Produit d un vecteur par un réel, classe de seconde

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Produit d un vecteur par un réel, classe de seconde"

Transcription

1 , classe de seconde F.Gaudon 8 avril 2012

2 1 2 Traduction de propriétés géométriques Milieux de segments Alignement et parallélisme

3 1 2 Traduction de propriétés géométriques Milieux de segments Alignement et parallélisme

4 Définition : Soit (O; i; j) un repère du plan. Soit u un vecteur de coordonnées (x; y) dans ce repère. Soit k un nombre réel. On appelle vecteur produit de u par k, le vecteur de coordonnées (kx; ky) dans le repère (O; i; j).

5

6 Propriétés : Soient k, k deux nombres réels et u, v deux vecteurs.

7 Propriétés : Soient k, k deux nombres réels et u, v deux vecteurs. k u + k u = (k + k ) u

8 Propriétés : Soient k, k deux nombres réels et u, v deux vecteurs. k u + k u = (k + k ) u k(k u) = (kk ) u

9 Propriétés : Soient k, k deux nombres réels et u, v deux vecteurs. k u + k u = (k + k ) u k(k u) = (kk ) u k( u + v) = k u + k v

10 Propriétés : Soient k, k deux nombres réels et u, v deux vecteurs. k u + k u = (k + k ) u k(k u) = (kk ) u k( u + v) = k u + k v k u = 0 si et seulement si k = 0 ou u = 0

11 Exemple 1 : Soit (O; i; j) un repère du plan. Soit u tel que u = 3( i + 2 j) 5 i + 3 j. Alors :

12 Exemple 1 : Soit (O; i; j) un repère du plan. Soit u tel que u = 3( i + 2 j) 5 i + 3 j. Alors : u = 3 i + 6 j 5 i + 3 j

13 Exemple 1 : Soit (O; i; j) un repère du plan. Soit u tel que u = 3( i + 2 j) 5 i + 3 j. Alors : u = 3 i + 6 j 5 i + 3 j donc u = 3 i + 6 j 5 i + 3 j

14 Exemple 1 : Soit (O; i; j) un repère du plan. Soit u tel que u = 3( i + 2 j) 5 i + 3 j. Alors : u = 3 i + 6 j 5 i + 3 j donc u = 3 i + 6 j 5 i + 3 j et u = 2 i + 9 j.

15 Exemple 1 : Soit (O; i; j) un repère du plan. Soit u tel que u = 3( i + 2 j) 5 i + 3 j. Alors : u = 3 i + 6 j 5 i + 3 j donc u = 3 i + 6 j 5 i + 3 j et u = 2 i + 9 j. Donc u a pour coordonnées ( 2; 9) dans (O; i; j).

16 Exemple 2 : Soient A, B et C trois points et u tel que u = 3AC + 3CB BA. Alors :

17 Exemple 2 : Soient A, B et C trois points et u tel que u = 3AC + 3CB BA. Alors : u = 3( AC + CB) BA

18 Exemple 2 : Soient A, B et C trois points et u tel que u = 3AC + 3CB BA. Alors : u = 3( AC + CB) BA donc u = 3AB BA

19 Exemple 2 : Soient A, B et C trois points et u tel que u = 3AC + 3CB BA. Alors : u = 3( AC + CB) BA donc u = 3AB BA d où u = 3AB + AB

20 Exemple 2 : Soient A, B et C trois points et u tel que u = 3AC + 3CB BA. Alors : u = 3( AC + CB) BA donc u = 3AB BA d où u = 3AB + AB et u = 4AB.

21 Exemple 2 : Soient A, B et C trois points et u tel que u = 3AC + 3CB BA. Alors : u = 3( AC + CB) BA donc u = 3AB BA d où u = 3AB + AB et u = 4AB. Ceci permet de tracer simplement le vecteur u.

