort rasant M H = σ da = da I A1 A1 M H = S où S est le moment statique de A I M + dm H + dh = σ da = S > H I A 1 dm ( ) S dr = dh = S = dx I I dr est appelé l effort rasant il agit dans la coupe S dr opposé à dh et dσ Par rapport à l axe n-n 1 8
9 dr Poutres à parois minces Contrainte τ due à l effort rasant ~ uniformes sur l épaisseur Contrainte τ due à l effort tranchant Hp.: épaisseur t mince τ = (- ) S It dr ( ) S τ = et dr = dx t dx I le flux de cisaillement f dr ( ) S N f = τ t = = dx I m 9
10 Poutres à parois minces et à section ouverte dr = ( ) S I dx τ = (- ) S It (-) / I est constant S / t est variable S s ()() s t s ds 0 10
11 Poutres à section en U S s t h En B: τ = et S = s t (h/) τ = = I t I t s h I linéaire En D : τ = τ max I t = S w w h 8I et + S w bth It = w b t (h/) + t w h ( parabolique ) h' où h' = 1 ( h / ) + 11
12 Poutres âme-semelles Laminés en acier t w τ = max I S t w ( web âme ) table! τ sans signe ( petites flèches indiquant le sens ) et puis superposition τ paroi négligé et négligeable si t pet t τ constant à travers t flux f = τ t non constant dans sectio équilibre des flux! 1
13 Poutres âme-semelles Faire l exemple suivant : 13
14 Poutres composée de deux matériaux (admis parois minces) Sachant que : H = M I S σ a H = H + H = σ da = σ d A + da n a b a A1 A1a A1b M 1 M H = ( S + S ) = S Ia n Ia a b a Moment statique équivalent τ a 1 Attention! n E = b Ea 1 et non m f (- ) Sa f (- ) S = = τb = = ta It a a tb It a b a 14
15 Poutres tubulaires à parois minces Par smétrie ( géométrie et charges ) : Application : τ = (- ) S It La répartition des contraintes tangentielles est un problème hperstatique 15
16 Section rectangulaire τ (- ) S 3 = max où f( h/ b) It τ = α A α = h/b α Erreur 1,08 3% 1 1,105 11% 0,5 1,33 33% 3% 11% 33% 16
17 Hpothèse : Poutre section en U en flexion simple F (voir 9.5.) F w tb h = 4 I = Centre de cisaillement ou centre de torsion C T Moment réduit en G On cherche où appliquer pour éviter la torsion : où T = 0 Le principe d équivalence permet d écrire : en translation : en rotation autour de G : = τ da = F = x w A = τ da = F - F = x A 0 T = τ da + τ da T = F d F h donc x x w A T T = Fh Fw d tb h c C T est le centre de cisaillement ou de torsion (les centres coïncident selon Th. de réciprocité de Betti) = = = + d 4 I 0 17
18 Centre de cisaillement ou centre de torsion Résultantes des flux Situation Sens des flux et τ max des semelles F 1 F t t τ = S 1 1 It τ 1 τ = S It H G h H G h τ G F t τ F 1 t b b τ 1 H h Avec S1 = bt et S = bt, H 1 τ = = = F1 = 1bt S1bt bt b b th I t I I h 1 F = τ bt = Sbt = bt b = b th It I I 4 18
19 Centre de cisaillement ou centre de torsion Résultantes des flux Sstème équivalent Equivalence en rotation F 1 F H G h T G T 1 T G c C T F F 1 H h Avec S1 = bt et S = bt, H 1 F 1 = τ1bt = S1bt = bt bt = b th It It I h 1 F = τ bt = Sbt = bt bt = b th It It I 4 1 T= T1 T = F1H Fh = bt h I 4 ( H ) Equivalence en rotation : c = T = T T c T T1 T 1 = = = bt( H h ) 4I 1 et Si h< H, c > 0 et C T à droite de G Si h= H, c = 0 et C T confondu avec G Si h> H, c < 0 et C T à gauche de G 19
20 Centre de cisaillement ou centre de torsion 1. SECTION DOUBLEMENT SYMETRIQUE G C T 3. PAROIS PLANES MINCES CONCOURANTES C T C C T T au point de concours des lignes moennes. SECTION AEC UN AXE DE SYMETRIE c C T G F i d i G 4. SECTION QUELCONQUE ( parois minces ) c C T G c 1. Axes principaux (,). Plan x ( ) c 3. Plan x ( ) c 0 a) C sur axe de smétrie T b) c = F ( ) d c i i F i ( ) d = i Equivalence en rotation autour de G N'importe quel autre point peut convenir (BIEN CHOISIR!) c > 0 C du coté choisi, c < 0 C du coté opposé T T
21 Centre de cisaillement ou centre de torsion 1
22 Centre de cisaillement ou centre de torsion iaduc de Millau
23 Résistance σx τ σ = τ 0 x Tresca, von Mises ( σ + 3τ ) Etat plan de contrainte bidimensionnel, Mohr-Coulomb... peut fréquemment être déterminant pour le dimensionnement Si nécessaire : âme (s) // Accroître : - ép. âme(s) - hauteur âme(s) - nombre des âmes soit : matière // 3
TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE
TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE L'objectif de ce tutorial est de décrire les différentes étapes dans CASTOR Concept / FEM permettant d'effectuer l'analyse statique d'une
Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques
Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques Descriptif du support pédagogique Le banc d essais des structures permet de réaliser des essais et des études
Problèmes sur le chapitre 5
Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Rupture et plasticité
Rupture et plasticité Département de Mécanique, Ecole Polytechnique, 2009 2010 Département de Mécanique, Ecole Polytechnique, 2009 2010 25 novembre 2009 1 / 44 Rupture et plasticité : plan du cours Comportements
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Cours de résistance des matériaux
ENSM-SE RDM - CPMI 2011-2012 1 Cycle Préparatoire Médecin-Ingénieur 2011-2012 Cours de résistance des matériau Pierre Badel Ecole des Mines Saint Etienne Première notions de mécanique des solides déformables
Cours de Résistance des Matériaux (RDM)
Solides déformables Cours de Résistance des Matériau (RDM) Structure du toit de la Fondation Louis Vuitton Paris, architecte F.Gehry Contenu 1 POSITIONNEMENT DE CE COURS... 2 2 INTRODUCTION... 3 2.1 DEFINITION
Différentiabilité ; Fonctions de plusieurs variables réelles
Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2
Guide de conception. Sécurité incendie des halls industriels
Projet mené grâce au financement du programme de recherche Research Fund for Coal & Steel RFS2 CR 2007 00032 Sécurité incendie des halls industriels Guide de conception Sommaire 1. Introduction... 2 2.
TUBES ET ACCESSOIRES Serrurier A ailettes Construction Canalisation Spéciaux
TUBES ET ACCESSOIRES 47 Serrurier A ailettes Construction Canalisation Spéciaux Possibilité d autres sections sur demande. Les caractéristiques indiquées sont théoriques et non garanties. TUBES 48 TUBES
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE
Revue Construction étallique Référence DÉVERSEENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYÉTRIQUE SOUISE À DES OENTS D EXTRÉITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE par Y. GALÉA 1 1. INTRODUCTION Que ce
(Exemple ici de calcul pour une Ducati 748 biposto, et également pour un S2R1000, équipé d un disque acier en fond de cloche, et ressorts d origine)
Analyse de la charge transmise aux roulements de la roue dentée, notamment en rajoutant les efforts axiaux dus aux ressorts de l embrayage (via la cloche) (Exemple ici de calcul pour une Ducati 748 biposto,
Exemple d application du EN 1993-1-2 : Poutre fléchie avec section tubulaire reconstituée
Exemple d application du EN 1993-1-2 : Poutre fléchie avec section tubulaire reconstituée P. Schaumann, T. Trautmann University of Hannover Institute for Steel Construction, Hannover, Germany 1 OBJECTIF
Projet de Fin d Etudes ANNEXE 1 : Présentation du Collège Doctoral Européen
Génie Civil Septembre 2006 Projet de Fin d Etudes ANNEXE 1 : Présentation du Collège Doctoral Européen Tournier Guillaume, élève ingénieur 5 ème année Partie résidentielle Atrium & jardins intérieurs Espace
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
SYSTÈMES DE CONFÉRENCE. Système de conférence analogique CDS 4000 04. Système de conférence numérique DCS 6000 06
Système de conférence analogique CDS 4000 04 Système de conférence numérique DCS 6000 06 DIS, Danish Interpretation Systems, fait partie des fabricants les plus réputés de systèmes de conférences. DIS
Exemples de dynamique sur base modale
Dynamique sur base modale 1 Exemples de dynamique sur base modale L. CHAMPANEY et Ph. TROMPETTE Objectifs : Dynamique sur base modale réduite, Comparaison avec solution de référence, Influence des modes
Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.
Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques
LES PROS DE L AFFICHAGE
26 DATEC-CONTROL MOBILE XS S M L XS LES PROS DE L AFFICHAGE LE PRODUIT La tête à la forme arrondie de la série de boîtiers DATEC-CONTROL permet la mise en place d afficheurs graphiques. Cette nouvelle
D022751/01 TEXTE SOUMIS EN APPLICATION DE L ARTICLE 88-4 DE LA CONSTITUTION PAR LE GOUVERNEMENT, À L ASSEMBLÉE NATIONALE ET AU SÉNAT.
D022751/01 ASSEMBLÉE NATIONALE QUATORZIÈME LÉGISLATURE SÉNAT SESSION ORDINAIRE DE 2012-2013 Reçu à la Présidence de l Assemblée nationale le 3 octobre 2012 Enregistré à la Présidence du Sénat le 3 octobre
Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa microstructure.
Étude du comportement mécanique du plâtre pris en relation avec sa microstructure Sylvain Meille To cite this version: Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa
DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )
DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
Corrigé du baccalauréat S Pondichéry 12 avril 2007
Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires
Prise en compte des Eurocodes dans le dimensionnement d ouvrages d art courant en béton armé. Comparaison avec «l ancienne» réglementation.
Prise en compte des Eurocodes dans le dimensionnement d ouvrages d art courant en béton armé. Comparaison avec «l ancienne» réglementation. Projet de Fin d Etude Auteur : GODARD Sandy Elève ingénieur en
N09 Viaduc de Chillon
Département fédéral de l'environnement, des transports, de l'énergie et de la communication DETEC Office fédéral des routes N09 Viaduc de Chillon Solution innovante en relation avec la RAG Conférence JERI
Premier principe de la thermodynamique - conservation de l énergie
Chapitre 5 Premier principe de la thermodynamique - conservation de l énergie 5.1 Bilan d énergie 5.1.1 Énergie totale d un système fermé L énergie totale E T d un système thermodynamique fermé de masse
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Département de Génie Civil
Sommaire Chapitre 01 : RAPPEL... 5 I Rappel de mathématiques... 5 I-1 Equation du 1 ier degrés à deu inconnues... 5 I- Equation du Second degré à deu inconnues... 5 I-3 Calcul d intégrale... 6 I-4 Equation
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Généralités. Aperçu. Introduction. Précision. Instruction de montage. Lubrification. Conception. Produits. Guides à brides FNS. Guides standards GNS
Généralités Aperçu Introduction Précision Instruction de montage Lubrification Conception page............................. 4............................. 5............................. 6.............................
