LE THÉORÈME FONDAMENTAL DE L ALGÈBRE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "LE THÉORÈME FONDAMENTAL DE L ALGÈBRE"

Transcription

1 Lycée Thiers LE THÉORÈME FONDAMENTAL DE L ALGÈBRE Depuis le courant du 17ème siècle, divers mathématiciens s interrogent sur le nombre de solutions d une équation polynomiale de degré n. L idée qu une telle équation admette n solutions est formulée pour la première fois en 1629 par le mathématicien flammand Albert Girard, mais sans indiquer que ces solutions sont de la forme a + ib, avec a, b réels. En 1637, René Descartes écrit que l on peut imaginer n solutions, mais que celles-ci ne correspondent en général à aucune quantité concrète. C est à Jean Le Rond d Alembert que l on doit la première tentative sérieuse, menée en 1746, pour établir l énoncé suivant : Tout polynôme complexe non constant possède au moins une racine complexe D Alembert construit une suite de nombres complexes qui converge vers une racine du polynôme, mais sa preuve est invalide. Euler attaque de son côté le problème en considérant en 1749 un polynôme unitaire de degré 2 n qu il affirme pouvoir factoriser en un produit de deux polynômes de degré moitié, visant ainsi une récurrence, mais son argumentation manque de précision. C est finalement Gauss qui, en 1799, expose la première véritable démonstration. Il est alors agé de 22 ans. On considère aujourd hui que cette première preuve de Gauss comportait quelques failles. Plus tard, Gauss produira d autres démonstrations abouties cette fois de ce résultat. Jean Le Rond d Alembert Carl Friedrich Gauss

2 LE THÉORÈME FONDAMENTAL DE L ALGÈBRE 2 Les quelques repères chronologiques qui précèdent sont tirées de [1], que l on pourra consulter pour plus de détails. Le théorème de d Alembert-Gauss est considéré comme une des pierres angulaires de l algèbre moderne : il est connu sous le nom de théorème fondamental de l algèbre. Il en existe diverses démonstrations. Celle qui suit est sans doute la plus élémentaire de toutes. Il s agit d une version moderne de la démonstration présentée en 1814 dans les Annales de Gergonne [2] par Jean-Robert Argand , comptable de son métier et mathématicien amateur. Pour des raisons de clarté, la preuve est décomposée en deux étapes, exposées aux sections 1 et Etape préliminaire Lemme. Soit P C [X] non constant et soit ζ C tel que P ζ 0. Alors il existe z C tel que P z < P ζ. Démonstration. Afin d alléger les notations, posons Q z = P ζ + z. Ainsi Q 0 0 et il s agit de prouver l existence de z C tel que Q z Q < 0. Posons : Q z = Q 0 + b m z m + b k z k où m désigne la valuation de Q Q 0 ce dernier polynôme est non nul puisque Q n est pas constant. Intuitivement, lorsque z parcourt un cercle de centre 0 et de rayon r > 0 assez petit, Q z reste très voisin de Q z = Q 0 + b m z m, qui parcourt m fois plus vite que z le cercle de centre Q 0 et de rayon b m r m. Ce dernier cercle coupe le segment [0, Q 0] en un point, plus proche de 0 que ne l est Q 0. Il reste à expliquer rigoureusement que le fait d avoir négligé dans cette description les termes b k z k pour k {m + 1,, n} n a rien modifié d essentiel.

3 Pour cela, considérons ω C tel que ω m = b m LE THÉORÈME FONDAMENTAL DE L ALGÈBRE 3 Q0. Bien sûr, le théorème fondamental de l algèbre n est pas requis pour affirmer l existence d un tel ω...! On sait en effet que tout nombre complexe possède des racines m èmes. On a alors, en posant y = ωz : donc, pour y ]0, 1[ : Q z Q 0 1 ym + et, finalement, si y est assez petit : Q z Q 0 = 1 ym + c k y k c k y k = 1 y m 1 Q z Q 0 < 1 c k y k m 2. Preuve du théorème On considère P C [X] non constant : P = a k X k ; avec n 1 et a n 0 On confond comme d habitude le polynôme P et la fonction polynomiale qui lui est associée. En mettant en facteur le terme de plus haut degré dans P z, on constate que : n 1 P z = a n z n a 1 + k z k n a n d où, par inégalité triangulaire : Il s ensuit que : et, en particulier, que : P z an z n 1 lim z + n 1 P z = + a k a n z k n R > 0; z C, z > R P z P 0 Comme le disque D = {z C; z R} est compact cf. section suivante, l application continue D R, z P z atteint sa borne inférieure en un certain ζ D. On a ainsi, pour tout z C : z R P z P ζ et z > R P z P 0 mais, comme 0 D, il vient P 0 P ζ, de sorte que, finalement : z C, P z P ζ

