LE THÉORÈME FONDAMENTAL DE L ALGÈBRE

Dimension: px
Commencer à balayer dès la page:

Download "LE THÉORÈME FONDAMENTAL DE L ALGÈBRE"

Transcription

1 Lycée Thiers LE THÉORÈME FONDAMENTAL DE L ALGÈBRE Depuis le courant du 17ème siècle, divers mathématiciens s interrogent sur le nombre de solutions d une équation polynomiale de degré n. L idée qu une telle équation admette n solutions est formulée pour la première fois en 1629 par le mathématicien flammand Albert Girard, mais sans indiquer que ces solutions sont de la forme a + ib, avec a, b réels. En 1637, René Descartes écrit que l on peut imaginer n solutions, mais que celles-ci ne correspondent en général à aucune quantité concrète. C est à Jean Le Rond d Alembert que l on doit la première tentative sérieuse, menée en 1746, pour établir l énoncé suivant : Tout polynôme complexe non constant possède au moins une racine complexe D Alembert construit une suite de nombres complexes qui converge vers une racine du polynôme, mais sa preuve est invalide. Euler attaque de son côté le problème en considérant en 1749 un polynôme unitaire de degré 2 n qu il affirme pouvoir factoriser en un produit de deux polynômes de degré moitié, visant ainsi une récurrence, mais son argumentation manque de précision. C est finalement Gauss qui, en 1799, expose la première véritable démonstration. Il est alors agé de 22 ans. On considère aujourd hui que cette première preuve de Gauss comportait quelques failles. Plus tard, Gauss produira d autres démonstrations abouties cette fois de ce résultat. Jean Le Rond d Alembert Carl Friedrich Gauss

2 LE THÉORÈME FONDAMENTAL DE L ALGÈBRE 2 Les quelques repères chronologiques qui précèdent sont tirées de [1], que l on pourra consulter pour plus de détails. Le théorème de d Alembert-Gauss est considéré comme une des pierres angulaires de l algèbre moderne : il est connu sous le nom de théorème fondamental de l algèbre. Il en existe diverses démonstrations. Celle qui suit est sans doute la plus élémentaire de toutes. Il s agit d une version moderne de la démonstration présentée en 1814 dans les Annales de Gergonne [2] par Jean-Robert Argand , comptable de son métier et mathématicien amateur. Pour des raisons de clarté, la preuve est décomposée en deux étapes, exposées aux sections 1 et Etape préliminaire Lemme. Soit P C [X] non constant et soit ζ C tel que P ζ 0. Alors il existe z C tel que P z < P ζ. Démonstration. Afin d alléger les notations, posons Q z = P ζ + z. Ainsi Q 0 0 et il s agit de prouver l existence de z C tel que Q z Q < 0. Posons : Q z = Q 0 + b m z m + b k z k où m désigne la valuation de Q Q 0 ce dernier polynôme est non nul puisque Q n est pas constant. Intuitivement, lorsque z parcourt un cercle de centre 0 et de rayon r > 0 assez petit, Q z reste très voisin de Q z = Q 0 + b m z m, qui parcourt m fois plus vite que z le cercle de centre Q 0 et de rayon b m r m. Ce dernier cercle coupe le segment [0, Q 0] en un point, plus proche de 0 que ne l est Q 0. Il reste à expliquer rigoureusement que le fait d avoir négligé dans cette description les termes b k z k pour k {m + 1,, n} n a rien modifié d essentiel.

3 Pour cela, considérons ω C tel que ω m = b m LE THÉORÈME FONDAMENTAL DE L ALGÈBRE 3 Q0. Bien sûr, le théorème fondamental de l algèbre n est pas requis pour affirmer l existence d un tel ω...! On sait en effet que tout nombre complexe possède des racines m èmes. On a alors, en posant y = ωz : donc, pour y ]0, 1[ : Q z Q 0 1 ym + et, finalement, si y est assez petit : Q z Q 0 = 1 ym + c k y k c k y k = 1 y m 1 Q z Q 0 < 1 c k y k m 2. Preuve du théorème On considère P C [X] non constant : P = a k X k ; avec n 1 et a n 0 On confond comme d habitude le polynôme P et la fonction polynomiale qui lui est associée. En mettant en facteur le terme de plus haut degré dans P z, on constate que : n 1 P z = a n z n a 1 + k z k n a n d où, par inégalité triangulaire : Il s ensuit que : et, en particulier, que : P z an z n 1 lim z + n 1 P z = + a k a n z k n R > 0; z C, z > R P z P 0 Comme le disque D = {z C; z R} est compact cf. section suivante, l application continue D R, z P z atteint sa borne inférieure en un certain ζ D. On a ainsi, pour tout z C : z R P z P ζ et z > R P z P 0 mais, comme 0 D, il vient P 0 P ζ, de sorte que, finalement : z C, P z P ζ