22 Exemple de placement de point vérifiant une égalité vectorielle : Soient A, B et C trois points. Soit M le point défini par : AM = 3BC 2AC. Exprimons AM en fonction de AB et AC : AM = 3( BA + AC) 2AC = 3 BA + 3 AC 2 AC = 3 BA + AC = 3 AB + AC

23 Traduction de propriétés géométriques Milieux de segments Plan

24 Traduction de propriétés géométriques Milieux de segments 1 2 Traduction de propriétés géométriques Milieux de segments Alignement et parallélisme

25 Traduction de propriétés géométriques Milieux de segments Propriété : Soient A, B et I trois points. I est le milieu du segment [AB] si et seulement si AI = IB si et seulement si AI = 1AB. 2

26 Traduction de propriétés géométriques Alignement et parallélisme Plan

27 Traduction de propriétés géométriques Alignement et parallélisme 1 2 Traduction de propriétés géométriques Milieux de segments Alignement et parallélisme

28 Traduction de propriétés géométriques Alignement et parallélisme Définition : Deux vecteurs non nuls sont colinéaires si il existe un réel k non nul tel que v = k u.

29 Traduction de propriétés géométriques Alignement et parallélisme Remarque : Deux vecteurs u et v sont colinéaires si ils ont la même direction.

30 Traduction de propriétés géométriques Alignement et parallélisme Remarque : Deux vecteurs u et v sont colinéaires si ils ont la même direction. Exemple : Soient u et v de coordonnées respectives (5; 3) et ( 15; 9) dans un repère.

31 Traduction de propriétés géométriques Alignement et parallélisme Remarque : Deux vecteurs u et v sont colinéaires si ils ont la même direction. Exemple : Soient u et v de coordonnées respectives (5; 3) et ( 15; 9) dans un repère. u et v sont colinéaires car v = 3 u ou u = 1 3 v.

32 Traduction de propriétés géométriques Alignement et parallélisme Propriétés : Soient A, B et C trois points. A, B et C sont alignés et distincts si et seulement si il existe un nombre réel k non nul tel que AB = kac ;

33 Traduction de propriétés géométriques Alignement et parallélisme Propriétés : Soient A, B et C trois points. A, B et C sont alignés et distincts si et seulement si il existe un nombre réel k non nul tel que AB = kac ; Soient A, B, C et D quatre points. Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs AB et CD sont colinéaires.

Produit d un vecteur par un nombre, cours pour la classe de seconde

Produit d un vecteur par un nombre, cours pour la classe de seconde Produit d un vecteur par un nombre, cours pour la classe de seconde F.Gaudon 13 mai 2010 Table des matières 1 Produit d un vecteur par un nombre 2 2 Traduction vectorielle de propriétés géométriques 3

Plus en détail

Géométrie vectorielle plane, cours, première S

Géométrie vectorielle plane, cours, première S Géométrie vectorielle plane, cours, première S F.Gaudon 25 septembre 2015 Table des matières 1 Géométrie vectorielle dans un repère 2 1.1 Compléments sur la colinéarité.................................

Plus en détail

Seconde Géométrie vectorielle Notion de vecteurs coordonnées de vecteurs

Seconde Géométrie vectorielle Notion de vecteurs coordonnées de vecteurs I. Notion de vecteurs a) Vecteurs et translations Définition : A et B désignent deux points du plan. La translation qui transforme A en B associe à tout point C du plan l'unique point D tel que les segments

Plus en détail

Angles orientés. exercices corrigés. 21 février 2014

Angles orientés. exercices corrigés. 21 février 2014 exercices corrigés 21 février 2014 Exercice 1 Exercice 2 Exercice 3 Exercice 4 Exercice 5 Exercice 6 Exercice 7 Exercice 8 Exercice 9 Exercice 1 Enoncé Soit A et B deux points du plan tels que AB = 4 cm.

Plus en détail

Savoir que AB= CD équivaut à ABDC est un parallélogramme, éventuellement aplati. Connaître les coordonnées (x B x A ; y B y A ) du vecteur AB

Savoir que AB= CD équivaut à ABDC est un parallélogramme, éventuellement aplati. Connaître les coordonnées (x B x A ; y B y A ) du vecteur AB Chapitre 3 La notion de vecteurs CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Vecteurs Définition de la translation qui transforme un point A du plan en un point B. Vecteur AB associé. Égalité de deux vecteurs

Plus en détail

Les Vecteurs ( En seconde )

Les Vecteurs ( En seconde ) Les Vecteurs ( En seconde ) Dernière mise à jour : Mardi 22 Avril 2008 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2007-2008) -1- J aimais et j aime encore les mathématiques pour elles-mêmes

Plus en détail

Seconde Suite du cours sur les vecteurs Page 1 sur 9

Seconde Suite du cours sur les vecteurs Page 1 sur 9 Seconde Suite du cours sur les vecteurs Page 1 sur 9 III) Somme de vecteurs : 3) Somme de vecteurs et configurations : a) Parallélogramme Propriété : Parallélogramme Si ABCD est un parallélogramme alors