4 LE THÉORÈME FONDAMENTAL DE L ALGÈBRE 4 En supposant que P ne s annule pas, ce qui signifie exactement que P ζ > 0, le lemme de la section précédente apporte une contradiction. 3. Un peu de compacité Un sous-ensemble K de C est dit compact 1 lorsque toute suite à termes dans K admet une sous-suite qui converge vers un élément de K. On peut démontrer la caractérisation suivante : Théorème. Etant donné K C, les assertions suivantes sont équivalentes : ➀ K est compact. ➁ K est fermé et borné. Rappelons que K est fermé signifie que pour toute suite convergente à termes dans K, la limite de la suite est encore dans K. Le résultat suivant est essentiel : Théorème. Si K C est compact, non vide et si f : K R est continue, alors f est bornée et atteint ses bornes. Autrement dit, l ensemble f K = { f z ; z K } est une partie non vide bornée de R, qui admet de ce fait une borne supérieure et une borne inférieure ; et il existe α, ω K 2 tel que : f α = inf f K et f ω = sup f K Les preuves de ces deux théorèmes qui généralisent des résultats connus lorsque K est un segment de R sont données en annexe. 4. Annexe Preuve du théorème 1 : ➀ ➁ Soit z n n N une suite convergente à termes dans K. Notons λ sa limite. Par hypothèse, il existe une suite extraite z ϕn qui converge vers un certain µ K. Comme toute suite extraite d une suite convergente converge vers la même limite, il vient λ = µ et donc λ K. Ainsi, K est fermé. Supposons maintenant K non borné ; alors pour tout n N, il existe ζ n K tel que ζ n n. Il existe alors une suite extraite ζ ψn qui converge, et qui est donc bornée, ce qui est en contradiction avec n N, ζψn ψ n. 1. En fait, cette définition est celle de la compacité séquentielle, mais ne chipotons pas.

5 LE THÉORÈME FONDAMENTAL DE L ALGÈBRE 5 ➁ ➀ Soit z n n N une suite à termes dans K. Posons, pour tout n N, x n = Re z n et y n = Im z n. Comme x n x 2 n + y 2 n = z n, et comme K est borné, la suite réelle x n n N est bornée donc admet d après Bolzano-Weierstrass une suite extraite convergente xϕn, de limite a R. Pour les mêmes raisons, la suite y ϕn admet une suite n N extraite convergente y ϕ ψn, de limite b R. Il s ensuit que la suite z n N ϕ ψn converge vers λ = a + ib. Enfin, comme K est fermé : λ K. Preuve du théorème 2 : Supposons f non bornée : pour tout n N, il existe z n K tel que f z n n. En considérant une suite extraite z ϕn convergente de limite λ K, et en invoquant la continuité de f en λ, on obtient lim f z n ϕn = f λ, ce qui est incompatible avec : n N, f zϕn ϕ n +. Ainsi, f est bornée. Notons α = inf { f z ; z K }. Par définition d une borne inférieure : n N, z n K; α f z n < α + 1 n + 1 Soit z ϕn une suite extraite convergente, de limite λ K. En passant à la limite dans : α f z ϕn < α + 1 ϕ n + 1 on obtient d après la continuité de f en λ : f λ = α. La borne inférieure de f sur K est donc bien atteinte. Même chose pour la borne supérieure. 5. Références [1] Le site web MacTutor History of Mathematics archive est une importante ressource documentaire. L adresse de base est [2] Annales de Gergonne, Philosophie mathématique. Réflexions sur la nouvelle théorie des imaginaires, suivies d une application à la démonstration d un théorème d analise 2, p Ce dernier document est consultable sur l internet attention! URL sur deux lignes : 5_/AMPA_ _0/AMPA_ _0.pdf On peut lire les quelques contributions de J.R. Argand aux annales de Gergonne en cherchant Argand à l adresse : 2. non, ce n est pas une faute de frappe...

1 Notions de logique mathématique.

1 Notions de logique mathématique. Université de Provence 2012 2013 Introduction à l Analyse Chapitre 3 - Logique et Suites. 1 Notions de logique mathématique. 1.1 Assertions, propositions logiques, tables de vérité. On rappelle la notion

Plus en détail

CH V : Généralités sur les suites réelles

CH V : Généralités sur les suites réelles CH V : Généralités sur les suites réelles I. Notion de suite I.1. Définition générale Définition Une suite de nombre réels u est une application de N dans R i.e. une fonction de N dans R telle que tout

Plus en détail

Continuité, dérivabilité des fonctions d une variable réelle

Continuité, dérivabilité des fonctions d une variable réelle 7 Continuité, dérivabilité des fonctions d une variable réelle Pour ce chapitre I désigne un intervalle réel et f une fonction définie sur I et à valeurs réelles ou complees. 7. Continuité en un point,

Plus en détail

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A.

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A. 16 Proposition : La somme des n premiers termes d une suite géométrique de raison q 1 est : n 1 u 0 q k 1 q n = u 0 1 q k=0 Il suffit de calculer (1 q) n 1 k=0 qk = n 1 k=0 qk n 1 k=0 qk+1 = n 1 k=0 qk

Plus en détail

Chapitre 12 : Étude locale des fonctions : limites

Chapitre 12 : Étude locale des fonctions : limites Chapitre 12 : Étude locale des fonctions : limites Dans tout ce chapitre, I désigne un intervalle de R, x 0 R, f est une fonction définie sur son domaine de définition D f à valeurs réelles. C f désigne

Plus en détail

Sommaire. 1. Equations Différentielles Linéaires du second ordre Equation différentielle linéaire du second ordre

Sommaire. 1. Equations Différentielles Linéaires du second ordre Equation différentielle linéaire du second ordre Equations et systèmes différentiels 3 - Sommaire Eq Différentielles Linéaires du 2 nd ordre Linéaire du second ordre 2 Existence des solutions 2 3 Recherche des solutions 2 4 Recollement de solutions 4

Plus en détail

TD 3: Suites réelles

TD 3: Suites réelles Université Pierre et Marie Curie Année 2011/2012 LM115 TD 3: Suites réelles MIME Convergence des suites : Par définition, une suite (u n ) converge vers un réel l si : Pour tout ɛ réel strictement positif,

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre V : Suites numériques 1 Un peu de topologie de R On a vu dans le chapitre

