6 ème cours : Introduction à la géométrie

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "6 ème cours : Introduction à la géométrie"

Transcription

1 1 Point, droite, segment et demi-droite. Par un point passe une infinité de droites. Placer un point A et tracer trois droites passant par le point A. Par deux points passe une seule droite. Placer deux points A et B puis tracer la droite qui passe par A et B. Par deux points A et B, on peut tracer : La droite qui passe par A et B. Le segment d extrémités A et B. La demi-droite d origine A qui passe par B. La demi-droite d origine B qui passe par A. Ecrire ce que représente chacune des figures suivantes. (utiliser le vocabulaire ci-dessus) Figure 1 : La figure 1 représente deux points A et B. La figure 2 représente la droite qui passe par A et B. La figure 3 représente le segment d extrémités A et B. La figure 4 représente la demi-droite d origine A qui passe par B. La figure 5 représente la demi-droite d origine B qui passe par A. Figure 2 : Figure 3 : Figure 4 : Figure 5 : Pour noter une droite on utilise deux parenthèses. Pour noter un segment en utilises deux crochets. Pour noter une demi-droite on utilise un crochet et une parenthèse. Exemple 4 Placer trois points non alignés A, B et C. Tracer (AB). Tracer [BA). Tracer [AC]. Fiche cours 1 / 6 Collège Roland Dorgelès

2 Autres notations pour une droite et une demi-droite. Exemple 5 Figure 1 : Figure 2 : La figure 1 représente une droite (d) La figure 2 représente une droite (x y) La figure 3 représente une demi-droite [O x) Figure 3 : Ecrire ce que représente chacune des figures ci-dessus. Appartient ou n appartient pas. Exemple 6 Le point A appartient à la droite (d). Le point B n appartient pas à la droite (d). Que peut on dire du point A? du point B? Le symbole se lit «appartient à», le symbole se lit «n appartient pas» Exemple 7 M (AB) M [AB] M [AB) M [BA) N (AB) N [AB] N [AB) N [BA) Recopier et compléter en utilisant ou M (AB) M [AB] M [AB) M BA) N (AB) N [AB] N [AB) N [BA) Trois points sont alignés s ils appartiennent à la même droite. Exemple 8 Tracer quatre A, B, C et D tels que A, B, C sont alignés et A, B, D sont non alignés. Définition : Deux droites sécantes sont deux droites qui ont un seul point commun. Ce point est le point d intersection des deux droites. Exemple 9 Les droites (d) et (d ) sont sécantes en A. A est le point d intersection des droites (d) et (d ). Que peut on dire des droites (d) et (d ) Que peut on dire du point A? Fiche cours 2 / 6 Collège Roland Dorgelès

3 2 Longueur et milieu d un segment La longueur d un segment [AB] est notée AB sans parenthèses et sans crochets. La longueur du segment [AB] est 2,5 cm La distance entre A et B est 2,5 cm AB = 2,5 cm Quelle est la longueur du segment [AB]? Quelle est la distance entre A et B? L écriture [AB] = 2,5 cm est incorrecte. La corriger. Deux segment de même longueur sont codés sur la figure par le même nombre de petits traits. Les segments [AB] et [CD] ont la même longueur. AB = CD. Que peut-on dire des segments [AB] et [CD]? L écriture [AB] = [CD] est incorrecte. La corriger. Pour reporter des longueurs on utilise le compas. Reproduire une figure analogue puis placer à l aide du compas un point M sur la demi-droite [O x) tel que OM = 3 AB Définition : Le milieu d un segment est le point de ce segment qui est situé à égale distance de ses extrémités Exemple 4 A l aide d un compas, on reporte trois fois la longueur du segment [AB] sur la demi-droite [O x), on obtient un segment [OM] de longueur OM = 3 AB : M est le milieu du segment [AB] M est le point du segment [AB] situé à égale distances de A et B. M [AB] et MA = MB Décrire cette figure de deux façons en utilisant des mots différents Fiche cours 3 / 6 Collège Roland Dorgelès

4 3 Le cercle Définition du cercle Un cercle est formé de tous les points situés à une même distance d un point. Ce point est appelé centre du cercle. Cette distance est appelée le rayon du cercle. Tracer un cercle (c) de centre O et de rayon 5 cm Définitions Un rayon est un segment dont les extrémités sont le centre du cercle et un point du cercle Une corde est un segment dont les extrémités sont deux points du cercle. Un diamètre est un segment qui passe par le centre du cercle et dont les extrémités sont deux points du cercle Tracer un cercle (c) de centre O. Tracer un rayon [OM] Tracer un diamètre [EF] Tracer une corde [AB] Propriété Si un point appartient à un cercle alors il est situé à une distance du centre égale au rayon. Si un point est situé à une distance du centre égale au rayon alors ce point appartient au cercle. 1 OA = 12 cm 2 Justification A est un point du cercle (c) de centre O et de rayon 5 cm. Donc : OA = 12 cm. Ou, autrement : [OA] est un rayon du cercle. Donc : OA = 12 cm. 3 Oui, le point B appartient au cercle (c) A est un point du cercle (c) de centre O de rayon 18 mm. 1 Quelle est la longueur du segment [OA]? 2 Justifier la réponse précédente. B est un point tel que OB = 12 mm 3 Le point B appartient-il au cercle? 4 Justifier la réponse. 4 Justification OB = 12 cm Donc, B est un point du cercle de centre O et de rayon 12 mm Fiche cours 4 / 6 Collège Roland Dorgelès