Plus en détail

Seconde Géométrie 2 : Les vecteurs Page 1 sur 6

Seconde Géométrie 2 : Les vecteurs Page 1 sur 6 Seconde Géométrie 2 : Les vecteurs Page 1 sur 6 Seconde Géométrie 2 : Les vecteurs Page 2 sur 6 II) Vecteurs : 1) Qu est ce qu un vecteur? Un vecteur ( non nul ) est la donnée de trois éléments : 1) une

Plus en détail

Vecteurs du plan. Seconde 5 2010/2011 L.F.B. Seconde 5 (L.F.B.) Vecteurs du plan 2010/2011 1 / 21

Vecteurs du plan. Seconde 5 2010/2011 L.F.B. Seconde 5 (L.F.B.) Vecteurs du plan 2010/2011 1 / 21 Vecteurs du plan Seconde 5 L.F.B. 2010/2011 Seconde 5 (L.F.B.) Vecteurs du plan 2010/2011 1 / 21 Définitions Translation Définition 1 Étant donnés trois points du plan A, B et M, on dit que M est l image

Plus en détail

Fiche méthode : Vecteurs dans un repère

Fiche méthode : Vecteurs dans un repère Table des matières 1 Calcul des coordonnées 2 1.1 Cas général................................................ 2 1.2 exemple.................................................. 2 2 vecteurs égaux 2 2.1 rappels...................................................

Plus en détail

Géométrie dans l Espace

Géométrie dans l Espace Géométrie dans l Espace Année scolaire 006/007 Table des matières 1 Vecteurs de l Espace 1.1 Extension de la notion de vecteur à l Espace............................. 1. Calcul vectoriel dans l Espace......................................

Plus en détail

Vecteurs, cours pour la classe de seconde

Vecteurs, cours pour la classe de seconde F.Gaudon 2 septembre 2009 Table des matières 1 Notions de translation et de vecteurs 2 2 Somme de vecteurs 3 3 Coordonnées de vecteurs 5 1 1 Notions de translation et de vecteurs Soient A et B deux points

Plus en détail

Vecteurs. I Translation. 1. Définition :

Vecteurs. I Translation. 1. Définition : Vecteurs I Translation Soit A et B deux points du plan. On appelle translation qui transforme A en B la transformation du plan qui a tout point M associe le point M tel que [AM ] et [BM] aient le même

Plus en détail

Corrigé des exercices sur les vecteurs. Septembre 2010

Corrigé des exercices sur les vecteurs. Septembre 2010 Septembre 2010 Exercice 1 Soient un triangle ABC et les points I et J tels que AI = 1 AB et AJ = 3 AC 3 1 Exprimer le vecteur BJ en fonction des vecteurs BA et AC. 2 Exprimer le vecteur IC en fonction

Plus en détail

CHAPITRE 6 Les vecteurs

CHAPITRE 6 Les vecteurs A/ Vecteurs Cours de Mathématiques Classe de Seconde Chapitre 6 Les Vecteurs CHAPITRE 6 Les vecteurs 1) Définition et exemples a) Définition Soient deux points A et B. On appelle vecteur AB "la flèche"

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

1) Construire un parallélogramme et le point, symétrique du point par rapport au point. 2) Démontrer que est un parallélogramme.

1) Construire un parallélogramme et le point, symétrique du point par rapport au point. 2) Démontrer que est un parallélogramme. Seconde Exercices sur les vecteurs Page 1 Définition, égalité de vecteurs ---------------------------------------------------------------------------------------------------- Exercice 1 : A vue d œil,

Plus en détail

un repère orthonormé de l espace.

un repère orthonormé de l espace. Terminale S GEOMETRIE Ch 13 DANS L ESPACE. Soit ( O ; i, j, k ) un repère orthonormé de l espace. I) Droites et plans dans l espace : Propriété 1 : Soient A et B deux points de l espace. AB est l ensemble

Plus en détail

Vecteurs et translations

Vecteurs et translations Vecteurs et translations p. 1 Vecteurs et translations Classe de Seconde Y. BRENEY - Professeur de Mathématiques ybreney@free.fr Lycée Lumière - Luxeuil-les-Bains 1 - Translations Vecteurs et translations