Plus en détail

Chapitre 7 Suites de nombres réels et complexes

Chapitre 7 Suites de nombres réels et complexes Chapitre 7 Suites de nombres réels et complexes I - Généralités sur les suites réelles I.1 - Dénition et Structure Définition 1 (Suite). Une suite réelle u est une application de N dans R. Pour tout n

Plus en détail

Opérateurs bornés sur les espaces de Hilbert

Opérateurs bornés sur les espaces de Hilbert Chapitre 4 Opérateurs bornés sur les espaces de Hilbert 4.1 Adjoint d une application linéaire continue entre espaces de Hilbert On commence avec la notion d adjoint; plusieurs des classes particulières

Plus en détail

Amphi 2: Suites - Compacité - Connexité

Amphi 2: Suites - Compacité - Connexité Amphi 2: Suites - Compacité - Connexité Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suites Soit (X, d) un espace métrique. Soit x X, et soit (x n ) n N une suite

Plus en détail

TD9. ENS Cachan M1 Hadamard Exercice 1 Opérateurs compacts et extraction de sous-suites

TD9. ENS Cachan M1 Hadamard Exercice 1 Opérateurs compacts et extraction de sous-suites Analyse fonctionnelle A. Leclaire ENS Cachan M1 Hadamard 2016-2017 TD9 Exercice 1 Opérateurs compacts et extraction de sous-suites Soient E,F deux espaces de Banach. On note B la boule unité fermée de

Plus en détail

1. Espaces métriques. 1 Distance, boules, ouverts, fermés...

1. Espaces métriques. 1 Distance, boules, ouverts, fermés... 1. Espaces métriques 1 Distance, boules, ouverts, fermés... Définition 1.1. Soit E un ensemble (non vide). On appelle distance sur E une application d de E E dans [0, + [ vérifiant les trois propriétés

Plus en détail

Programme des colles de mathématiques. Semaine 16 : du lundi 01 février au vendredi 05.

Programme des colles de mathématiques. Semaine 16 : du lundi 01 février au vendredi 05. Programme des colles de mathématiques. Semaine 16 : du lundi 01 février au vendredi 05. Liste des questions de cours 1 ) Donner les trois définitions de la notion de limite en un point : définition séquentielle,

Plus en détail

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone.

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. LEÇON N 6 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. Pré-requis : I est un intervalle si a,b I a b, [a,b] I ; Toute partie non

Plus en détail

e3a MP Épreuve de Mathématiques A

e3a MP Épreuve de Mathématiques A e3a - 013 - MP Épreuve de Mathématiques A Partie I : étude de la suite (v n ) 1 La suite (v n ) vérie la relation : v 0 > 0, v 1 > 0 et n 0, v n vn+1 v n+ = 1 Si elle converge vers une limite l nie ou

Plus en détail

CORRECTION DU DEVOIR DU 21/11/2016. Partie I. 1 cos (2t) 2

CORRECTION DU DEVOIR DU 21/11/2016. Partie I. 1 cos (2t) 2 Lycée Thiers CORRECTION DU DEVOIR DU //06 Partie I Rappelons d une part que : et d autre part que : t R, sin (t cos (t ( t [, ], cos (arcsin (t t ( La formule de linéarisation ( est bien connue. La formule

Plus en détail

Université de Metz. Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL

Université de Metz. Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL Université de Metz Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL par Ralph Chill Laboratoire de Mathématiques et Applications de Metz Année 2010/11 1 Table des matières Chapitre

Plus en détail

Bibliothèque d exercices L1 Feuille n 10. Suites

Bibliothèque d exercices L1 Feuille n 10. Suites Bibliothèque d exercices Énoncés L Feuille n 0 Suites Convergence Exercice Soit (u n ) n N une suite de R. Que pensez-vous des propositions suivantes : Si (u n ) n converge vers un réel l alors (u n )

Plus en détail

n a k x k = 0, k=0 n a k x k. k=0

n a k x k = 0, k=0 n a k x k. k=0 Université Claude Bernard Lyon I CAPES de Mathématiques : Oral Année 2006 2007 Fonctions polynômes On travaille sur un corps K infini, par exemple R ou C. Définition, structures (a) Définition On appelle

Plus en détail

CHAPITRE 2 SUITES NUMÉRIQUES

CHAPITRE 2 SUITES NUMÉRIQUES CHAPITRE 2 SUITES NUMÉRIQUES Définition 2.0. Une suite réelle est une application u : N R qui à tout n de N associe un élément u n de R, appelé terme général de la suite. On notera donc la suite (u n ),

Plus en détail

Convergence des suites monotones et applications.

Convergence des suites monotones et applications. Université Paris Est Marne-la-Vallée L Sciences Physiques 20-202 Compléments en Analyse Convergence des suites monotones et applications.. Quelques définitions Ce chapitre est consacré à la convergence

Plus en détail

(Q) non vide et majorée, alors il existe dans R un plus petit majorant de A, appelé la borne CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES

(Q) non vide et majorée, alors il existe dans R un plus petit majorant de A, appelé la borne CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES 1.1. Propriétés de R On suppose connus N = {0, 1, 2, 3,...}, l anneau des entiers Z = {..., 2, 1, 0, 1, 2,...} et le corps des rationnels Q = { a a, b Z,

Plus en détail

4.1 L ensemble des réels est un corps ordonné

4.1 L ensemble des réels est un corps ordonné Table des matières 4 Propriétés de R 4. L ensemble des réels est un corps ordonné....................... 4.. Propriétés d ordre de R............................. 4..2 Valeur absolue..................................