5 4 Triangle et quadrilatère Un polygone est une figure fermée dont les côtés sont des segments. Ce polygone a six côtés. Ce polygone peut être nommé : ABCDEF, DEFABC, Quel est le nombre de côtés de ce polygone? Nommer ce polygone en commençant par A Nommer ce polygone en commençant par D Un quadrilatère est un polygone à quatre côtés. Ce polygone est un quadrilatère. On peut le nommer : ABCD, ADCB, Que peut-on dire du polygone? Nommer ce polygone en commençant par A. Un triangle est un polygone à trois côtés. Ce polygone est un triangle. On peut le nommer : ABC, ACB, Que peut-on dire du polygone? Nommer ce polygone en commençant par A. Pour tracer un triangle dont les longueurs des côtés sont connues on utilise le compas. Exemple 4 Tracer un triangle ABC tel que : AB = 6 cm AB = 5 cm et AC = 4 cm On commence par tracer le segment [BC] On trace en suite un arc de cercle de centre B de rayon 3 cm, puis on trace l arc de cercle de centre C de rayon 5 cm. Fiche cours 5 / 6 Collège Roland Dorgelès

6 Définition Un losange est un quadrilatère qui a ses quatre côtés de même longueur. Exemple 5 1 Le quadrilatère ABCD est un losange. 2 Justification : AB = BC = CD = DA Donc, ABCD est un losange. 1 Que peut-on dire du quadrilatère ABCD? 2 Justifier la réponse précédente. Définition : Un triangle équilatéral est un triangle qui a ses trois côtés de même longueurs Exemple 6 1 Le triangle ABC est équilatéral. 2 Justification AB = AC = BC Donc, ABC est un triangle équilatéral. 1 Que peut-on dire du triangle ABC? 2 Justifier la réponse. Définition Un triangle isocèle est un triangle qui a deux côtés de même longueurs. Exemple 7 1 Le triangle ABC est isocèle en A. 2 Justification AB = AC. Donc, ABC est un triangle isocèle en A. 1 Que peut-on dire du triangle ABC? 2 Justifier la réponse précédente. Fiche cours 6 / 6 Collège Roland Dorgelès

Séquence n 2 :Les objets de la géométrie. I Point, droite, demi-droite, segment. II Longueur et milieu d un segment. III Cercle.

Séquence n 2 :Les objets de la géométrie. I Point, droite, demi-droite, segment. II Longueur et milieu d un segment. III Cercle. Séquence n 2 :Les objets de la géométrie I Point, droite, demi-droite, segment II Longueur et milieu d un segment III Cercle IV Polygone I Point, droite, demi-droite, segment 1 ) Point: Un point est un

Plus en détail

1. Point, segment, droite, demi-droite a. Vocabulaire, représentation et notation b. Points alignés c. Droites sécantes. d. De nouvelles notations

1. Point, segment, droite, demi-droite a. Vocabulaire, représentation et notation b. Points alignés c. Droites sécantes. d. De nouvelles notations 2014 2015 6ème Chapitre 2 Premiers pas en 1. Point, segment, droite, demi-droite a. Vocabulaire, représentation et notation b. Points alignés c. Droites sécantes. d. De nouvelles notations géométrie 2.

Plus en détail

Remarque : un point n'a pas d'épaisseur. B et C sont confondus, P et A sont distincts.

Remarque : un point n'a pas d'épaisseur. B et C sont confondus, P et A sont distincts. REGLE ET COMPAS I Utilisation d une règle sans les graduations Rappel le point est représenté par une croix ou un point. Deux points qui ne sont pas sur le même emplacement sont dit «distincts (ex. P et

Plus en détail

Cercles et polygones

Cercles et polygones Cercles et polygones I) Le cercle : a) Soit O un point donné et R un nombre décimal positif. On appelle cercle C de centre O et de rayon R, l ensemble des points M situés à la distance R du point O. On

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui compose ce polygone

Plus en détail

Remarque : un point n'a pas d'épaisseur. B et C sont confondus, P et A sont distincts.

Remarque : un point n'a pas d'épaisseur. B et C sont confondus, P et A sont distincts. REGLE ET COMPAS I Utilisation d une règle sans les graduations Rappel le point est représenté par une croix ou un point. Deux points qui ne sont pas sur le même emplacement sont dit «distincts (ex. P et

Plus en détail

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle.

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle. 6 e Décrire des figures usuelles Objectif 04 Livre 12 Mots clefs. Cercle Rayon, diamètre, corde et arc d un cercle Équidistance Triangle, triangle isocèle, triangle rectangle, triangle équilatéral Base

Plus en détail

Chapitre 4 : Triangles.