Plus en détail

VECTEURS ET DROITES. I. Colinéarité de deux vecteurs. Définition : c est-à-dire qu il existe un nombre réel k tel que u = kv. Critère de colinéarité :

VECTEURS ET DROITES. I. Colinéarité de deux vecteurs. Définition : c est-à-dire qu il existe un nombre réel k tel que u = kv. Critère de colinéarité : 1 VECTEURS ET DROITES En 1837, le mathématicien italien Giusto BELLAVITIS, ci-contre, (1803 ; 1880) publie des travaux préfigurant la notion de vecteurs qu'il nomme "segments équipollents". Puis plus tard

Plus en détail

Seconde Géométrie vectorielle Notion de vecteurs coordonnées de vecteurs

Seconde Géométrie vectorielle Notion de vecteurs coordonnées de vecteurs Notion de ecters coordonnées de ecters I. Notion de ecters a) Vecters et translations Définition : A et B désignent dex points d plan. La translation qi transforme A en B associe à tot point C d plan l'niqe

Plus en détail

Vecteurs et droites du plan

Vecteurs et droites du plan Vecteurs et droites du plan I Rappel sur les vecteurs dans le plan 1. Définitions Un bipoint est un ensemble de 2 points. Le "bipoint " est noté (, ). Deu bipoints (, ) et (C, D) sont équipollents si les

Plus en détail

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Introduction : Cette leçon s inscrit dans la continuité de la précédente. On supposera connu

Plus en détail

VECTEURS DE L'ESPACE

VECTEURS DE L'ESPACE 1 VECTEURS DE L'ESPACE I. Caractérisation vectorielle d'un plan 1) Notion de vecteur dans l'espace Définition : Un vecteur de l'espace est défini par une direction de l'espace, un sens et une norme (longueur).

Plus en détail

Chapitre 3 : Vecteurs. Géométrie analytique

Chapitre 3 : Vecteurs. Géométrie analytique I. Vecteurs Chapitre 3 : Vecteurs. Géométrie analytique Un vecteur permet de caractériser un déplacement : Il est défini par une direction, un sens sur cette direction et une longueur. E F Il n'est en

Plus en détail

Transformations du plan (exercices)

Transformations du plan (exercices) Exercice 1 : Transformations du plan (exercices) 1. Construire les symétriques de cette figure par rapport aux trois axes tracés (horizontal, vertical puis oblique ) 2. Construire les symétriques de la

Plus en détail

Vecteurs dans le plan

Vecteurs dans le plan Vecters dans le plan 1. Définition d n vecter : (classe de seconde) Soient A et B dex points d plan. La translation transformant A en B est la transformation qi transforme tot point M en n point M tel

Plus en détail

Vecteurs et colinéarité

Vecteurs et colinéarité Chapitre 3 Vecteurs et colinéarité Ce que dit le programme : Géométrie plane. Vecteurs Condition de colinéarité de deux vecteurs : xy' x'y. Vecteur directeur d une droite. Équation cartésienne d une droite.

Plus en détail

Vecteurs. I Translation. 1. Définition :

Vecteurs. I Translation. 1. Définition : Vecteurs I Translation Soit A et B deux points du plan. On appelle translation qui transforme A en B la transformation du plan qui a tout point M associe le point M tel que [AM ] et [BM] aient le même

Plus en détail

Repérage et vecteurs

Repérage et vecteurs Repérage et ecters Chapitre 10 page 241 Introdction : Rappels por démarrer : Page 241 I-Egalité de ecters 1- Détermination d'n ecter. Un ecter non nl est déterminé par : - sa direction ; - son sens ; -

Plus en détail

DROITES REMARQUABLES DU TRIANGLE

DROITES REMARQUABLES DU TRIANGLE Exercices 1/8 01 Donner la définition d une : - médiane - médiatrice - hauteur - bissectrice 02 Nommer les droites suivantes : (AC) : (BC) : (BD) : (BE) :. 03 Compléter les phrases relatives aux propriétés

Plus en détail

1) Trace un carré ABCD de 3 cm de côté. 2) Place E et F respectivement les milieux de [CD] et [AD]. 3) Trace les segments [EF], [BF] et [BE].