Plus en détail

EXERCICES. 1 - Montrer que A et B sont non vide, que A est majoré par tout élément de B et que B

EXERCICES. 1 - Montrer que A et B sont non vide, que A est majoré par tout élément de B et que B EXERCICES 1 Soit E l ensemble des rationnels inférieurs à 2. 1 - Montrer que E admet une borne supérieure M dans R. 2 - Montrer que M = 2 (on pourra raisonner par l absurde). 3 - E est-il une partie fermée

Plus en détail

1 Quelques propriétés du spectre d un opérateur borné

1 Quelques propriétés du spectre d un opérateur borné Université Paris 7, Master 1 de Mathématiques Année 008/009 Notes pour le cours de théorie spectrale 1 Quelques propriétés du spectre d un opérateur borné Nous supposons ici que E est un espace de Banach

Plus en détail

Les fonctions de plusieurs variables (suite)

Les fonctions de plusieurs variables (suite) Les fonctions de plusieurs variables (suite) Exemple d application de ce résultat Comme x x (x, y) (x, y ) et y y (x, y) (x, y ), les applications définies par (x, y) x, (x, y) y sont continues sur R 2

Plus en détail

Petit tuto pour utiliser Weyl-Newton.py (01/17)

Petit tuto pour utiliser Weyl-Newton.py (01/17) Petit tuto pour utiliser Weyl-Newton.py (0/7) Introduction Dans de nombreuses applications, nous serons amenés à localiser les racines de polynômes complexes. Parfois, il nous faudra en connaître de bonnes

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Enoncés 1 Ouverts et fermés Exercice 1 [ 113 ] [correction] Montrer que tout fermé peut s écrire comme intersection d une suite décroissante d ouverts.

Plus en détail

Cours d Analyse I : les réels et les fonctions

Cours d Analyse I : les réels et les fonctions Introduction à R Suites numériques Cours d Analyse I : les réels et les fonctions Université Lyon 1 Institut Camille Jordan CNRS UMR 5208 FRANCE Automne 2014 - Licence L1 Introduction à R Suites numériques

Plus en détail

Corrigé MATHS II Résultats préliminaires. Filière PSI. 1 1.a. Soient A,B M 2 ( ). Par définition d une classe d équivalence nous avons :

Corrigé MATHS II Résultats préliminaires. Filière PSI. 1 1.a. Soient A,B M 2 ( ). Par définition d une classe d équivalence nous avons : MATHS II 008 Corrigé Filière PSI I Résultats préliminaires 1 1.a. Soient A,B M (). Par définition d une classe d équivalence nous avons : 1.b. ainsi : B (A) P GL (); B = PAP 1 (A) = {PAP 1 ; P GL ()} Sachant

Plus en détail

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 Université de Tours Année 2015-2016 Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 NOMBRES COMPLEXES ET ÉQUATIONS ALGÉBRIQUES (12 h) 1 Nombres complexes 1.1 Introduction

Plus en détail

u n = u n 1 + u n 2, (1)

u n = u n 1 + u n 2, (1) Chapitre II Suites II.a. Introduction Définition 21 (suite) Une suite est une fonction (cf. déf. 35) u de N dans un ensemble E. Notation Pour mettre en évidence le fait que l ensemble de départ est N,

Plus en détail

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Notations. K désigne R ou C. S (K désigne l'ensemble des suites d'éléments de K et u, v des éléments de S (K. I, J désignent des

Plus en détail

Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007

Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007 Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007 Corrigé en janvier 2009 Rapidité de convergence d une suite réelle L objectif de ce texte est de se donner des outils pour «mesurer» la rapidité

Plus en détail

La décomposition de Dunford des endomorphismes.

La décomposition de Dunford des endomorphismes. Document de travail pour l atelier de la journée régionale APMEP d Aix-Marseille du 17 mai André BONNET andre.bonnet9@orange.fr La décomposition de Dunford des endomorphismes. En travaillant avec un jeune

Plus en détail

Continuité. Chapitre 12 RAPPELS. Sommaire. 1) Définitions. Définition 12.1

Continuité. Chapitre 12 RAPPELS. Sommaire. 1) Définitions. Définition 12.1 Chapitre 1 Continuité Sommaire I Rappels.................................................. 114 1) Définitions............................................. 114 ) Théorèmes généraux.......................................

Plus en détail

Limite d une fonction en un point de R. Fonctions continues.

Limite d une fonction en un point de R. Fonctions continues. DOCUMENT 23 Limite d une fonction en un point de R. Fonctions continues. 1. Introduction et notations Considérons la fonction f : x sin x définie sur R. La valeur 0 n appartient pas à x l ensemble de définition

Plus en détail

Les suites. Introduction. 1. Définitions Définition d une suite

Les suites. Introduction. 1. Définitions Définition d une suite Les suites Vidéo partie Premières définitions Vidéo partie Limite Vidéo partie 3 Exemples remarquables Vidéo partie 4 Théorèmes de convergence Vidéo partie 5 Suites récurrentes Fiche d'exercices Suites

Plus en détail

Test 2. Exercice 4. Le groupe (Z/p α Z) est cyclique pour p premier impair. Théorie des nombres Feuille n o 1 : Primalité, Corps finis

Test 2. Exercice 4. Le groupe (Z/p α Z) est cyclique pour p premier impair. Théorie des nombres Feuille n o 1 : Primalité, Corps finis M1 2015 2016 Théorie des nombres Feuille n o 1 : Primalité, Corps finis Primalité et (Z/nZ) Tests de compréhension Test 1. a. Rappeler pourquoi si K est un corps, tout polynome de degré n a coefficients

Plus en détail

SUITES RÉELLES CHAPITRE 3. 1 Compléments sur les réels. 1.1 Rappels. Définition 3.1. Soient x et y deux réels. On note. x si x 0. x sinon.