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes
Chapitre 2. Matrices
Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce
Nouvelles fonctionnalités Scia Engineer 2013
Nouvelles fonctionnalités Scia Engineer 2013 Les nouvelles fonctions de Scia Engineer, telles que les Engineering Report, Open Checks, Scia Design Forms, ainsi que de nombreuses autres extensions sont,
DISQUE DUR. Figure 1 Disque dur ouvert
DISQUE DUR Le sujet est composé de 8 pages et d une feuille format A3 de dessins de détails, la réponse à toutes les questions sera rédigée sur les feuilles de réponses jointes au sujet. Toutes les questions
STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE
ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point
Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI
Initiation à la Mécanique des Fluides Mr. Zoubir HAMIDI Chapitre I : Introduction à la mécanique des fluides 1 Introduction La mécanique des fluides(mdf) a pour objet l étude du comportement des fluides
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Analyse statique d une pièce
Analyse statique d une pièce Contrainte de Von Mises sur une chape taillée dans la masse 1 Comportement d un dynamomètre On considère le dynamomètre de forme globalement circulaire, excepté les bossages
1 Première section: La construction générale
AMALGAMATIONS DE CLASSES DE SOUS-GROUPES D UN GROUPE ABÉLIEN. SOUS-GROUPES ESSENTIEL-PURS. Călugăreanu Grigore comunicare prezentată la Conferinţa de grupuri abeliene şi module de la Padova, iunie 1994
Jean-Marc Schaffner Ateliers SCHAFFNER. Laure Delaporte ConstruirAcier. Jérémy Trouart Union des Métalliers
Jean-Marc Schaffner Ateliers SCHAFFNER Laure Delaporte ConstruirAcier Jérémy Trouart Union des Métalliers Jean-Marc SCHAFFNER des Ateliers SCHAFFNER chef de file du GT4 Jérémy TROUART de l Union des Métalliers
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.
Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de
CODE ET MANUEL D APPLICATION POUR LE CALCUL ET L EXECUTION
CODE ET MANUEL D APPLICATION POUR LE CALCUL ET L EXECUTION DU BETON ARMI. Rédigé par une Commission d Experts de l UNESCO, DUNOD PARIS 1968 CODE ET MANUEL D APPLICATION POUR LE CALCUL ET L EXECUTION DU
LE GÉNIE PARASISMIQUE
LE GÉNIE PARASISMIQUE Concevoir et construire un bâtiment pour qu il résiste aux séismes 1 Présentation de l intervenant Activité : Implantation : B.E.T. structures : Ingénierie générale du bâtiment. Siège
CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE
CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE Jean Luc Bovet, Auvernier L'article de Monsieur Jean Piquerez (Bulletin de la SSPMP No 86), consacré aux symédianes me paraît appeler une généralisation. En
Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :
Eercice a Développer les epressions suivantes : A-(-) - + B-0(3 ²+3-0) -0 3²+-0 3+00 B -30²-30+00 C-3(-) -3 + 3-3²+6 D-(-) + ² Eerciceb Parmi les epressions suivantes, lesquelles sont sous forme réduite?
Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2
Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page
Cercle trigonométrique et mesures d angles
Cercle trigonométrique et mesures d angles I) Le cercle trigonométrique Définition : Le cercle trigonométrique de centre O est un cercle qui a pour rayon 1 et qui est muni d un sens direct : le sens inverse
[Colonnes mixtes acier-béton préfabriquées ORSO-V] Colonnes ORSO-V pour exigences statiques les plus élevées et dimensionnement efficace.
Journal pour la clientèle de F.J. Aschwanden SA Septembre 2010 [Colonnes mixtes acier-béton préfabriquées ORSO-V] Colonnes ORSO-V pour exigences statiques les plus élevées et dimensionnement efficace.
Amphi 3: Espaces complets - Applications linéaires continues
Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite
Cinétique et dynamique des systèmes de solides
Cinétique et dynamique des systèmes de solides Page 2/30 CINÉTIQUE des systèmes matériels... 3 1.) Notion de masse...3 2.) Centre de masse d'un ensemble matériel...4 3.) Torseurs cinétique et dynamique...6
201-105-RE SOLUTIONS CHAPITRE 1
Chapitre1 Matrices 1 201-105-RE SOLUTIONS CHAPITRE 1 EXERCICES 1.2 1. a) 1 3 Ë3 7 3 2 Ë 1 16 pas défini d) 16 30 17 3 e) Ë 7 68 22 16 13 Ë 5 18 6 2. a) 0 4 4 4 0 4 Ë4 4 0 Ë 0 4 32 4 4 0 4 32 32 4 0 4 4
Calcul différentiel sur R n Première partie
Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité
Exo7. Limites de fonctions. 1 Théorie. 2 Calculs
Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication
P M L R O G W. sylomer. Gamme de Sylomer Standard. Propriétés Méthode de test Commentaires. Polyuréthane (PUR) Cellulaire mixte
Matière : Couleur : Polyuréthane (PUR) Cellulaire mixte Gris Recommandations d usage : Pression (dépend du facteur de forme) Déflexion Pression statique maximum :. N/mm ~ % Pression dyn. maximum :. N/mm
Chapitre 12. Bâtiments à ossature mixte en zone sismique.