1) Trace un carré ABCD de 3 cm de côté. 2) Place E et F respectivement les milieux de [CD] et [AD]. 3) Trace les segments [EF], [BF] et [BE]. Corrigé des programmes de construction de la séance 2 du jeudi 15/09/11 1) Trace un carré ABCD de 3 cm de côté. 2) Trace la diagonale [BD]. 3) Place E et F respectivement les milieux de [AD] et [AB]. 4)

Plus en détail

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme.

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Devoir Maison A rendre le mercredi 2 mai 2nde 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Calculer les coordonnées du point D. 2/ a)

Plus en détail

Si on essayait de penser vectoriellement? Vecteur : véhicule, sens, direction, flèche du temps, index de mouvement ou de transformation. OM = x.

Si on essayait de penser vectoriellement? Vecteur : véhicule, sens, direction, flèche du temps, index de mouvement ou de transformation. OM = x. I REPÈRE DU PLAN 1 DÉFINITION On appelle repère du plan, tout triplet (O; i, ) tel que O désigne un point du plan et i, deux vecteurs non colinéaires Le point O est appelé origine du repère ; les vecteurs

Plus en détail

VECTEURS EXERCICES CORRIGES

VECTEURS EXERCICES CORRIGES Exercice n 1. VECTEURS EXERCICES CORRIGES On considère un hexagone régulier ABCDEF de centre O, et I et J les milieux respectifs des segments [AB] et [ED]. En utilisant les lettres de la figure citer :

Plus en détail

Seconde Chapitre 5 : Les vecteurs Page 1 sur 12

Seconde Chapitre 5 : Les vecteurs Page 1 sur 12 Seconde Chapitre 5 : Les vecteurs Page 1 sur 12 Activités 1, 2 et 3 sur les translations I ) Vecteurs 1) Qu est ce qu un vecteur? Idée à retenir : «Un vecteur sert à décrire un déplacement» Un vecteur

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

COURS SUR LES TRANSLATIONS ET HOMOTHETIES

COURS SUR LES TRANSLATIONS ET HOMOTHETIES COURS SUR LES TRANSLATIONS ET HOMOTHETIES Translations Soit un vecteur du plan La translation du vecteur, notée, est l application qui à tout point M du plan ou de l espace associe le point M tel que Remarques

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Application du produit scalaire: Géométrie analytique

Application du produit scalaire: Géométrie analytique Application du produit scalaire: Géométrie analytique I) Vecteur normal et équation de droite 1) Vecteur normal à une droite Dire que est un vecteur non nul normal à une droite (d) de vecteur directeur

Plus en détail

E3A PC 2009 Math A. questions de cours. t C). On véri e que

E3A PC 2009 Math A. questions de cours. t C). On véri e que E3A PC 29 Math A questions de cours. Soit C 2 M 3 (R) Analyse : Si C = S + A, S 2 S 3 (R) et A 2 A 3 (R) alors t C = t S + t A = S A d où S = 2 (C +t C) et A = 2 (C t C). L analyse assure l unicité (sous

Plus en détail

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé.

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé. COMPOSITION SECONDE MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE Durée de l épreuve : 2 h 00 L usage de la calculatrice est autorisé. Toutes les réponses devront être justifiées. Exercice 1 Soit la fonction

Plus en détail

Vecteurs et translations

Vecteurs et translations 2015 Les vecteurs Seconde 9 I Vecteurs et translations I.1 Translation Soit et B deux points du plan. À tout point C du plan, on associe le point D tel que [D] et [BC] ont le même milieu. B B CD D C L

Plus en détail

Réponse. Réponse. Réponse

Réponse. Réponse. Réponse Exercice 1 La médiatrice d un segment est la droite qui est perpendiculaire à ce segment et qui passe par son milieu. Justifier avec rigueur l affirmation suivante : La droite (d) est la médiatrice du

Plus en détail

THEOREMES DES MILIEUX DROITES PARALLELES Exercices 1/7

THEOREMES DES MILIEUX DROITES PARALLELES Exercices 1/7 DROITES PARALLELES Exercices 1/7 01 Citer les deux théorèmes des milieux. 02 Soit un triangle ABC. Soit I le milieu de [ AB ] et J le milieu de [ ] est parallèle à la droite (BC). BC. Démontrer que la