4 LE THÉORÈME FONDAMENTAL DE L ALGÈBRE 4 En supposant que P ne s annule pas, ce qui signifie exactement que P ζ > 0, le lemme de la section précédente apporte une contradiction. 3. Un peu de compacité Un sous-ensemble K de C est dit compact 1 lorsque toute suite à termes dans K admet une sous-suite qui converge vers un élément de K. On peut démontrer la caractérisation suivante : Théorème. Etant donné K C, les assertions suivantes sont équivalentes : ➀ K est compact. ➁ K est fermé et borné. Rappelons que K est fermé signifie que pour toute suite convergente à termes dans K, la limite de la suite est encore dans K. Le résultat suivant est essentiel : Théorème. Si K C est compact, non vide et si f : K R est continue, alors f est bornée et atteint ses bornes. Autrement dit, l ensemble f K = { f z ; z K } est une partie non vide bornée de R, qui admet de ce fait une borne supérieure et une borne inférieure ; et il existe α, ω K 2 tel que : f α = inf f K et f ω = sup f K Les preuves de ces deux théorèmes qui généralisent des résultats connus lorsque K est un segment de R sont données en annexe. 4. Annexe Preuve du théorème 1 : ➀ ➁ Soit z n n N une suite convergente à termes dans K. Notons λ sa limite. Par hypothèse, il existe une suite extraite z ϕn qui converge vers un certain µ K. Comme toute suite extraite d une suite convergente converge vers la même limite, il vient λ = µ et donc λ K. Ainsi, K est fermé. Supposons maintenant K non borné ; alors pour tout n N, il existe ζ n K tel que ζ n n. Il existe alors une suite extraite ζ ψn qui converge, et qui est donc bornée, ce qui est en contradiction avec n N, ζψn ψ n. 1. En fait, cette définition est celle de la compacité séquentielle, mais ne chipotons pas.

5 LE THÉORÈME FONDAMENTAL DE L ALGÈBRE 5 ➁ ➀ Soit z n n N une suite à termes dans K. Posons, pour tout n N, x n = Re z n et y n = Im z n. Comme x n x 2 n + y 2 n = z n, et comme K est borné, la suite réelle x n n N est bornée donc admet d après Bolzano-Weierstrass une suite extraite convergente xϕn, de limite a R. Pour les mêmes raisons, la suite y ϕn admet une suite n N extraite convergente y ϕ ψn, de limite b R. Il s ensuit que la suite z n N ϕ ψn converge vers λ = a + ib. Enfin, comme K est fermé : λ K. Preuve du théorème 2 : Supposons f non bornée : pour tout n N, il existe z n K tel que f z n n. En considérant une suite extraite z ϕn convergente de limite λ K, et en invoquant la continuité de f en λ, on obtient lim f z n ϕn = f λ, ce qui est incompatible avec : n N, f zϕn ϕ n +. Ainsi, f est bornée. Notons α = inf { f z ; z K }. Par définition d une borne inférieure : n N, z n K; α f z n < α + 1 n + 1 Soit z ϕn une suite extraite convergente, de limite λ K. En passant à la limite dans : α f z ϕn < α + 1 ϕ n + 1 on obtient d après la continuité de f en λ : f λ = α. La borne inférieure de f sur K est donc bien atteinte. Même chose pour la borne supérieure. 5. Références [1] Le site web MacTutor History of Mathematics archive est une importante ressource documentaire. L adresse de base est [2] Annales de Gergonne, Philosophie mathématique. Réflexions sur la nouvelle théorie des imaginaires, suivies d une application à la démonstration d un théorème d analise 2, p Ce dernier document est consultable sur l internet attention! URL sur deux lignes : 5_/AMPA_ _0/AMPA_ _0.pdf On peut lire les quelques contributions de J.R. Argand aux annales de Gergonne en cherchant Argand à l adresse : 2. non, ce n est pas une faute de frappe...

CH V : Généralités sur les suites réelles

CH V : Généralités sur les suites réelles CH V : Généralités sur les suites réelles I. Notion de suite I.1. Définition générale Définition Une suite de nombre réels u est une application de N dans R i.e. une fonction de N dans R telle que tout

Plus en détail

Continuité, dérivabilité des fonctions d une variable réelle

Continuité, dérivabilité des fonctions d une variable réelle 7 Continuité, dérivabilité des fonctions d une variable réelle Pour ce chapitre I désigne un intervalle réel et f une fonction définie sur I et à valeurs réelles ou complees. 7. Continuité en un point,

Plus en détail

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A.

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A. 16 Proposition : La somme des n premiers termes d une suite géométrique de raison q 1 est : n 1 u 0 q k 1 q n = u 0 1 q k=0 Il suffit de calculer (1 q) n 1 k=0 qk = n 1 k=0 qk n 1 k=0 qk+1 = n 1 k=0 qk

Plus en détail

Chapitre 12 : Étude locale des fonctions : limites

Chapitre 12 : Étude locale des fonctions : limites Chapitre 12 : Étude locale des fonctions : limites Dans tout ce chapitre, I désigne un intervalle de R, x 0 R, f est une fonction définie sur son domaine de définition D f à valeurs réelles. C f désigne

Plus en détail

Chapitre 7 Suites de nombres réels et complexes

Chapitre 7 Suites de nombres réels et complexes Chapitre 7 Suites de nombres réels et complexes I - Généralités sur les suites réelles I.1 - Dénition et Structure Définition 1 (Suite). Une suite réelle u est une application de N dans R. Pour tout n

Plus en détail

TD 3: Suites réelles

TD 3: Suites réelles Université Pierre et Marie Curie Année 2011/2012 LM115 TD 3: Suites réelles MIME Convergence des suites : Par définition, une suite (u n ) converge vers un réel l si : Pour tout ɛ réel strictement positif,

Plus en détail

Programme des colles de mathématiques. Semaine 16 : du lundi 01 février au vendredi 05.