Chapitre 4 : Triangles. Chapitre 4 : Triangles. I Somme des angles d un triangle. 1 Propriété. La somme des mesures des angles d un triangle est égale à 180. Dans le triangle JKL, on a + + = 180. 2 Triangles particuliers. Triangle

Plus en détail

Chapitre 11 : Symétrie axiale.

Chapitre 11 : Symétrie axiale. Chapitre 11 : Symétrie axiale. I Approche expérimentale. Définition : Deux figures sont symétriques par rapport à une droite si, en pliant suivant cette droite, les deux figures se superposent. Cette droite

Plus en détail

6 ème exercices : Introduction à la géométrie

6 ème exercices : Introduction à la géométrie Droites, demi-droites et segments. Exercice 1 Réponse 1 Placer trois points A, B et C non alignés. Tracer la droite qui passe par les points B et C. Tracer le segment d extrémités A et B. Tracer la demi-droite

Plus en détail

6 ème COURS : droites perpendiculaires et droites parallèles.

6 ème COURS : droites perpendiculaires et droites parallèles. 1 Droites sécantes Définition : deux droites sécantes sont deux droites qui ont un seul point commun. Ce point commun est appelé point d intersection des deux droites. Les deux droites (d1) et (d2) se

Plus en détail

Tracer un cercle. 1 Trace le cercle C de centre A et de rayon 5 cm. Le cercle C coupe la

Tracer un cercle. 1 Trace le cercle C de centre A et de rayon 5 cm. Le cercle C coupe la Tracer un cercle 1 Construire un cercle avec un compas. Utiliser le vocabulaire géométrique: centre d un cercle, rayon, diamètre. 1 Trace le cercle C de centre A et de rayon 5 cm. Le cercle C coupe la

Plus en détail

Le vocabulaire de géométrie

Le vocabulaire de géométrie Géom1 Le vocabulaire de géométrie En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire : Un point A A X Un segment [AB] (d) Une droite (d)

Plus en détail

GEOMETRIE. Tableaux et quadrillages. Reproduire une figure. Droites perpendiculaires. Droites parallèles. Les quadrilatères

GEOMETRIE. Tableaux et quadrillages. Reproduire une figure. Droites perpendiculaires. Droites parallèles. Les quadrilatères GEOMETRIE GEOM. 1 Le vocabulaire GEOM. 2 Des instruments pour tracer, mesurer, vérifier GEOM. 3 Tableaux et quadrillages GEOM. 4 Reproduire une figure GEOM. 5 Les angles GEOM. 6 Droites perpendiculaires

Plus en détail

Les droites (d 1 ) et (d 2 ) sont parallèles. On note (d 1 ) // (d 2 )

Les droites (d 1 ) et (d 2 ) sont parallèles. On note (d 1 ) // (d 2 ) CONSTRUCTIONS DE FIGURES PLNES I. DROITES PRLLELES ET PERPENDICULIRES Deux droites sont parallèles quand elles n ont aucun point commun. Les droites (d 1 ) et (d 2 ) sont parallèles. On note (d 1 ) //

Plus en détail

Construction géométrique : les outils dont on dispose

Construction géométrique : les outils dont on dispose Construction géométrique : les outils dont on dispose I. La règle La règle a deux utilisations principales : Mesurer une distance Tracer des droites II. L équerre L équerre à deux utilisations principales

Plus en détail

GEOMETRIE. Point, droite, segment

GEOMETRIE. Point, droite, segment GEOMETRIE Gé 1 Point, droite, segment Le point : - Il désigne un endroit bien précis. - Il est représenté par une croix. - On le nomme avec une lettre majuscule. La droite : A X Le point B est situé exactement

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

Géométrie plane. 1. Points, segments, droites, demi-droites

Géométrie plane. 1. Points, segments, droites, demi-droites Géométrie plane 1 Points, segments, droites, demi-droites Définition L espace de travail de la géométrie plane est le plan, noté Π Il peut être visualisé comme une feuille d'épaisseur nulle qui s'étend

Plus en détail

D après des exemples tirés des manuels Cap Maths, sauf mention contraire

D après des exemples tirés des manuels Cap Maths, sauf mention contraire 1 / 6 Exemples d'activités géométriques D après des exemples tirés des manuels Cap Maths, sauf mention contraire Reproduction de figures Activité 1 : Avec la règle, sans mesurer... On a commencé à reproduire

Plus en détail

Symétrie centrale - Exercices

Symétrie centrale - Exercices Symétrie centrale - Exercices Exercice 1 On considère le triangle ABC tel que AB = 4, 5 cm, AC = 6cm et BC = 4cm. a. Construire ce triangle. b. Tracer les symétriques A et C de A et C par rapport à B.

Plus en détail

#2 Triangles, médiatrices et cercle circonscrit

#2 Triangles, médiatrices et cercle circonscrit #2 Triangles, médiatrices et cercle circonscrit I Construction d un triangle connaissant ses 3 longueurs Activité 1 : Construis un triangle dont les côtés mesurent 3, 5 et 9 cm. Que remarque-t-on? Réponse

Plus en détail

Le point. 2. Axiome d'euclide (III ème IV ème siècle av J.C.) 3. Parties d'une droite. RAPPELS DE GÉOMÉTRIE

Le point. 2. Axiome d'euclide (III ème IV ème siècle av J.C.) 3. Parties d'une droite. RAPPELS DE GÉOMÉTRIE 1. Le point. C'est l élément élémentaire de la géométrie. Une infinité de points constitue une droite. Sur le dessin, la droite (D) passe par une infinité de points : on dit que ces points sont alignés.