Plus en détail

GEOMETRIE DANS L ESPACE

GEOMETRIE DANS L ESPACE 1 sur 8 GEOMETRIE DANS L ESPACE I. Les solides usuels (rappels du collège) 1) Les solides droits 2) Pyramide et cône 2 sur 8 3) Sphère et boule Aire de la sphère = 4π r 2 Exemple : Surface terrestre (rayon

Plus en détail

D.S. n 9 : Vecteurs 2 nde 7

D.S. n 9 : Vecteurs 2 nde 7 D.S. n 9 : Vecteurs nde 7 Vendredi 6 avril 013, 55 min. Ce sujet est à rendre avec la copie. SUJET D Nom :.................... Prénom :................. Communication: + ± Technique : + ± Raisonnement

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

VECTEURS-TRANSLATIONS. «La direction de l aiguille aimantée» Sens : ( n.m. ) Direction, orientation «Aller en sens contraire» Petit Larousse

VECTEURS-TRANSLATIONS. «La direction de l aiguille aimantée» Sens : ( n.m. ) Direction, orientation «Aller en sens contraire» Petit Larousse THEME : VECTEURS-TRANSLATIONS DEfinitions - Proprietes Notion de direction et de sens : Direction ( n.f. ) Orientation vers un point donné «La direction de l aiguille aimantée» Sens : ( n.m. ) Direction,

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Définition : Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui

Plus en détail

Géométrie analytique

Géométrie analytique Géométrie analytique Cédric Milliet Version préliminaire Cours de première année de licence Université Galatasaray Année 2011-2012 Ces notes doivent beaucoup aux notes de cours de Marie-Christine Pérouème.

Plus en détail

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation )

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Introduction : On se place dans plan affine euclidien muni

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

Cours BTS Calcul vectoriel

Cours BTS Calcul vectoriel Cours BTS Calcul vectoriel S. B. Lycée des EK Interprétation Propriété Coordonnées d un vecteur Dans le plan muni d un repère (O; i, j ), les coordonnées d un vecteur u sont les coordonnées de l unique

Plus en détail

Le barycentre dans le plan et dans l espace

Le barycentre dans le plan et dans l espace Le barycentre dans le plan et dans l espace Livre pages 160 à 171 Introduction : QCM + exercices sur les vecteurs niveau seconde; recherche de point d équilibre. 1 Vecteurs dans l espace 1.1 Propriétés

Plus en détail

Introduction aux inégalités

Introduction aux inégalités Introduction aux inégalités -cours- Razvan Barbulescu ENS, 8 février 0 Inégalité des moyennes Faisons d abord la liste des propritétés simples des inégalités: a a et b b a + b a + b ; s 0 et a a sa sa

Plus en détail

3 ème Cours : Théorème de Thalès

3 ème Cours : Théorème de Thalès I Points alignés : Deux droites sont parallèles si elles n ont aucun point commun ou si elles sont confondues. Conséquence : Si deux droites sont parallèles et possèdent un point commun alors elles sont

Plus en détail

Produit scalaire dans l Espace

Produit scalaire dans l Espace Produit scalaire dans l Espace Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Produit scalaire du plan 1.1 Différentes expressions du produit scalaire............................... 1.

Plus en détail

DEVOIR MAISON 4 : LES VECTEURS

DEVOIR MAISON 4 : LES VECTEURS DEVOIR MAISON 4 : LES VECTEURS Ce devoir maison de révisions, de préparation au DS4 comporte deux pages. Vous traiterez au choix au moins la première ou la deuxième page. Exercice 1. Le plan est muni d

Plus en détail

CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 7 21 = 7 21 = 1 3 18. Exercice n 2 : 4(3x 2) + 2(5 x) = 8 soit donc : 12 x 8 + 10 2x = 8

CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 7 21 = 7 21 = 1 3 18. Exercice n 2 : 4(3x 2) + 2(5 x) = 8 soit donc : 12 x 8 + 10 2x = 8 CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 ACTIVITES NUMERIQUES (12 points) Exercice n 1 : A = 5 21 + 3 7 1 3 = 5 21 + 9 21 7 21 = 7 21 = 1 3 ; B = 2 3 + 2 7 C = - 5 12 3 2 = - 5 12 14 9 = 2 3 + 2

Plus en détail

COLLÈGE LA PRÉSENTATION. Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments usuels de dessin.