SUITES RÉELLES CHAPITRE 3. 1 Compléments sur les réels. 1.1 Rappels. Définition 3.1. Soient x et y deux réels. On note. x si x 0. x sinon. CHAPITRE 3 SUITES RÉELLES 1 Compléments sur les réels 1.1 Rappels 1.1.a Définition 3.1 Valeur absolue Soient x et y deux réels. On note x max(x, y) = y si x y sinon x et min(x, y) = y si x y sinon On étend

Plus en détail

Espaces de Banach. 1 Normes sur un espace vectoriel. 2 Topologie des espaces vectoriels normés. 2.1 Rappels

Espaces de Banach. 1 Normes sur un espace vectoriel. 2 Topologie des espaces vectoriels normés. 2.1 Rappels 1 Normes sur un espace vectoriel Espaces de Banach Définition 1.1. (Norme) Soit V un R-espace vectoriel (abrégé R-ev dans la suite). Une norme est une application définie sur V à valeurs dans R +, notée

Plus en détail

Espaces euclidiens, orthogonalité, longueur. Moindres carrés.

Espaces euclidiens, orthogonalité, longueur. Moindres carrés. Université Nice Sophia-Antipolis SL2SF 2012-13 Algèbre 2 Espaces euclidiens, orthogonalité, longueur. Moindres carrés. On travaille avec le corps des réels, noté R. Pour tout entier naturel n, on considère

Plus en détail

Corrigé du Concours Blanc

Corrigé du Concours Blanc Corrigé du Concours Blanc Exercice : On considère la fonction f définie par : f(x = x + 2 2 ln(e x + et on note (C la courbe représentative de f dans un repère orthonorrnal.. Etude de la fonction f. a.

Plus en détail

Etude théorique d équation d ordre 2

Etude théorique d équation d ordre 2 [http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 Etude théorique d équation d ordre 2 Eercice 1 [ 01555 ] [Correction] Soit q : R R + une fonction continue non nulle. On se propose de

Plus en détail

Continuité sur un intervalle

Continuité sur un intervalle Continuité sur un intervalle Bcpst 1 27 février 2017 Notations du chapitre Dans tout ce chapitre, et sauf mention contraire : I est un intervalle de non vide et non réduite à un point ; est un domaine

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 5 [ ] [correction] Soient u 0 ]0, 1[ et pour tout n N,

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 5 [ ] [correction] Soient u 0 ]0, 1[ et pour tout n N, [http://mp.cpgedupuydelome.fr] édité le 0 juillet 04 Enoncés Suites récurrentes Exercice [ 0038 ] [correction] Etudier la suite définie par u 0 > 0 et pour tout n N, Exercice [ 00330 ] [correction] Soient

Plus en détail

Nombres complexes. Lycée du parc. Année

Nombres complexes. Lycée du parc. Année Nombres complexes Lycée du parc Année 2014-2015 Introduction historique Au début du XVI ème siècle en Italie, Scipione del Ferro, découvre une formule permettant de résoudre les équations du type x 3 +

Plus en détail

I ESPACES METRIQUES. d : E E R +

I ESPACES METRIQUES. d : E E R + I ESPACES METRIQUES 1. Espaces métriques 1.1 Définitions Soit E un ensemble non vide. On appelle distance sur E toute application vérifiant les propriétés suivantes : d : E E R + a) x, y E, d(x, y) = 0

Plus en détail

LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre.

LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre. LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre. Pré-requis : Corps R construit : opérations, ordre total, axiome de la borne

Plus en détail

CORRECTION - FX 0. ab a b + 1 1

CORRECTION - FX 0. ab a b + 1 1 Lycée Thiers CORRECTION - FX 0 Exercice. Somme et produit... qui est le plus grand? On considère deux entiers a, b >. Comparer et ab. On constate que : ab a b + = a ) b ) > 0 Or, si p, q sont entiers,

Plus en détail

Complétude et dimension d un espace vectoriel normé. Introduction et rappels. Espaces métriques. Jean-Baptiste Campesato 10 février 2010

Complétude et dimension d un espace vectoriel normé. Introduction et rappels. Espaces métriques. Jean-Baptiste Campesato 10 février 2010 Complétude et dimension d un espace vectoriel normé Jean-Baptiste Campesato 10 février 2010 Le but de cet article est de présenter les liens entre la dimension d un espace vectoriel normé et de sa possible

Plus en détail

1. Espace Vectoriel Normé R p

1. Espace Vectoriel Normé R p Fonctions de plusieurs variables : limites et continuité 6-1 Sommaire 1. Espace Vectoriel Normé R p 1 1.1. Norme et distance associée........ 1 1.2. Part. bornées, boules, ouverts et fermés 2 2. Suite

Plus en détail

Feuille d exercices n o 3

Feuille d exercices n o 3 L3 Variable complexe Feuille d exercices n o 3 Exercice 1. Soit P (z) = z 2 +az+b un polynôme de degré 2 à coefficients complexes, avec b. On note α et β les racines complexes de P, et on pose f(z) = 1/P

Plus en détail

Limites à l infini d une fonction

Limites à l infini d une fonction 9 Limites à l infini d une fonction On garde les notations du chapitre précédent en supposant ici que a = ou a = + est adhérent à l ensemble I, ce qui signifie que : ou : m R, ], m[ I M R, ]M, + [ I ce