Programme des colles de mathématiques. Semaine 16 : du lundi 01 février au vendredi 05. Programme des colles de mathématiques. Semaine 16 : du lundi 01 février au vendredi 05. Liste des questions de cours 1 ) Donner les trois définitions de la notion de limite en un point : définition séquentielle,

Plus en détail

TD9. ENS Cachan M1 Hadamard Exercice 1 Opérateurs compacts et extraction de sous-suites

TD9. ENS Cachan M1 Hadamard Exercice 1 Opérateurs compacts et extraction de sous-suites Analyse fonctionnelle A. Leclaire ENS Cachan M1 Hadamard 2016-2017 TD9 Exercice 1 Opérateurs compacts et extraction de sous-suites Soient E,F deux espaces de Banach. On note B la boule unité fermée de

Plus en détail

Opérateurs bornés sur les espaces de Hilbert

Opérateurs bornés sur les espaces de Hilbert Chapitre 4 Opérateurs bornés sur les espaces de Hilbert 4.1 Adjoint d une application linéaire continue entre espaces de Hilbert On commence avec la notion d adjoint; plusieurs des classes particulières

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre V : Suites numériques 1 Un peu de topologie de R On a vu dans le chapitre

Plus en détail

1. Espaces métriques. 1 Distance, boules, ouverts, fermés...

1. Espaces métriques. 1 Distance, boules, ouverts, fermés... 1. Espaces métriques 1 Distance, boules, ouverts, fermés... Définition 1.1. Soit E un ensemble (non vide). On appelle distance sur E une application d de E E dans [0, + [ vérifiant les trois propriétés

Plus en détail

Université de Metz. Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL

Université de Metz. Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL Université de Metz Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL par Ralph Chill Laboratoire de Mathématiques et Applications de Metz Année 2010/11 1 Table des matières Chapitre

Plus en détail

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone.

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. LEÇON N 6 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. Pré-requis : I est un intervalle si a,b I a b, [a,b] I ; Toute partie non

Plus en détail

CORRECTION DU DEVOIR DU 21/11/2016. Partie I. 1 cos (2t) 2

CORRECTION DU DEVOIR DU 21/11/2016. Partie I. 1 cos (2t) 2 Lycée Thiers CORRECTION DU DEVOIR DU //06 Partie I Rappelons d une part que : et d autre part que : t R, sin (t cos (t ( t [, ], cos (arcsin (t t ( La formule de linéarisation ( est bien connue. La formule

Plus en détail

e3a MP Épreuve de Mathématiques A

e3a MP Épreuve de Mathématiques A e3a - 013 - MP Épreuve de Mathématiques A Partie I : étude de la suite (v n ) 1 La suite (v n ) vérie la relation : v 0 > 0, v 1 > 0 et n 0, v n vn+1 v n+ = 1 Si elle converge vers une limite l nie ou

Plus en détail

Amphi 2: Suites - Compacité - Connexité

Amphi 2: Suites - Compacité - Connexité Amphi 2: Suites - Compacité - Connexité Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suites Soit (X, d) un espace métrique. Soit x X, et soit (x n ) n N une suite

Plus en détail

(Q) non vide et majorée, alors il existe dans R un plus petit majorant de A, appelé la borne CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES

(Q) non vide et majorée, alors il existe dans R un plus petit majorant de A, appelé la borne CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES 1.1. Propriétés de R On suppose connus N = {0, 1, 2, 3,...}, l anneau des entiers Z = {..., 2, 1, 0, 1, 2,...} et le corps des rationnels Q = { a a, b Z,

Plus en détail

Convergence des suites monotones et applications.

Convergence des suites monotones et applications. Université Paris Est Marne-la-Vallée L Sciences Physiques 20-202 Compléments en Analyse Convergence des suites monotones et applications.. Quelques définitions Ce chapitre est consacré à la convergence

Plus en détail

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 Université de Tours Année 2015-2016 Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 NOMBRES COMPLEXES ET ÉQUATIONS ALGÉBRIQUES (12 h) 1 Nombres complexes 1.1 Introduction

Plus en détail

Etude théorique d équation d ordre 2

Etude théorique d équation d ordre 2 [http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 Etude théorique d équation d ordre 2 Eercice 1 [ 01555 ] [Correction] Soit q : R R + une fonction continue non nulle. On se propose de

Plus en détail

Cours d Analyse I : les réels et les fonctions

Cours d Analyse I : les réels et les fonctions Introduction à R Suites numériques Cours d Analyse I : les réels et les fonctions Université Lyon 1 Institut Camille Jordan CNRS UMR 5208 FRANCE Automne 2014 - Licence L1 Introduction à R Suites numériques

Plus en détail

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Notations. K désigne R ou C. S (K désigne l'ensemble des suites d'éléments de K et u, v des éléments de S (K. I, J désignent des

Plus en détail

La décomposition de Dunford des endomorphismes.

La décomposition de Dunford des endomorphismes. Document de travail pour l atelier de la journée régionale APMEP d Aix-Marseille du 17 mai André BONNET andre.bonnet9@orange.fr La décomposition de Dunford des endomorphismes. En travaillant avec un jeune

Plus en détail

Nombres complexes. Lycée du parc. Année

Nombres complexes. Lycée du parc. Année Nombres complexes Lycée du parc Année 2014-2015 Introduction historique Au début du XVI ème siècle en Italie, Scipione del Ferro, découvre une formule permettant de résoudre les équations du type x 3 +

Plus en détail

Continuité sur un intervalle

Continuité sur un intervalle Continuité sur un intervalle Bcpst 1 27 février 2017 Notations du chapitre Dans tout ce chapitre, et sauf mention contraire : I est un intervalle de non vide et non réduite à un point ; est un domaine

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Enoncés 1 Ouverts et fermés Exercice 1 [ 113 ] [correction] Montrer que tout fermé peut s écrire comme intersection d une suite décroissante d ouverts.