12.1 Chapitre 12. Bâtiments à ossature mixte en zone sismique. 12.1. Introduction. Il existe des solutions mixtes acier-béton très diverses dans le domaine du bâtiment. A côté des classiques ossatures
Calcul des pertes de pression et dimensionnement des conduits de ventilation
Calcul des pertes de pression et dimensionnement des conduits de ventilation Applications résidentielles Christophe Delmotte, ir Laboratoire Qualité de l Air et Ventilation CSTC - Centre Scientifique et
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
LC HC LC+90 HC+ 90 LC+180 HC+110 LC+240 HC+115 HC+130 HC-50 HC-10 HC+580 3320
2 3 4 5 6 7 de commande = nominales de la baie de baie maxi L H Hors tout huisserie et mécanisme (1) L H en largeur (2) Novoporte motorisé avec Novomatic Hauteur de manuel Hauteur de motorisé Novoporte
PROPORTIONNALITÉ LES ÉCHELLES. Dossier n 2 Juin 2005. Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE
PROPORTIONNALITÉ LES ÉCHELLES 0 000 000 Dossier n 2 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE C.D.R. AGRIMEDIA
Calcul différentiel. Chapitre 1. 1.1 Différentiabilité
Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace
Mécanique des fluides Rappels
Mécanique des fluides Rappels Jean-Martial Coard [email protected] Plan du cours I- GENERLITE II- RPPEL DE STTIUE 1- Principe fondamentale de la statique 2- efforts sur les parois immergées
6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013
Retrouver tous les sujets, les corrigés, les annales, les finales sur le site du rallye : http://sarthe.cijm.org I Stéphane, Eric et Christophe sont 3 garçons avec des chevelures différentes. Stéphane
Les échelles de palettier et la sécurité du travail. entreposage
Les échelles de palettier et la sécurité du travail entreposage Avis de non-responsabilité VIA PRÉVENTION ne donne aucune garantie relative à l exactitude, la fiabilité ou le caractère exhaustif de l information
DM n o 8 TS1 2012 Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique
DM n o 8 TS1 2012 Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique Le centre spatial de Kourou a lancé le 21 décembre 200, avec une fusée Ariane, un satellite
NOMBRES COMPLEXES. Exercice 1 :
Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1
protection antideflagrante
protection antideflagrante Protection antiexplosion Valves pour la technique fluidique pour l utilisation dans les domaines avec danger d explosion Protection antiexplosion contre gaz, poussière et pour
DISPOSITIONS GÉNÉRALES
DISPOSITIONS GÉNÉRALES ÉTAIEMENT 2 MANUTENTION La manutention manuelle est aisée en raison de la légèreté des poutrelles FILIGRANE. Toutefois, en cas de manutention par grue avec élingues ou palonnier,
MULTISECU 2 NOTICE DE MONTAGE ET D UTILISATION. 111138 -tir. 11/14
MULTISECU 2 NOTICE DE MONTAGE ET D UTILISATION 1 111138 -tir. 11/14 SOMMAIRE NOTICE DE MONTAGE MULTISECU 2 NOTICE DE MONTAGE MULTISECU 2 p. 04-05 RÉGLEMENTATION p. 06-07 LA MARQUE NF p. 08-11 CONSEILS
UNIVERSITE KASDI MARBAH OUARGLA. Faculté des Sciences et Technologie et Sciences de la matière. Département de Génie Mécanique.
UNIVERSITE KASDI MARBAH OUARGLA Faculté des Sciences et Technologie et Sciences de la matière Département de Génie Mécanique Mémoire MASTER PROFESSIONNEL Domaine : Sciences et Techniques Filière : Génie
Chapitre 5 : Flot maximal dans un graphe
Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires
cel-00530377, version 1-28 Oct 2010
Mécanique des milieux continus F r a n ç o i s S i d o r o f f p Ce document est sous licence Creative Commons Paternité Pas d Utilisation Commerciale Partage des Conditions Initiales à l Identique 3.0
TECHNOLOGIE DE MESURE
TECHNOLOGIE DE MESURE Capteur de pression et de température Système de sécurité Accessoires Fabriqué en Allemagne TECHNOLOGIE DE MESURE Un aperçu de la compétence Gneuss Sans mercure en version standard
Construction d un cercle tangent à deux cercles donnés.
Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Alarme intrusion filaire AEI HA-981 6 zones
Alarme intrusion filaire AEI HA-981 6 zones Lycée de l Aa Page 1 sur 11 1) Mise en situation Vous devez assurer une protection périmétrique et volumétrique de la maison de M r X. Le schéma architectural
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
CONCEPTION PARASISMIQUE DES BATIMENTS (STRUCTURES) INTRODUCTION A LA DYNAMIQUE DES STRUCTURES
COURS DE CONSTRUCTION PARASISMIQUE VOLUME 2 CONCEPTION PARASISMIQUE DES BATIMENTS (STRUCTURES) INTRODUCTION A LA DYNAMIQUE DES STRUCTURES Introduction à la conception PS des structures - Approche qualitative
DOUBLE PARK ECO «La solution» DESCRIPTION TECHNIQUE
DOUBLE PARK ECO «La solution» DESCRIPTION TECHNIQUE P2-F et P4-F 185 (Modèle standard) P2-F et P4-F 170 MODELE P2/4-F 170 P2/4-F 185 (Standard) P2/4-F 195 P2-F et P4-F 195 H 325 340 350 DH 156 171 181
MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN
MOTO ELECTRIQUE MISE EN SITUATION La moto électrique STRADA EVO 1 est fabriquée par une société SUISSE, située à LUGANO. Moyen de transport alternatif, peut-être la solution pour concilier contraintes
OM 1 Outils mathématiques : fonction de plusieurs variables
Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.
«La solution» DESCRIPTION TECHNIQUE
«La solution» DESCRIPTION TECHNIQUE P2-f & P4-f - 185/180 - Standard P2-f & P4-f - 170/165 - Compact P2-f & P4-f - 200/195 - Confort MODELE H DH P2f-4f - 185/180 - Standard 340 171 P2f-4f - 170/165 - Compact
Chapitre 2 : Caractéristiques du mouvement d un solide
Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Marchés publics de travaux CAHIER DES CLAUSES TECHNIQUES GÉNÉRALES. Fascicule n 62 - Titre I - Section I
Ministère de l Equipement, des Transports et du Logement Secrétariat d Etat au Logement Secrétariat d Etat au Tourisme Direction des Affaires Economiques et Internationales BULLETIN Officiel Marchés publics
Afrique du sud du 23 au 28 novembre 2011
Afrique du sud du 23 au 28 novembre 2011 Nouveaux objectifs Green IT : Comment faire évoluer les Data Centers, les salles informatiques existants et les locaux techniques? Michel SABALETTE Présentation
É L É M E N T S D O S S A T U R E L É G E R S EN ACIER
I N S T I T U T C A N A D I E N D E L A T Ô L E D A C I E R P O U R L E B Â T I M E N T É L É M E N T S D O S S A T U R E L É G E R S EN ACIER Tables des charges admissibles : colombages et solives ICTAB
Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites
I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux
SYLLABUS SEMESTRE 9 Année 2011-2012
SYLLABUS SEMESTRE 9 2011-2012 Parcours GM «Génie Mer» Responsable : Olivier Kimmoun Tel.: 04 91 05 43 21 E-mail : [email protected] TRONC COMMUN GM Nb heures élèves (hors examen) GMR-51-P-ELMA
Zone Industrielle. Kehlen... 1
Zone Industrielle Kehlen VALERES Konstruktioun SA 1 L o c a l i s a t i o n Le terrain se situe dans la zone industrielle de et à 8287 Kehlen Parcelle no 2946/5744 lot 1 La superficie du terrain sur lequel
Vis à béton FBS et FSS
Vis à béton FBS et FSS Un montage rapide et de hautes performances. ETA-11/0093 ETAG 001-6 Usage multiple pour application non structurelle dans le béton Z-21.8-2015 ETA-11/0095 ETAG 001-3 Option 1 pour