Plus en détail

Le Théorème de Hahn-Banach et ses conséquences

Le Théorème de Hahn-Banach et ses conséquences Université d Artois Faculté des Sciences Jean Perrin Analyse Fonctionnelle (Master 1 Mathématiques-Informatique) Daniel Li Chapitre 6 Le Théorème de Hahn-Banach et ses conséquences 1 La forme analytique

Plus en détail

Proposition : Tout sev F est stable par combinaison linéaire, c est-à-dire :

Proposition : Tout sev F est stable par combinaison linéaire, c est-à-dire : 61 Proposition : Tout sev F est stable par combinaison linéaire, c est-à-dire : n, ( x 1,..., x n ) F n, (λ 1,..., λ n ) n, n λ i x i F i=1 Par récurrence sur le nombre de termes dans la combinaison linéaire.

Plus en détail

AH - FONCTIONS AFFINES PAR INTERVALLES

AH - FONCTIONS AFFINES PAR INTERVALLES AH - FONCTIONS AFFINES PAR INTERVALLES Définition On appelle fonction affine par intervalles une fonction f définie et continue sur R pour laquelle il existe une subdivision a 1 < a 2 < < a n telle que

Plus en détail

Convergence : vitesse et accélération

Convergence : vitesse et accélération 1 Convergence : vitesse et accélération 1. Rapidité de convergence. a) Introduction. Daniel PERRIN Soit (u n ) n N une suite de nombres réels qui converge vers a. On cherche à préciser la rapidité de convergence

Plus en détail

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans DST n 4 - Corrigé Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans l'ensemble des nombres réels, et de construire une suite qui

Plus en détail

Chapitre 2: Le théorème de projection et ses applications

Chapitre 2: Le théorème de projection et ses applications Chapitre : Le théorème de projection et ses applications 1 décembre 007 1 Introduction En géométrie élémentaire, si P est un plan et x un point qui n appartient pas à P, il existe un unique point y P qui

Plus en détail

Chapitre 2 : Suites numériques

Chapitre 2 : Suites numériques Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 013-014 Chapitre : Suites numériques Dans tout ce qui suit on considère des suites (u n ) n N à valeurs réelles, c est à dire des applications de N

Plus en détail

Corrigés d exercices pour le TD 5

Corrigés d exercices pour le TD 5 Corrigés d exercices pour le TD 5 Compacts? Les ensembles suivants sont-ils compacts? Justifier la réponse. 1. Z, dans l espace métrique R muni de la distance discrète. 2. {0, 1}, dans l espace métrique

Plus en détail

Séries entières. Rayon de convergence. Propriétés de la somme.

Séries entières. Rayon de convergence. Propriétés de la somme. Séries entières. Rayon de convergence. Propriétés de la somme. F.Gaudon 9 août 2005 Table des matières 1 Définition, convergence 2 2 Propriétés de la somme 3 3 Développement en série entière 5 1 On désigne

Plus en détail

Espaces euclidiens, orthogonalité, longueur. Moindres carrés.

Espaces euclidiens, orthogonalité, longueur. Moindres carrés. Université de Nice SL2M 2009-10 Algèbre 2 Espaces euclidiens, orthogonalité, longueur. Moindres carrés. On travaille avec le corps des réels, noté R. Pour tout entier naturel n, on considère l ensemble

Plus en détail

Notations et préliminaires

Notations et préliminaires Notations et préliminaires Tous les corps figurant dans le problème sont supposés commutatifs. N désigne l ensemble des nombres entiers naturels N désigne l ensemble des nombres entiers naturels non nuls

Plus en détail

2.1 Rappels sur la convergence dans les espaces topologiques. Lemme (Axiome du choix) Pour tout ensemble non vide X il existe une fonction :

2.1 Rappels sur la convergence dans les espaces topologiques. Lemme (Axiome du choix) Pour tout ensemble non vide X il existe une fonction : Chapitre 2 Opérateurs bornés 2.1 Rappels sur la convergence dans les espaces topologiques 2.1.1 Relations d ordre Soit une relation d ordre sur un ensemble X. Si Y X on définit les majorants (resp. minorants)

Plus en détail

Département de mathématiques et informatique L1S1, module A ou B Maths. Chapitre 3. Suites numériques

Département de mathématiques et informatique L1S1, module A ou B Maths. Chapitre 3. Suites numériques Département de mathématiques et informatique L1S1, module A ou B Maths Chapitre 3 Suites numériques p. 2 Remarque importante. Ce cours n est pas indépendant du cours de Mathématiques pour tous. Ce document

Plus en détail

Devoir non surveillé Équation différentielle, fonction définie par une intégrale

Devoir non surveillé Équation différentielle, fonction définie par une intégrale Devoir non surveillé Équation différentielle, fonction définie par une intégrale Pelletier Sylvain, BCPST Lycée Hoche $\ CC BY: pour le 0 juin Eercice Résoudre l équation différentielle : E y y + 5y cos

Plus en détail

Les fonctions de plusieurs variables (suite)

Les fonctions de plusieurs variables (suite) . Les fonctions de plusieurs variables (suite) Comme x x (x, y) (x, y ) et y y (x, y) (x, y ), les applications définies par (x, y) x, (x, y) y sont continues sur R 2. D après le théorème précédent les

Plus en détail

Analyse I : suites, limites et continuité

Analyse I : suites, limites et continuité Analyse I : suites, limites et continuité Maxime Legrand ENS - 7 décembre 2013 http ://matholympia.blogspot.fr/ 1 Petits rappels sur les quantificateurs Définition 1. On introduit (ou rappelle) les quantificateurs