Plus en détail

Les suites. Introduction. 1. Définitions Définition d une suite

Les suites. Introduction. 1. Définitions Définition d une suite Les suites Vidéo partie Premières définitions Vidéo partie Limite Vidéo partie 3 Exemples remarquables Vidéo partie 4 Théorèmes de convergence Vidéo partie 5 Suites récurrentes Fiche d'exercices Suites

Plus en détail

Espaces de Banach. 1 Normes sur un espace vectoriel. 2 Topologie des espaces vectoriels normés. 2.1 Rappels

Espaces de Banach. 1 Normes sur un espace vectoriel. 2 Topologie des espaces vectoriels normés. 2.1 Rappels 1 Normes sur un espace vectoriel Espaces de Banach Définition 1.1. (Norme) Soit V un R-espace vectoriel (abrégé R-ev dans la suite). Une norme est une application définie sur V à valeurs dans R +, notée

Plus en détail

Les fonctions de plusieurs variables (suite)

Les fonctions de plusieurs variables (suite) Les fonctions de plusieurs variables (suite) Exemple d application de ce résultat Comme x x (x, y) (x, y ) et y y (x, y) (x, y ), les applications définies par (x, y) x, (x, y) y sont continues sur R 2

Plus en détail

1. Espace Vectoriel Normé R p

1. Espace Vectoriel Normé R p Fonctions de plusieurs variables : limites et continuité 6-1 Sommaire 1. Espace Vectoriel Normé R p 1 1.1. Norme et distance associée........ 1 1.2. Part. bornées, boules, ouverts et fermés 2 2. Suite

Plus en détail

Corrigé du Concours Blanc

Corrigé du Concours Blanc Corrigé du Concours Blanc Exercice : On considère la fonction f définie par : f(x = x + 2 2 ln(e x + et on note (C la courbe représentative de f dans un repère orthonorrnal.. Etude de la fonction f. a.

Plus en détail

Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007

Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007 Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007 Corrigé en janvier 2009 Rapidité de convergence d une suite réelle L objectif de ce texte est de se donner des outils pour «mesurer» la rapidité

Plus en détail

Limites à l infini d une fonction

Limites à l infini d une fonction 9 Limites à l infini d une fonction On garde les notations du chapitre précédent en supposant ici que a = ou a = + est adhérent à l ensemble I, ce qui signifie que : ou : m R, ], m[ I M R, ]M, + [ I ce

Plus en détail

Limite d une fonction en un point de R. Fonctions continues.

Limite d une fonction en un point de R. Fonctions continues. DOCUMENT 23 Limite d une fonction en un point de R. Fonctions continues. 1. Introduction et notations Considérons la fonction f : x sin x définie sur R. La valeur 0 n appartient pas à x l ensemble de définition

Plus en détail

Limites et continuité de fonctions

Limites et continuité de fonctions Chapitre 12 Limites et continuité de fonctions Mathématiques PTSI Lycée Déodat de Séverac Mathématiques PTSI (Lycée Déodat de Séverac) Limites et continuité de fonctions 1 / 53 Notations : On note, sauf

Plus en détail

2.1 Rappels sur la convergence dans les espaces topologiques. Lemme (Axiome du choix) Pour tout ensemble non vide X il existe une fonction :

2.1 Rappels sur la convergence dans les espaces topologiques. Lemme (Axiome du choix) Pour tout ensemble non vide X il existe une fonction : Chapitre 2 Opérateurs bornés 2.1 Rappels sur la convergence dans les espaces topologiques 2.1.1 Relations d ordre Soit une relation d ordre sur un ensemble X. Si Y X on définit les majorants (resp. minorants)

Plus en détail

AH - FONCTIONS AFFINES PAR INTERVALLES

AH - FONCTIONS AFFINES PAR INTERVALLES AH - FONCTIONS AFFINES PAR INTERVALLES Définition On appelle fonction affine par intervalles une fonction f définie et continue sur R pour laquelle il existe une subdivision a 1 < a 2 < < a n telle que

Plus en détail

Feuille d exercices n o 3

Feuille d exercices n o 3 L3 Variable complexe Feuille d exercices n o 3 Exercice 1. Soit P (z) = z 2 +az+b un polynôme de degré 2 à coefficients complexes, avec b. On note α et β les racines complexes de P, et on pose f(z) = 1/P

Plus en détail

Espaces euclidiens, orthogonalité, longueur. Moindres carrés.

Espaces euclidiens, orthogonalité, longueur. Moindres carrés. Université Nice Sophia-Antipolis SL2SF 2012-13 Algèbre 2 Espaces euclidiens, orthogonalité, longueur. Moindres carrés. On travaille avec le corps des réels, noté R. Pour tout entier naturel n, on considère

Plus en détail

Espaces euclidiens, orthogonalité, longueur. Moindres carrés.