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. Ex 1 : Vrai ou faux

Plus en détail

NOM : DROITES REMARQUABLES 4ème

NOM : DROITES REMARQUABLES 4ème Exercice 1 1) Retrouver les deux définitions de la médiatrice d un segment [AB]. 2) Construire à la règle et au compas les trois médiatrices d un triangle RST tel que : RS = 10cm, ST = 7cm et RT = 4cm.

Plus en détail

PREMIERS ELEMENTS DE GEOMETRIE.

PREMIERS ELEMENTS DE GEOMETRIE. Cours de Mr Jules v1.0 Classe de Sixième Contrat 2 p.1 PREMIERS ELEMENTS DE GEOMETRIE. I. Le point : 2 II. Droites, demi droites, segments de droite : 2 A. La Droite : 2 B. La Demi droite : 3 C. Le Segment

Plus en détail

Chapitre 3 : Aborder la géométrie avec le compas

Chapitre 3 : Aborder la géométrie avec le compas Chapitre 3 : border la géométrie avec le compas 1) Le cercle : Définition : Le cercle (C ) de centre O et de rayon R est l ensemble de tous les points situés à la même distance R du point O. Exemple :

Plus en détail

Utilisation du compas

Utilisation du compas Utilisation du compas C H A P I T R E 4 Énigme du chapitre. Objectifs du chapitre. Clara a dessiné le contour d une assiette circulaire sur une feuille de papier. Il faut l aider à trouver le centre du

Plus en détail

Dans chaque cas, dire si la droite (d) est la médiatrice du segment [AB] en justifiant la réponse.

Dans chaque cas, dire si la droite (d) est la médiatrice du segment [AB] en justifiant la réponse. sixième Corrigé DS n 6 durée 50mn Exercice 1 ( 3 points ) Dans chaque cas, dire si la droite (d) est la médiatrice du segment [AB] en justifiant la réponse. Figure 1 La droite (d) passe par les deux points

Plus en détail

Axes de symétrie. Exemple : Considérons cette figure constituée de deux cercles C1 et C2 de même rayon.

Axes de symétrie. Exemple : Considérons cette figure constituée de deux cercles C1 et C2 de même rayon. Axes de symétrie I) Axes de symétrie d une figure : Définition : Une droite (d) est un axe de symétrie d une figure si, par pliage suivant cette droite, les deux parties de la figure se superposent. Considérons

Plus en détail

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD].

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD]. GÉOMÉTRIE PLANE Langage géométrique : notations et vocabulaire. [ ] = segment [AB] = segment d extrémités A et B. AB = longueur du segment AB (ou parfois la distance de A à B). ( ) = droite (AB) = droite

Plus en détail

dans l espace Les plans ou les cartes sont des dessins simplifiés de lieux. Ils permettent de se repérer ou de se déplacer facilement dans l espace.

dans l espace Les plans ou les cartes sont des dessins simplifiés de lieux. Ils permettent de se repérer ou de se déplacer facilement dans l espace. EG1 Se repérer et se déplacer dans l espace Les plans ou les cartes sont des dessins simplifiés de lieux. Ils permettent de se repérer ou de se déplacer facilement dans l espace. Pour se repérer ou se

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. Géom 1 CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. Géom 1 CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE La géométrie exige rigueur et précision dans le vocabulaire utilisé. Géom 1 Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix

Plus en détail

Symétrie axiale. La médiatrice d un segment est la droite qui passe par le milieu de ce segment et qui lui est perpendiculaire.

Symétrie axiale. La médiatrice d un segment est la droite qui passe par le milieu de ce segment et qui lui est perpendiculaire. Symétrie axiale I) Médiatrice d un segment : Définition : La médiatrice d un segment est la droite qui passe par le milieu de ce segment et qui lui est perpendiculaire. Exemple : La droite (d) est perpendiculaire

Plus en détail

5 ème COURS triangles et droites remarquables. 1 Inégalité triangulaire

5 ème COURS triangles et droites remarquables. 1 Inégalité triangulaire 1 Inégalité triangulaire Quels que soient les points A, B et C on a l inégalité : AB AC + CB appelé linégalité triangulaire. A, B et C, sont trois points. On a l inégalité triangulaire : AB AC + CB Ecrire

Plus en détail

Géométrie CM1/CM2 - FH

Géométrie CM1/CM2 - FH Gm1 : Connaître le vocabulaire et les instruments de géométrie. En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. Gm2 : Identifier et

Plus en détail

Figures usuelles et axes de symétrie

Figures usuelles et axes de symétrie Chapitre 4 Figures usuelles et axes de symétrie I. Figures usuelles 1) Triangles un triangle est un polygone ayant 3 côtés. Vocabulaire : ABC est un triangle. A A, B et C sont ses 3 sommets. [AB], [AC]

Plus en détail

Exercice p 188, n 7 : Correction :

Exercice p 188, n 7 : Correction : Exercice p 188, n 7 : Exercice p 188, n 8 : Exercice p 188, n 11 : Exercice p 188, n 12 : Exercice p 191, n 33 : a) b) c) d) ( ) est la médiatrice du segment [ ] AB, donc les points A et B sont symétriques

Plus en détail

Vocabulaire en géométrie

Vocabulaire en géométrie G1 Vocabulaire en géométrie : on trace une petite croix. On utilise des lettres pour désigner les points. x A : c est un trait qui passe par 2 points. On l écrit avec des parenthèses. Une droite est infinie

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE.