Plus en détail

Continuité des racines d un polynôme

Continuité des racines d un polynôme Continuité des racines d un polynôme Vincent Pilaud 2006 Introduction Soient a, b, c trois applications continues de [0, ] dans R telles que pour tout t [0, ], b(t) 2 4a(t)c(t) 0 et a(t) 0. Considérons

Plus en détail

Limites et continuité de fonctions

Limites et continuité de fonctions Chapitre 12 Limites et continuité de fonctions Mathématiques PTSI Lycée Déodat de Séverac Mathématiques PTSI (Lycée Déodat de Séverac) Limites et continuité de fonctions 1 / 53 Notations : On note, sauf

Plus en détail

Impossibilité de la duplication du cube, de la quadrature du disque et de la trisection de l angle.

Impossibilité de la duplication du cube, de la quadrature du disque et de la trisection de l angle. Impossibilité de la duplication du cube, de la quadrature du disque et de la trisection de l angle. L étude de ces trois célèbres problèmes de contructions géométriques à la règle et au compas nécessite

Plus en détail

III Somme de deux séries entières, produit par un scalaire 5

III Somme de deux séries entières, produit par un scalaire 5 Séries entières I Généralités I.A Définition........................................... I.B Lemme d Abel........................................ 2 I.C Rayon de convergence d une série entière..........................

Plus en détail

AGRÉGATION INTERNE DE MATHÉMATIQUES Session 2012, épreuve 2

AGRÉGATION INTERNE DE MATHÉMATIQUES Session 2012, épreuve 2 AGRÉGATION INTERNE DE MATHÉMATIQUES Session 2012, épreuve 2 2 NOTATIONS ET RAPPELS R désigne l ensemble des nombres réels N désigne l ensemble des entiers naturels Pour tous entiers naturels p et q vérifiant

Plus en détail

Matrices symétriques réelles. Exercice 2 Le produit de deux matrices symétriques réelles est-il symétrique? R n = ker (u) Im (u)

Matrices symétriques réelles. Exercice 2 Le produit de deux matrices symétriques réelles est-il symétrique? R n = ker (u) Im (u) Matrices symétriques réelles 1 Préliminaires On se place dans (R n, ) euclidien, le produit scalaire canonique étant défini par : (x, y) R n R n, x y = t x y = x k y k On note : M n (R) l algèbres des

Plus en détail

LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point

LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point a de R. Opérations algébriques sur les ites. Continuité d une fonction en un point. Exemples. Pré-requis : Limites d une suite réelle

Plus en détail

Résumé de cours: Espaces vectoriels normés

Résumé de cours: Espaces vectoriels normés CPGE My Youssef, Rabat «Å ««É ««É ««««º««È ««ö ««««É ««Å ««««««Â«Å ««««««ã : 18 novembre 2009 Blague du jour Bientôt vous serez ingenieur, peut être ingeénieur informaticien. Vérifier sur la liste cidessous

Plus en détail

Propriétés fondamentales de R et suites numériques réelles

Propriétés fondamentales de R et suites numériques réelles Propriétés fondamentales de R et suites numériques réelles Denis Vekemans Ordre total compatible En algèbre générale, un groupe ordonné est la donnée d une ensemble G, muni d une loi de composition interne

Plus en détail

VALEUR ABSOLUE D UN RÉEL. ln 11

VALEUR ABSOLUE D UN RÉEL. ln 11 Lycée Thiers VALEUR ABSOLUE D UN RÉEL Définition et représentation graphique La valeur absolue d un nombre réel x est notée x. Il existe plusieurs façons équivalentes de la définir : x est la distance

Plus en détail

CONCOURS 2014 DEUXIÈME ÉPREUVE DE MATHÉMATIQUES. Filière MP. (Durée de l épreuve : 4 heures) L usage d ordinateur ou de calculette est interdit.

CONCOURS 2014 DEUXIÈME ÉPREUVE DE MATHÉMATIQUES. Filière MP. (Durée de l épreuve : 4 heures) L usage d ordinateur ou de calculette est interdit. A 2014 MATH. II MP ÉCOLE DES PONTS PARISTECH, SUPAÉRO (ISAE), ENSTA PARISTECH, TÉLÉCOM PARISTECH, MINES PARISTECH, MINES DE SAINT-ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH (FILIÈRE MP),

Plus en détail

Chapitre 04 : Séries Entières

Chapitre 04 : Séries Entières Chapitre 04 : Séries Entières On étudie dans ce chapitre une famille particulière des séries de fonctions : celles de la forme ou dites séries entières. On s intéresse dans un premier temps aux propriétés

Plus en détail

CCP 2002 PC Maths 1 page 1. CONCOURS COMMUNS POLYTECHNlQUES EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES 1. Durée : 4 heures

CCP 2002 PC Maths 1 page 1. CONCOURS COMMUNS POLYTECHNlQUES EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES 1. Durée : 4 heures CCP 2002 PC Maths 1 page 1 SESSION 2002 CONCOURS COMMUNS POLYTECHNlQUES EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES 1 Durée : 4 heures Les calculatrices sont interdites **** N.B. : Le candidat attachera

Plus en détail

Préparation à l'agrégation Interne Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME 1

Préparation à l'agrégation Interne Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME 1 Préparation à l'agrégation Interne 2005-2006 F. Dupré Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME On notera N n l'ensemble des entiers compris entre et n, n désignant un

Plus en détail

Chapitre 5 Espaces métriques connexes

Chapitre 5 Espaces métriques connexes Chapitre 5 Espaces métriques connexes Semaine 1 : Etude du paragraphe 1 et des sous-paragraphes 2.1 et 2.2. Faire les exercices d apprentissage 5.1 5.11 et les exercices d approfondissement 5.18 5.20.