Espaces euclidiens, orthogonalité, longueur. Moindres carrés. Université de Nice SL2M 2009-10 Algèbre 2 Espaces euclidiens, orthogonalité, longueur. Moindres carrés. On travaille avec le corps des réels, noté R. Pour tout entier naturel n, on considère l ensemble

Plus en détail

III Somme de deux séries entières, produit par un scalaire 5

III Somme de deux séries entières, produit par un scalaire 5 Séries entières I Généralités I.A Définition........................................... I.B Lemme d Abel........................................ 2 I.C Rayon de convergence d une série entière..........................

Plus en détail

Impossibilité de la duplication du cube, de la quadrature du disque et de la trisection de l angle.

Impossibilité de la duplication du cube, de la quadrature du disque et de la trisection de l angle. Impossibilité de la duplication du cube, de la quadrature du disque et de la trisection de l angle. L étude de ces trois célèbres problèmes de contructions géométriques à la règle et au compas nécessite

Plus en détail

Analyse I : suites, limites et continuité

Analyse I : suites, limites et continuité Analyse I : suites, limites et continuité Maxime Legrand ENS - 7 décembre 2013 http ://matholympia.blogspot.fr/ 1 Petits rappels sur les quantificateurs Définition 1. On introduit (ou rappelle) les quantificateurs

Plus en détail

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans DST n 4 - Corrigé Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans l'ensemble des nombres réels, et de construire une suite qui

Plus en détail

LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point

LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point a de R. Opérations algébriques sur les ites. Continuité d une fonction en un point. Exemples. Pré-requis : Limites d une suite réelle

Plus en détail

Notations et préliminaires

Notations et préliminaires Notations et préliminaires Tous les corps figurant dans le problème sont supposés commutatifs. N désigne l ensemble des nombres entiers naturels N désigne l ensemble des nombres entiers naturels non nuls

Plus en détail

Propriétés fondamentales de R et suites numériques réelles

Propriétés fondamentales de R et suites numériques réelles Propriétés fondamentales de R et suites numériques réelles Denis Vekemans Ordre total compatible En algèbre générale, un groupe ordonné est la donnée d une ensemble G, muni d une loi de composition interne

Plus en détail

Résumé de cours: Espaces vectoriels normés

Résumé de cours: Espaces vectoriels normés CPGE My Youssef, Rabat «Å ««É ««É ««««º««È ««ö ««««É ««Å ««««««Â«Å ««««««ã : 18 novembre 2009 Blague du jour Bientôt vous serez ingenieur, peut être ingeénieur informaticien. Vérifier sur la liste cidessous

Plus en détail

Département de mathématiques et informatique L1S1, module A ou B Maths. Chapitre 3. Suites numériques

Département de mathématiques et informatique L1S1, module A ou B Maths. Chapitre 3. Suites numériques Département de mathématiques et informatique L1S1, module A ou B Maths Chapitre 3 Suites numériques p. 2 Remarque importante. Ce cours n est pas indépendant du cours de Mathématiques pour tous. Ce document

Plus en détail

Les fonctions de plusieurs variables (suite)

Les fonctions de plusieurs variables (suite) . Les fonctions de plusieurs variables (suite) Comme x x (x, y) (x, y ) et y y (x, y) (x, y ), les applications définies par (x, y) x, (x, y) y sont continues sur R 2. D après le théorème précédent les

Plus en détail

Devoir non surveillé Équation différentielle, fonction définie par une intégrale

Devoir non surveillé Équation différentielle, fonction définie par une intégrale Devoir non surveillé Équation différentielle, fonction définie par une intégrale Pelletier Sylvain, BCPST Lycée Hoche $\ CC BY: pour le 0 juin Eercice Résoudre l équation différentielle : E y y + 5y cos

Plus en détail

Analyse réelle. F. Golse

Analyse réelle. F. Golse Analyse réelle F. Golse ii Table des matières 1 Espaces de Banach 1 1.1 Rappels sur les espaces complets.................. 1 1.2 Rappels sur les espaces métriques compacts............ 3 1.3 Espaces de

Plus en détail

Rappels de théorie de l intégration et des probabilités

Rappels de théorie de l intégration et des probabilités CHAPITRE 26 Rappels de théorie de l intégration et des probabilités 26.1 Résultats de théorie de l intégration 26.1.1 Théorème de dérivation des intégrales à paramètre On en énonce une version lisible

Plus en détail

H4. THÉORIE DES NOMBRES. Nombres premiers A. CHAMBERT-LOIR, F. IVORRA

H4. THÉORIE DES NOMBRES. Nombres premiers A. CHAMBERT-LOIR, F. IVORRA Master STS mention mathématiques Année 2007/2008 H4. THÉORIE DES NOMBRES. Nombres premiers A. CHAMBERT-LOIR, F. IVORRA A. RAPPELS : FACTORISATION, THÉORÈME D EUCLIDE EXERCICE 1 1 Démontrer qu il existe

Plus en détail

PSI Sujet de révisions n o 1 Solution Exercice On a χ A (X) =

PSI Sujet de révisions n o 1 Solution Exercice On a χ A (X) = PSI Sujet de révisions n o Solution 5-6 Exercice. On a χ A (X) = X 4 y X x = X(X x) + 4 y = X xx + 4 y; le discriminant associé est = 4(x + y 4). Si >, A possède deux valeurs propres distinctes et est

Plus en détail

Matrices symétriques réelles. Exercice 2 Le produit de deux matrices symétriques réelles est-il symétrique? R n = ker (u) Im (u)