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE. CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc pas

Plus en détail

6.G5 Symétrie axiale

6.G5 Symétrie axiale Symétrie Axiale Géométrie 6.G5 Symétrie axiale 6.G50[S] Connaître la symétrie axiale (constructions sur quadrillage, trouver des axes de symétrie éventuels). 6.G51[S] Construire l'image d'un point, d'un

Plus en détail

Chapitre 4 : Droites perpendiculaires et droites parallèles

Chapitre 4 : Droites perpendiculaires et droites parallèles Chapitre 4 : Droites perpendiculaires et droites parallèles Dans ce chapitre, on utilisera la règle et l équerre. 1) Droites perpendiculaires : Rappel : Si deux droites se coupent en un point, on dit qu

Plus en détail

GEOMETRIE CM1. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté.

GEOMETRIE CM1. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. x I x K x F Une droite est un alignement infini de points. On la désigne par

Plus en détail

S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes. Un quadrilatère qui a deux côtés parallèles est un parallélogramme

S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes. Un quadrilatère qui a deux côtés parallèles est un parallélogramme CRPE Mise en route 1. Trouver l intrus. Justifier. 2. Voici des polygones convexes S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes 1 2 3 4 5 6 7 8 Lesquels sont : des quadrilatères?

Plus en détail

FICHES OUTILS GEOMETRIE CM2

FICHES OUTILS GEOMETRIE CM2 FICHES OUTILS GEOMETRIE Constructions pour le plaisir avec des cercles: page 25: la cible page 26: la rosace page 27: la rosace double page 28: la rose page 29: le mandala Pages 2 à 9: 1 Les instruments

Plus en détail

CONTRÔLE 2 REGLE, EQUERRE, COMPAS

CONTRÔLE 2 REGLE, EQUERRE, COMPAS CONTRÔLE 2 REGLE, EQUERRE, COMPAS Capacités attendues et évaluées Connaître le vocabulaire adapté au cercle Savoir reconnaître un couple de droites parallèles un couple de droites perpendiculaires Savoir

Plus en détail

Chapitre 5 : Droites perpendiculaires et droites parallèles

Chapitre 5 : Droites perpendiculaires et droites parallèles Chapitre 5 : Droites perpendiculaires et droites parallèles Dans ce chapitre, on utilisera la règle et l équerre. 1) Droites perpendiculaires : Rappel : Si deux droites se coupent en un point, on dit qu

Plus en détail

Chapitre 5 : Droites perpendiculaires et droites parallèles

Chapitre 5 : Droites perpendiculaires et droites parallèles Chapitre 5 : Droites perpendiculaires et droites parallèles Dans ce chapitre, on utilisera la règle et l équerre. 1) Droites perpendiculaires : Rappel : Si deux droites se coupent en un point, on dit qu

Plus en détail

(Programmation) (Programme de Construction) Support : cahier d entrainement (1 programme par semaine, à écrire au tableau)

(Programmation) (Programme de Construction) Support : cahier d entrainement (1 programme par semaine, à écrire au tableau) (Programmation) (Programme de Construction) Support : cahier d entrainement (1 programme par semaine, à écrire au tableau) Comment faire? Le PE marque sur un côté du tableau le programme de construction.

Plus en détail

PROJET d'ateliers de GEOMETRIE

PROJET d'ateliers de GEOMETRIE PROJET d'ateliers de GEOMETRIE Compétences travaillées lors des ateliers : - Percevoir et reconnaître parallèles et perpendiculaires - Utiliser la règle, l'équerre et le compas pour vérifier la nature

Plus en détail

Si A (d), alors le symétrique du point A par rapport à la droite (d) est lui-même.

Si A (d), alors le symétrique du point A par rapport à la droite (d) est lui-même. I. Figures symétriques Définition : CHAPITRE : SYMETRIE AXIALE Deux figures sont symétriques par rapport à une droite, si en pliant autour de cette droite, les deux figures se superposent. Cette droite

Plus en détail

S11 Autour de la GEOMETRIE PLANE Vocabulaire et constructions de base

S11 Autour de la GEOMETRIE PLANE Vocabulaire et constructions de base CRPE Mise en route S11 Autour de la GEOMETRIE PLANE Vocabulaire et constructions de base 1. A et B sont deux points du plan. que représentent (AB), [AB], [AB), AB? 2. A, B et C sont trois points distincts

Plus en détail

LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST...

LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST... THEME : LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST... SOMMAIRE : PARALLELOGRAMME? RECTANGLE? LOSANGE? CARRE? PARALLELOGRAMME? Vous disposez principalement de deux méthodes, une concernant

Plus en détail

Avec une règle et un compas

Avec une règle et un compas vec une règle et un compas / vec la règle : 1/ Le point : Représentation : on utilise soit + soit x pour représenter un point. On nomme un point à l aide d une lettre en majuscule. ttention : l emplacement

Plus en détail

LE CERCLE Activités portant sur les définitions (5 pages)

LE CERCLE Activités portant sur les définitions (5 pages) LE CERCLE Activités portant sur les définitions (5 pages) A. Voici une activité durant laquelle l élève doit compléter un tableau semblable à celui-ci en : a. écrivant le mot de vocabulaire ou le terme

Plus en détail

ont exactement deux points d intersection

ont exactement deux points d intersection Exercice dicté : 1) Tracer un cercle ( C ) de centre O et de rayon 3 cm. 2) Tracer une corde [ AB ] de ce cercle mesurant 5 cm. Expliquer la méthode. 1) 2) Figure : Pour construire une corde [ AB ] mesurant

Plus en détail

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe :

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe : GÉOMÉTRIE GM.01 Objets et notations GM.02 Les instruments de dessin GM.03 Tracer 2 droites perpendiculaires GM.04 Tracer 2 droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés

Plus en détail

Droites, demi-droites et segments. On a représenté ci-contre un carré ABCD et deux points distincts E et F.

Droites, demi-droites et segments. On a représenté ci-contre un carré ABCD et deux points distincts E et F. Droites, demi-droites et segments On a représenté ci-contre un carré ABCD et deux points distincts E et F. 1. Que signifie le fait que E et F sont distincts? 2. Tracer avec précision la droite EF. 3. Tracer

Plus en détail

3 ème BREVET : théorème de Thalès

3 ème BREVET : théorème de Thalès Exercice 1 1 Tracer en triangle ABC rectangle en A tel que : AB = 5 cm et AC = 3 cm. Placer le point D sur [AB] tel que BD = 4 cm. Tracer la perpendiculaire à (AB) passant par D, elle coupe [BC] en E.

Plus en détail

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD]

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD] COMMENT DEMONTRER Pour démontrer qu'un point est le milieu d'un segment On sait que I appartient au segment [AB] et IA = IB Propriété :Si un point appartient à un segment et est équidistant des extrémités

Plus en détail

Chapitre 4 Symétries

Chapitre 4 Symétries Chapitre 4 Symétries Énigme du chapitre : Construire une figure géométrique qui a deux centres de symétrie. I/ Rappel symétrie axiale Méthode On rappelle la méthode pour construire le symétrique d un point

Plus en détail

S13. Autour des théorèmes de PYTHAGORE et THALES

S13. Autour des théorèmes de PYTHAGORE et THALES CRPE S1. Autour des théorèmes de PYTHAGORE et THALES Mise en route A. Dans chaque exercice, une configuration à reconnaître une propriété à connaitre une démonstration à rédiger 1. ARC est un triangle

Plus en détail

GÉOMÉTRIE. Ecole santa cruz M.Cohen

GÉOMÉTRIE. Ecole santa cruz M.Cohen GÉOMÉTRIE GM.01 Objets et notations GM.02 Les instruments de dessin GM.03 Tracer 2 droites perpendiculaires GM.04 Tracer 2 droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés

Plus en détail

Droites, cercles et quadrilatères

Droites, cercles et quadrilatères Droites, cercles et quadrilatères «Des outils pour les démonstrations» I Droites et segments 1) Droites Propriété 1 : Par deux points distincts A et B, il passe une seule droite ; on peut la noter (AB).

Plus en détail

Géom 1 Connaître le vocabulaire et le codage géométrique

Géom 1 Connaître le vocabulaire et le codage géométrique Géom 1 Connaître le vocabulaire et le codage géométrique La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc

Plus en détail

Bilan de géométrie n 5. Dans le plan

Bilan de géométrie n 5. Dans le plan Groupe 1 Bilan de géométrie n 5 Dans le plan Nom : Prénom : Date : / / Reconnaître, décrire, nommer et reproduire, tracer des figures planes en utilisant la règle graduée, l'équerre, le compas. S.C A B

Plus en détail

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite 6 ème - 5 ème Géométrie de base Notation : On note un point à l aide d une croix pour indiquer le lieu et d une lettre MAJUSCULE à côté pour indiquer son nom Attention : Une MÊME lettre ne peut désigner

Plus en détail

I. Les figures élémentaires :

I. Les figures élémentaires : I. Les figures élémentaires : A. Les triangles : Triangle isocèle Un triangle isocèle est un triangle qui a deux de ses côtés de. un triangle est isocèle les deux côtés issus du sommet principal ont. un

Plus en détail

Géom 1 Connaître le vocabulaire et le codage géométrique

Géom 1 Connaître le vocabulaire et le codage géométrique Géom 1 Connaître le vocabulaire et le codage géométrique En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. La règle sert à mesurer, tracer

Plus en détail

Sommaire géométrie. Le segment de droite Point, droite, demi-droite et segment de droite. Droites perpendiculaires Droites parallèles