Plus en détail

Corrigé MATHS I Résultats préliminaires. Filière MP

Corrigé MATHS I Résultats préliminaires. Filière MP MATHS I 28 Corrigé Filière MP I Résultats préliminaires 1 On considère l application ψ : 2 définie par : ψ(x, y) = x + iy, (x, y) 2. 1.a. 1.b. 1.c. ψ est une application linéaire et transforme la base

Plus en détail

Rappels de théorie de l intégration et des probabilités

Rappels de théorie de l intégration et des probabilités CHAPITRE 26 Rappels de théorie de l intégration et des probabilités 26.1 Résultats de théorie de l intégration 26.1.1 Théorème de dérivation des intégrales à paramètre On en énonce une version lisible

Plus en détail

Analyse numérique élémentaire

Analyse numérique élémentaire Analyse numérique élémentaire Chapitre 8 : Calcul numérique des valeurs propres et des vecteurs propres Équipe de Mathématiques Appliquées UTC Juin 2007 suivant Chapitre VIII Détermination des valeurs

Plus en détail

PSI Sujet de révisions n o 1 Solution Exercice On a χ A (X) =

PSI Sujet de révisions n o 1 Solution Exercice On a χ A (X) = PSI Sujet de révisions n o Solution 5-6 Exercice. On a χ A (X) = X 4 y X x = X(X x) + 4 y = X xx + 4 y; le discriminant associé est = 4(x + y 4). Si >, A possède deux valeurs propres distinctes et est

Plus en détail

J.F.C. F.N.P.V. p. 1 EXTREMUM. Dans ce cas le minimum de f sur D est f(a), c est le plus petit élément de f(d) et on le note : Min

J.F.C. F.N.P.V. p. 1 EXTREMUM. Dans ce cas le minimum de f sur D est f(a), c est le plus petit élément de f(d) et on le note : Min 19-3- 2010 J.F.C. F.N.P.V. p. 1 V EXTREMUM 1. Les définitions de base Il convient d avoir une parfaite connaissance des définitions qui suivent Déf. 37 f est une application d une partie D de R n dans

Plus en détail

Notations et présentation du sujet. Partie A : une majoration des modules des racines d un polynôme

Notations et présentation du sujet. Partie A : une majoration des modules des racines d un polynôme Notations et présentation du sujet Dans tout le problème n désigne un entier naturel non nul. Si a et b sont deux entiers naturels tels que a < b on note [a, b] l ensemble des entiers naturels k tels que

Plus en détail

Nombres constructibles à la règle et au compas

Nombres constructibles à la règle et au compas Nombres constructibles à la règle et au compas blogdemaths.wordpress.com 1 Points constructibles à la règle et au compas Si M et N sont deux points distincts, on notera (M N) la droite passant par M et

Plus en détail

Séries entières - Rayon de convergence - Propriétés de la somme

Séries entières - Rayon de convergence - Propriétés de la somme 1 Définition et premières propriétés 1.1 Notion de série entière Définition 1 On appelle série entière toute série d applications f n telle qu il existe une suite ( ) n N d éléments de C telle que : n

Plus en détail

L ensemble R des nombres réels

L ensemble R des nombres réels L ensemble R des nombres réels Plan du chapitre 1 L ensemble des nombres réels page 11 Description géométrique des réels page 1 Inégalités dans R page 1 Distance entre deux réels Intervalles de R page

Plus en détail

Concours Communs Polytechniques 2013 Épreuve de Mathématiques n 1 TSI

Concours Communs Polytechniques 2013 Épreuve de Mathématiques n 1 TSI ÉLÉMENTS DE CORRECTION CCP TSI MATHS Concours Communs Polytechniques Épreuve de Mathématiques n TSI. a) On a f ) + Eercice donc f ) + +. b) L application f est dérivable et même de classe C ) sur R comme

Plus en détail

Différentielle seconde, extremums.

Différentielle seconde, extremums. Différentielle seconde, extremums Exercice 1 Soit A une matrice de taille n n Pour tout x R n, on pose qx) = x, Ax Montrer que q est C et calculer son gradient et sa matrice hessienne Indication On remarquera

Plus en détail

I) Auto-test : Nombres complexes (I)

I) Auto-test : Nombres complexes (I) I) Auto-test : Nombres complexes (I) 1. Donner la définition d un groupe. Quantifiez tous les axiomes. On appelle groupe un couple (G, ) où G est un ensemble et est une loi interne sur G. i.e. : G G G

Plus en détail

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5 I Rappels de vocabulaire Suites réelles Définition 1 Une suite réelle u est une application de I R où I est une partie de N. Au lieu de noter u(n), pour les suites on note u n l image de n par l application

Plus en détail

Chapitre 3 MÉTHODES ITÉRATIVES POUR LA RÉSOLUTION DES

Chapitre 3 MÉTHODES ITÉRATIVES POUR LA RÉSOLUTION DES Chapitre 3 MÉTHODES ITÉRATIVES POUR LA RÉSOLUTION DES SYSTÈMES LINÉAIRES Chapitre 3 MÉTHODES ITÉRATIVES POUR LA RÉSOLUTION DES SYSTÈMES LINÉAIRES 3. Introduction On va étudier les méthodes itératives pour

Plus en détail