Matrices symétriques réelles. Exercice 2 Le produit de deux matrices symétriques réelles est-il symétrique? R n = ker (u) Im (u) Matrices symétriques réelles 1 Préliminaires On se place dans (R n, ) euclidien, le produit scalaire canonique étant défini par : (x, y) R n R n, x y = t x y = x k y k On note : M n (R) l algèbres des

Plus en détail

Filière SMA Module de topologie

Filière SMA Module de topologie Université Mohammed V-Rabat Faculté des sciences Département de mathématiques Filière SMA Module de topologie Semestre 5 Hamza BOUJEMAA 1 Introduction Le contenu du module de topologie enseigné en semestre

Plus en détail

L ensemble R des nombres réels

L ensemble R des nombres réels L ensemble R des nombres réels Plan du chapitre 1 L ensemble des nombres réels page 11 Description géométrique des réels page 1 Inégalités dans R page 1 Distance entre deux réels Intervalles de R page

Plus en détail

UNIVERSITÉ DE PARIS 8. Département de Mathématiques et Informatique. Cours d analyse

UNIVERSITÉ DE PARIS 8. Département de Mathématiques et Informatique. Cours d analyse UNIVERSITÉ DE PARIS 8 Département de Mathématiques et Informatique Cours d analyse Pierre-Louis CAYREL inspiré par les documents de : Guy Laffaille, Christian Pauly et Arnaud Bodin Cours Intensif 009-010

Plus en détail

Représenter graphiquement (sur un même schéma) ces trois ensembles.

Représenter graphiquement (sur un même schéma) ces trois ensembles. PCSI DEVOIR SURVEILLÉ de MATHÉMATIQUES n 4 07/1/001 Durée : 4 heures EXERCICE 1 : Calculatrices interdites Dans le plan complee rapporté au repère orthonormal (O; e 1, e, on définit une transformation

Plus en détail

Théorème de Tychonov

Théorème de Tychonov Théorème de Tychonov Frédéric Bayart Nous allons dans cet article démontrer le théorème de Tychonov : Un produit d espaces compacts est compact. Ce théorème est assez facile à démontrer dans un cas particulier

Plus en détail

Développements décimaux des nombres réels

Développements décimaux des nombres réels 1 Développements décimaux des nombres réels 1. Rappels sur les nombres décimaux. Rappelons qu un nombre décimal est un rationnel qui admet une écriture fractionnaire de la forme avec a Z et n N. Le lecteur

Plus en détail

Préparation à l'agrégation Interne Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME 1

Préparation à l'agrégation Interne Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME 1 Préparation à l'agrégation Interne 2005-2006 F. Dupré Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME On notera N n l'ensemble des entiers compris entre et n, n désignant un

Plus en détail

Problème 1 : puissances de matrices

Problème 1 : puissances de matrices Rappels et notations Problème 1 : puissances de matrices Étant donnés deux entiers naturels non nuls p et q, M p,q (C) désigne l ensemble des matrices à p lignes et q colonnes, à coefficients complexes

Plus en détail

CCP 2002 PC Maths 1 page 1. CONCOURS COMMUNS POLYTECHNlQUES EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES 1. Durée : 4 heures

CCP 2002 PC Maths 1 page 1. CONCOURS COMMUNS POLYTECHNlQUES EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES 1. Durée : 4 heures CCP 2002 PC Maths 1 page 1 SESSION 2002 CONCOURS COMMUNS POLYTECHNlQUES EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES 1 Durée : 4 heures Les calculatrices sont interdites **** N.B. : Le candidat attachera

Plus en détail

Limites et fonctions continues

Limites et fonctions continues Limites et fonctions continues Vidéo partie. Notions de fonction Vidéo partie 2. Limites Vidéo partie 3. Continuité en un point Vidéo partie 4. Continuité sur un intervalle Vidéo partie 5. Fonctions monotones

Plus en détail

Chapitre 5. Lois de composition internes - Relations

Chapitre 5. Lois de composition internes - Relations Chapitre 5 Lois de composition internes - Relations 1. Lois de composition internes 1.1. Définition et exemples Définition 5.1 Soit E un ensemble. Une loi de composition interne sur E est une application

Plus en détail

Corrigé MATHS I Résultats préliminaires. Filière MP

Corrigé MATHS I Résultats préliminaires. Filière MP MATHS I 28 Corrigé Filière MP I Résultats préliminaires 1 On considère l application ψ : 2 définie par : ψ(x, y) = x + iy, (x, y) 2. 1.a. 1.b. 1.c. ψ est une application linéaire et transforme la base

Plus en détail

Séries entières - Rayon de convergence - Propriétés de la somme

Séries entières - Rayon de convergence - Propriétés de la somme 1 Définition et premières propriétés 1.1 Notion de série entière Définition 1 On appelle série entière toute série d applications f n telle qu il existe une suite ( ) n N d éléments de C telle que : n

Plus en détail

Continuité des fonctions réelles

Continuité des fonctions réelles Chapitre 2 Continuité des fonctions réelles 2.1 Généralités Définition 2.1.1. Une fonction réelle f est une application d une partie D de R dans R. La partie D est appelée ensemble (ou domaine) de définition

Plus en détail

Limite à l infini. Branches infinies

Limite à l infini. Branches infinies DOCUMENT 25 Limite à l infini. Branches infinies 1. Introduction et notations Considérons les trois fonctons réelles f, g et h définies par : f() = + 1 + e, g() = sin, h() = 1/ 2 et donnons de grandes

Plus en détail

Limites et fonctions continues

Limites et fonctions continues Exercices 6 Limites et fonctions continues Extension de la notion de limite aux fonctions. Étude des propriétés locales et globales des fonctions continues sur un intervalle. 6 Limites et fonctions continues.........................................................