Sommaire géométrie. Le segment de droite Point, droite, demi-droite et segment de droite. Droites perpendiculaires Droites parallèles Sommaire géométrie ans le plan Géom 01 Géom 02 Géom 03 Géom 04 Géom 05 Géom 06 Géom 07 Géom 08 Géom 09 Géom 10 Géom 11 Géom 12 Géom 13 Géom 14 Géom 15 Géom 16 Dans l espace Géom 17 Géom 18 Géom 19 Géom

Plus en détail

Cours de 6ème. Jean Roussie

Cours de 6ème. Jean Roussie Cours de 6ème Jean Roussie 13 mai 2014 Chapitre 1 Nombres entiers et nombres décimaux 1.1 Les entiers naturels 1.1.1 Numérotation décimale Notre système de numérotation est composé de 10 symboles appelés

Plus en détail

Vocabulaire géométrique (Cm1) Vocabulaire géométrique (Cm2)

Vocabulaire géométrique (Cm1) Vocabulaire géométrique (Cm2) Vocabulaire géométrique (Cm1) La droite : c est un trait qui passe par un nombre infini de points alignés. On ne peut donc pas mesurer une droite. Le point : on le représente par une croix et on le nomme

Plus en détail

Triangles Triangles.odt clicprof.free.fr 1/10

Triangles Triangles.odt clicprof.free.fr 1/10 Triangles Table des matières 1Quelques rappels sur les triangles...2 1Médiatrices...2 2Bissectrices...2 3Nature d'un Triangle...2 Triangle isocèle...2 Triangle équilatéral...2 Triangle rectangle...2 2Construction

Plus en détail

I Rappels sur les symétries :

I Rappels sur les symétries : I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ AB ]. On appelle médiatrice du segment [ AB ] la droite perpendiculaire en I à ( AB ). Propriétés : La médiatrice de [ AB ]

Plus en détail

DISTANCES ET TANGENTES Corrigés 1/7

DISTANCES ET TANGENTES Corrigés 1/7 DISTANCES ET TANGENTES Corrigés 1/7 Corrigé 01 Soit une droite D et un point A, on appelle distance du point A à la droite D la distance de A au pied de la perpendiculaire à D passant par A. Corrigé 02

Plus en détail

EXERCICES. EXERCICE N 1 : Voici 7 surfaces, il s agit de les classer de la plus petite à la plus grande :

EXERCICES. EXERCICE N 1 : Voici 7 surfaces, il s agit de les classer de la plus petite à la plus grande : EC 9A : ELEMENTS DE MATHEMATIQUES DES GRANDEURS AUX MESURES EXERCICES EXERCICE N 1 : Voici 7 surfaces, il s agit de les classer de la plus petite à la plus grande : EXERCICE N 2 : Voici un énoncé : «Si

Plus en détail

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES?

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles On sait que

Plus en détail

5. Réponds aux questions suivantes en écrivant des phrases sous la figure que tu viens de coller.

5. Réponds aux questions suivantes en écrivant des phrases sous la figure que tu viens de coller. Déclic Construire-01 1. Trace un carré ABCD de 8 cm de côté. Nomme chacun des sommets de ce carré. 2. Trace les diagonales [AC] et [BD] du carré. 3. Le point O est le point d'intersection de ces deux diagonales.

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

LES SYMETRIES. Exercice 1

LES SYMETRIES. Exercice 1 Exercice 1 O (d) En t aidant du quadrillage et sans faire aucun trait de construction, construis le symétrique de la maison : 1) Dans la symétrie centrale de centre O ; 2) Dans la symétrie axiale d axe

Plus en détail

Droites parallèles et perpendiculaires Groupe 2

Droites parallèles et perpendiculaires Groupe 2 Droites parallèles et perpendiculaires Groupe 2 Objectif: reconnaître et tracer des droites parallèles et perpendiculaires. 1. Réalise le programme de construction suivant sur ta copie. Construis les droites

Plus en détail

Géom1. Connaitre le vocabulaire et les instruments géométriques

Géom1. Connaitre le vocabulaire et les instruments géométriques Connaitre le vocabulaire et les instruments géométriques Géom1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. La règle sert à mesurer,

Plus en détail

GEOMETRIE. Points, lignes, droites et segments Tableaux et quadrillages Reproduire une figure Cercle et compas Construire une figure géométrique

GEOMETRIE. Points, lignes, droites et segments Tableaux et quadrillages Reproduire une figure Cercle et compas Construire une figure géométrique SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... GEOMETRIE GEOM 0 GEOM 1 GEOM 2 GEOM 3 GEOM 4 GEOM 5 GEOM 6 GEOM 7 GEOM 8 GEOM 9 GEOM 10 GEOM 11 GEOM 12 GEOM 13 Points, lignes, droites

Plus en détail

Éléments de base de géométrie

Éléments de base de géométrie Chapitre 1 Éléments de base de géométrie Points et droites Pour représenter un point, on dessine une petite croix avec des traits ns. (Il ne faut pas faire quelque chose comme ça : parce que ce n'est pas

Plus en détail

Vecteurs. Géométrie analytique

Vecteurs. Géométrie analytique 6 septembre 014 Vecteurs. Géométrie analytique Addition de deux vecteurs EXERCICE 1 On donne trois vecteurs u, v w. Sur les deux figures suivantes tracer la somme u + v + w de deux manières : u + v )+

Plus en détail

G21 Construire le symétrique d'un point avec les instruments 6ème Construction du symétrique d'une droite, d'un cercle, d'un.