COLLÈGE LA PRÉSENTATION. Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments usuels de dessin. COLLÈGE LA PRÉSENTATION BREVET BLANC Mai 2013 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

7 Vecteurs du plan. Hyperbole 2010 p.196.

7 Vecteurs du plan. Hyperbole 2010 p.196. 7 Vecteurs du plan Hyperbole 2010 p.196. Objectifs : Définir une translation et le vecteur associé Savoir caractériser et reconnaître deux vecteurs égaux, deux vecteurs opposés Savoir construire géométriquement

Plus en détail

Notion de vecteur Vecteurs égaux

Notion de vecteur Vecteurs égaux Notion de vecteur Vecteurs égaux I) Translation 1) Définition A et B sont deux points du plan. La translation qui transforme A en B associe à tout point C du plan l unique point D tel que ABDC soit un

Plus en détail

I-ACTIVITÉS NUMÉRIQUES (12 points)

I-ACTIVITÉS NUMÉRIQUES (12 points) BREVET BLANC 1_DECEMBRE 2011 I-ACTIVITÉS NUMÉRIQUES (12 points) Exercice 1 : (4 pts) Soit les expressions 1) Calculer A et B en détaillant les étapes du calcul et écrire le résultat sous la forme d'une

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

1 Notion de matrice. 2 Opérations sur les matrices. 1.1 Définitions et notations

1 Notion de matrice. 2 Opérations sur les matrices. 1.1 Définitions et notations ECS 3 2013 2014 Semaine de colle n o 16 du 13 au 17 janvier Toutes les définitions /énoncés du cours sont à connaître précisément Les démonstrations/exemples vus en classe peuvent être proposées comme

Plus en détail

L outil vectoriel et géométrie analytique

L outil vectoriel et géométrie analytique L outil vectoriel et géométrie analytique 1 Table des matières 1 Définition et théorème 1.1 Définition................................. 1. Egalité entre deux vecteurs....................... Addition de

Plus en détail

Vecteurs du plan. Définition. Un vecteur est une «flèche», caractérisée par sa longueur, sa direction et son sens. 1

Vecteurs du plan. Définition. Un vecteur est une «flèche», caractérisée par sa longueur, sa direction et son sens. 1 Vecters d plan. Définitions et généralités Définition. Un vecter est ne «flèche», caractérisée par sa longer, sa direction et son sens. Exemple. Sr la figre ci-contre, on a représenté le vecter = AB, d

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

2 nde CORRIGE : DEVOIR COMMUN DE

2 nde CORRIGE : DEVOIR COMMUN DE 2 nde CORRIGE : DEVOIR COMMUN DE MATHEMATIQUES Exercice 1 : (4 points) 1. Compléter le tableau à double entrée ci-dessous. Elèves vaccinés Elèves non vaccinés Total Elèves ayant eu la grippe 14 133 147

Plus en détail

DROITES. ( )( y B ( ) = 0. D vérifie une équation de la forme x = c avec c = x A. I. Equation de droites. 1. Caractérisation analytique d une droite

DROITES. ( )( y B ( ) = 0. D vérifie une équation de la forme x = c avec c = x A. I. Equation de droites. 1. Caractérisation analytique d une droite 1 sur 10 ROITES I. Equation de droites 1. Caractérisation analytique d une droite Propriété : Soit (O, i, ) un repère du plan. Soit une droite du plan. y - Si est parallèle à l axe des ordonnées : alors

Plus en détail

Un quadrilatère ABCD est un parallélogramme si, et seulement si ses diagonales ont le même milieu.

Un quadrilatère ABCD est un parallélogramme si, et seulement si ses diagonales ont le même milieu. Lycée JNSN E SILLY 10 novembre 015 VETEURS U PLN nde 5 I NTIN E VETEUR 1 PRLLÉLGRE ÉFINITIN Un quadrilatère est un parallélogramme si, et seulement si ses diagonales ont le même milieu. parallélogramme

Plus en détail

5 VECTEURS DU PLAN. 1 Définitions AB. 1.1 Translation. 1.2 Vecteur

5 VECTEURS DU PLAN. 1 Définitions AB. 1.1 Translation. 1.2 Vecteur ours 5 VETEURS U PLN 1 éfinitions 11 Translation éfinition 1 Étant donnés trois points du plan, et M, on dit que M est l image de M par la translation qui transforme en si les segments [M ] et [ M] ont

Plus en détail

Géométrie vectorielle et analytique dans l'espace, cours, terminale S

Géométrie vectorielle et analytique dans l'espace, cours, terminale S Géométrie vectorielle et analytique dans l'espace, cours, terminale S F.Gaudon 21 mars 2013 Table des matières 1 Vecteurs de l'espace 2 1.1 Extension de la notion de vecteur à l'espace.........................