Plus en détail

Argument d un nombre complexe

Argument d un nombre complexe Argument d un nombre complexe Dans ce chapître, nous allons introduire les éléments indispensables à la résolution de notre grand problème : montrer la clôture algébrique de C, c està-dire le fait que

Plus en détail

CH IV : Récurrence, calculs de sommes et produits

CH IV : Récurrence, calculs de sommes et produits ECE1-B 01-015 On a notamment : CH IV : Récurrence, calculs de sommes et produits a truc N, 3 truc+1 + truc+ est un multiple de 7 Par la suite, on gardera la notation n, plus adaptée I0 Une première tentative

Plus en détail

Epsilon. Analyse 1. 8 novembre 2013

Epsilon. Analyse 1. 8 novembre 2013 Epsilon Analyse 1 8 novembre 2013 En bref But du jeu : voir les raisonnements les plus simples avec ε (epsilon) Justification de quelques propriétés des limites de suites en utilisant ces raisonnements

Plus en détail

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec 1/Les Nombres Complexes Chapitre 4 Les Nombres Complexes. I. Définitions Objectif : On veut «construire» un ensemble de nombres contenant l ensemble des nombres réels, muni de deux opérations qui généralisent

Plus en détail

Diverses factorisation de matrices

Diverses factorisation de matrices 18 Diverses factorisation de matrices On utilise les notations et dénitions du chapitre 13. 18.1 Les théorèmes de réduction des matrices Les théorèmes de réduction des matrices (voir le chapitre 17) nous

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS T ale S LIMITES DE FONCTIONS Analyse - Chapitre 6 Table des matières I Limite d une fonction à l infini 2 I Limite finie à l infini........................................ 2 I a..........................................

Plus en détail

CONCOURS ESIM FILIERE MP MATHEMATIQUES 2. + (puisque α n est pas entier) απ α 2 n 2 cos(nx). Maintenant, g est de classe C 1 par morceaux.

CONCOURS ESIM FILIERE MP MATHEMATIQUES 2. + (puisque α n est pas entier) απ α 2 n 2 cos(nx). Maintenant, g est de classe C 1 par morceaux. SESSION CONCOURS ESIM FILIERE MP MATHEMATIQUES Préliminaire - Quand t tend vers, ft) t t t =. Par suite, f est prolongeable par continuité en. f étant d autre part continue / sur ], ], f est intégrable

Plus en détail

Chapitre 9. Polynômes. 1 Généralités. 1.1 Définitions

Chapitre 9. Polynômes. 1 Généralités. 1.1 Définitions Chapitre 9 Polynômes Dans tout le chapitre K désigne R ou C. 1 Généralités 1.1 Définitions Définition 1 Polynôme Une fonction P : K K est une fonction polynôme (ou plus simplement un polynôme) à coefficients

Plus en détail

M = b d. a b ou M =. b a

M = b d. a b ou M =. b a Ce texte est extrait du cours optionnel de géométrie de l année universitaire 1999/2000. B.Ingrao Étude du groupe orthogonal dans le cas du plan. Dans ce qui suit, l espace est de dimension 2 ; en conséquence

Plus en détail

Limites, continuité, dérivabilité

Limites, continuité, dérivabilité Limites, continuité, dérivabilité (3) () Analyse 1 / 47 Plan 1 Un peu de vocabulaire 2 Limites 3 Opérations sur les limites 4 Relations de comparaison locale, notations de Landau 5 Continuité 6 Fonctions

Plus en détail

Les séries numériques

Les séries numériques Les séries numériques Généralités. Séries à termes réels ou complexes.. Notion de série numérique Étant donnée une suite (u n ) n n0 de nombres réels ou complexes, on appelle série des u n et on note u

Plus en détail

Matrices antisymétriques

Matrices antisymétriques [http://mp.cpgedupuydelome.fr] édité le 24 septembre 2016 Enoncés 1 Matrices antisymétriques Exercice 1 [ 02503 ] [Correction] Soit M M n (R) telle que M + t M soit nilpotente. Montrer que M est antisymétrique.

Plus en détail

1.2.1 Topologie produit

1.2.1 Topologie produit 1. Vocabulaire: Topologie 15 1.2.1 Topologie produit 1.2.32 DÉFINITION Soit {X i, i 2 I} une famille d ensembles. On définit l ensemble produit X = Y i2i X i comme l ensemble des applications x : I![ i2i

Plus en détail

1. Réduction d un endomorphisme en dimension finie, d une matrice

1. Réduction d un endomorphisme en dimension finie, d une matrice Réduction des endomorphismes en dimension finie 4-1 Sommaire 1 Réduction en dimension finie 1 11 Polynôme caractéristique 1 12 Ordre de multiplicité 2 2 Diagonalisation en dimension finie 2 21 Diagonalisibilité

Plus en détail

1 Opérateurs linéaires bornés

1 Opérateurs linéaires bornés Master Mathématiques Analyse spectrale Chapitre 2. Opérateurs bornés 1 Opérateurs linéaires bornés Soient E et F deux espaces de Banach. On appelle un opérateur borné de E dans F toute application linéaire