G21 Construire le symétrique d'un point avec les instruments 6ème Construction du symétrique d'une droite, d'un cercle, d'un. G Thème Numéro Titre de la leçon Niveau Page Se repérer dans un quadrillage Parallèles, perpendiculaires, sécantes G1 Se repérer dans un quadrillage CM1 CM2 6ème 2 G2 Coder un déplacement CM1 CM2 6ème

Plus en détail

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE. Points, lignes, droites et segments Tableaux et quadrillages

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE. Points, lignes, droites et segments Tableaux et quadrillages SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... GÉOMÉTRIE GÉOM 0 GÉOM 1 GÉOM 2 GÉOM 3 GÉOM 4 GÉOM 5 GÉOM 6 GÉOM 7 GÉOM 8 GÉOM 9 GÉOM 10 GÉOM 11 GÉOM 12 GÉOM 13 Points, lignes, droites

Plus en détail

Chapitre 8 Symétrie axiale

Chapitre 8 Symétrie axiale I. s symétriques Chapitre 8 Symétrie axiale Définition 1 : Deux points, A et B, sont symétriques par rapport à une droite (d), si la droite (AB) est perpendiculaire à (d) et le point d intersection des

Plus en détail

Géométrie transformation du plan.

Géométrie transformation du plan. Géométrie transformation du plan. I. Cercle 2 A. Définitions 2 B. Positions relatives d une droite et d un cercle 2 C. Positions relatives de deux cercles 2 II. 2 A. Construction à la règle et au compas

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

correction EXERCICES D ENTRAINEMENT

correction EXERCICES D ENTRAINEMENT DEVOIR NUMERO 6 : REVISION DE GEOMETRIE ETUDE DES FIGURES Révision ; inégalité triangulaire et triangles particuliers quadrilatères, quadrilatères particuliers et les symétries correction EXERCICES D ENTRAINEMENT

Plus en détail

NOM : GEOMETRIE 4ème

NOM : GEOMETRIE 4ème Exercice 1 Soit une droite (d) et un point G situé en dehors de la droite (d). On veut construire la parallèle à la droite (d) passant par le point G. Dans chacun des cas suivants, faire une figure, en

Plus en détail

2 Pour identifier que 2 droites sont perpendiculaires, j utilise le signe sur le dessin.

2 Pour identifier que 2 droites sont perpendiculaires, j utilise le signe sur le dessin. Les droites perpendiculaires éfinition (e) eux droites sont perpendiculaires si elles se coupent en formant un angle droit. (f) Pour identifier que droites sont perpendiculaires, j utilise le signe sur

Plus en détail

Renforcer ses compétences en mathématiques Devoir n 1

Renforcer ses compétences en mathématiques Devoir n 1 Renforcer ses compétences en mathématiques Devoir n 1 I. Conseils pour mieux réussir Le devoir 1 porte sur les notions des chapitres I, II, III, IV et V. EXERCICE 1 Voir la division euclidienne. Il peut

Plus en détail

Droites parallèles et perpendiculaires

Droites parallèles et perpendiculaires C H P I T R E Droites parallèles et perpendiculaires 2 Énigme du chapitre. Reproduire la figure suivante : mur Objectifs du chapitre. Tracer, par un point donné, la perpendiculaire ou la parallèle à une

Plus en détail

Ungroup, then double click to edit text. 8.3 Les propriétés des angles dans un cercle. OBJECTIF de 8.3

Ungroup, then double click to edit text. 8.3 Les propriétés des angles dans un cercle. OBJECTIF de 8.3 OBJECTIF de 8.3 Découvrir les propriétés des angles inscrits et des angles au centre Résoudre des problèmes. Un joueur de soccer tente de marquer un but. Au cours d un entraînement, les joueurs s alignent

Plus en détail

Translations et vecteurs

Translations et vecteurs Translations et vecteurs A) Translation. 1. Définition. Soient trois points A, B et M. L image du point M par la translation qui transforme A en B est le point M tel que ABM M, dans cet ordre, soit un

Plus en détail

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... GÉOMÉTRIE GEOM 0 Points, lignes, droites et segments GEOM 1 Tableaux et quadrillages GEOM 2 Reproduire une figure GEOM 3 ercle et compas

Plus en détail

Pyramide et Cône de révolution

Pyramide et Cône de révolution Pyramide et Cône de révolution I ) Pyramide 1 ) Présentation : a) Une pyramide est un solide constitué d un polygone appelé base dont les sommets sont reliés à un point, n appartenant pas au plan de base,

Plus en détail

Cours configurations du plan

Cours configurations du plan I Polygones a) Polygones particuliers triangles Propriété : La somme des angles d un triangle est égale à 180. Définition : Un triangle isocèle a deux côtés de même longueur. Propriétés caractéristiques

Plus en détail