Plus en détail

DENOMBRABILITE. P. Pansu 14 mai 2005

DENOMBRABILITE. P. Pansu 14 mai 2005 DENOMBRABILITE P. Pansu 14 mai 2005 1 Motivation Il y a t il plus de réels dans ]1, + [ ou dans l intervalle ]0, 1[? Oui, bien sûr. Des droites passant par l origine dans le plan, il y en a-t-il autant

Plus en détail

N K, n 0 < n 1 < n 2 <

N K, n 0 < n 1 < n 2 < Chapitre 1 Suites réelles et complexes Dans ce chapitre, K désigne le corps R des nombres réels, ou le corps C des nombres complexes. Pour x K, nous noterons x le module de x (égal à la valeur absolue

Plus en détail

2.2.2 Conséquences du théorème de Cauchy-Goursat

2.2.2 Conséquences du théorème de Cauchy-Goursat 2. Intérale curviline et applications aux fonctions holomorphes: Le théorème de Cauchy-Goursat 49 2.2.2 Conséquences du théorème de Cauchy-Goursat Formule de Cauchy 2.2.8 THÉORÈME (FORMULE DE CAUCHY) Soit

Plus en détail

LEÇON N 66 : Théorème de Rolle. Applications.

LEÇON N 66 : Théorème de Rolle. Applications. LEÇON N 66 : Théorème de Rolle. Applications. Pré-requis : Notions de limite, continuité, dérivabilité ; Théorème des valeurs intermédiaires ; L image d un segment par une application continue est un segment.

Plus en détail

EXERCICES SUR LES DISTRIBUTIONS. 1 x 2 si x < 1. ϕ(x) = 0 si x 1 2

EXERCICES SUR LES DISTRIBUTIONS. 1 x 2 si x < 1. ϕ(x) = 0 si x 1 2 Université Chouaib Doukkali Faculté des Sciences Département de Mathématiques El Jadida A. Lesfari lesfariahmed@yahoo.fr http://lesfari.com EXERCICES SUR LES DISTRIBUTIONS Eercice. Soit ϕ : R R définie

Plus en détail

EXERCICES SUR L ORDRE EN ARITHMÉTIQUE

EXERCICES SUR L ORDRE EN ARITHMÉTIQUE EXERCICES SUR L ORDRE EN ARITHMÉTIQUE Igor Kortchemski N.B. Certains exercices utilisent le théorème Lifting the exponent (LTE). - Rappels de cours - On considère a Z et n 1 des entiers premiers entre

Plus en détail

Décomposition de Dunford

Décomposition de Dunford Décomposition de Dunford Forêt Jérémy El Gareh Amin 0 mars 0 Table des matières Enoncé du Théorème Démonstration Usuelle. Lemmes............................................... Démonstration..........................................

Plus en détail

COURS DE L3 : CALCUL DIFFÉRENTIEL. Laurent BRUNEAU Université de Cergy-Pontoise

COURS DE L3 : CALCUL DIFFÉRENTIEL. Laurent BRUNEAU Université de Cergy-Pontoise COURS DE L3 : CALCUL DIFFÉRENTIEL Laurent BRUNEAU Université de Cergy-Pontoise 2 Table des matières 1 Espaces vectoriels normés et espaces métriques 5 1.1 Notion d espace vectoriel normé.........................

Plus en détail

Nombres complexes. Chapitre 1

Nombres complexes. Chapitre 1 Chapitre 1 Nombres complexes Les nombres complexes sont apparus en Italie au XVI e siècle. Niccolo Tartaglia le premier résout des équations du troisième degré. Il révèle sa formule à Jérôme Cardan qui

Plus en détail

si 0 p n. = p!(n p)! 0 si p > n.

si 0 p n. = p!(n p)! 0 si p > n. Université Claude Bernard Lyon I L1 - parcours PMI de Mathématiques : Algèbre I Année 2012 2013 Dénombrements Les résultats à retenir Théorème Soit E et F deux ensembles de cardinaux finis respectifs n

Plus en détail

I. Détermination de Rac(A) dans quelques exemples.

I. Détermination de Rac(A) dans quelques exemples. I. Détermination de Rac(A) dans quelques exemples. 1. Les sous espaces propres E λi (A) sont de dimension 1 et en somme directe. Leur somme a donc une dimension au moins égale à n. Comme elle est incluse

Plus en détail

Propriétés de Z/nZ. DOMAINE : Arithmétique. NIVEAU : Avancé STAGE : Montpellier 2013 CONTENU : Cours et exercices

Propriétés de Z/nZ. DOMAINE : Arithmétique. NIVEAU : Avancé STAGE : Montpellier 2013 CONTENU : Cours et exercices DOMAINE : Arithmétique AUTEUR : Louis NEBOUT NIVEAU : Avancé STAGE : Montpellier 2013 CONTENU : Cours et exercices Propriétés de Z/nZ Le but de cette séance est de vous introduire au point du vue moderne

Plus en détail

Espaces vectoriels notes de cours Licence Sciences et Technologies, L1, M 2

Espaces vectoriels notes de cours Licence Sciences et Technologies, L1, M 2 Espaces vectoriels notes de cours Licence Sciences et Technologies, L1, M 2 H. Le Ferrand, leferran@u-bourgogne.fr February 26, 2007 Contents 1 Espaces vectoriels 2 1.1 Définition.................................................

Plus en détail