Plus en détail

Forme trigonométrique d un nombre complexe Applications

Forme trigonométrique d un nombre complexe Applications Forme trigonométrique d un nombre complexe Applications Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Représentation géométrique d un nombre complexe 2 1.1 Rappels : affixe d un point........................................

Plus en détail

Calcul vectoriel dans l espace, géométrie dans le plan et dans l espace

Calcul vectoriel dans l espace, géométrie dans le plan et dans l espace Chapitre 7 Calcul vectoriel dans l espace, géométrie dans le plan et dans l espace 7.1 Calcul vectoriel dans l espace On se place dans un repère orthonormal (O, i, j, k) de l espace E (à 3 dimensions).

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 Ex 1 : Vrai ou faux a)une droite est limité par deux points En géométrie, il faut être attentif lors de la lecture des consignes et très

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Chapitre 4 : Géométrie plane

Chapitre 4 : Géométrie plane hapitre 4 : Géométrie plane I Rappels et compléments sur les vecteurs I Vecteurs et géométrie Égalité de deux vecteurs : = D ssi D est un parallélogramme (éventuellement aplati) D ddition de vecteurs :

Plus en détail

Chapitre 6 Géométrie vectorielle

Chapitre 6 Géométrie vectorielle 6. Translation et vecteurs 6.. Définition DÉFINITIN n considère et deux points distincts du plan. hapitre 6 Géométrie vectorielle. n appelle translation qui transforme en la transformation qui à tout point

Plus en détail

Nombres complexes et géométrie euclidienne

Nombres complexes et géométrie euclidienne 19 Nombres complexes et géométrie euclidienne Le corps C des nombres complexes est supposé construit voir le chapitre 7. On rappelle que C est un corps commutatif et un R-espace vectoriel de dimension,

Plus en détail

6 ème exercices : Introduction à la géométrie

6 ème exercices : Introduction à la géométrie Droites, demi-droites et segments. Exercice 1 Réponse 1 Placer trois points A, B et C non alignés. Tracer la droite qui passe par les points B et C. Tracer le segment d extrémités A et B. Tracer la demi-droite

Plus en détail

Triangle rectangle : Cercle circonscrit et médiane

Triangle rectangle : Cercle circonscrit et médiane Triangle rectangle : Cercle circonscrit et médiane I) Vocabulaire 1) Hypoténuse Définition : Dans un triangle rectangle le côté opposé à l angle droit est appelé hypoténuse. 2) Hauteurs, médianes, médiatrices

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

Chapitre 2 Colinéarité et équation de droite. Table des matières. Chapitre 2 Colinéarité et équation de droite TABLE DES MATIÈRES page -1

Chapitre 2 Colinéarité et équation de droite. Table des matières. Chapitre 2 Colinéarité et équation de droite TABLE DES MATIÈRES page -1 hapitre 2 olinéarité et équation de droite TLE DES MTIÈRES page -1 hapitre 2 olinéarité et équation de droite Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

Somme et différence de deux vecteurs 1. Relation de Chasles. Seconde Lycée Desfontaines - Melle Cours 04 Vecteurs

Somme et différence de deux vecteurs 1. Relation de Chasles. Seconde Lycée Desfontaines - Melle Cours 04 Vecteurs Seconde Lycée Desfontaines - Melle Cours 04 Vecteurs I. Définitions 1- Notions de direction et de sens : On dit que deux droites ont le même direction si et seulement si elles sont parallèles. Une direction

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Correction du brevet blanc n 2

Correction du brevet blanc n 2 Correction du brevet blanc n 2 Rédaction et présentation : 4 points Applications numériques : 12 points 1 Exercice 1: On donne: A = 3 5 6 3 2 1.Je calcule Aet donne le résultat sous forme d'une fraction

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Symétrie Axiale. La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu.

Symétrie Axiale. La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu. Symétrie Axiale 1 Médiatrice d un segment. 1 a Définition La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu. Exemple : (d) est la médiatrice du segment [AB]

Plus en détail

Sommaire. 1 Rappels. 2

Sommaire. 1 Rappels. 2 Sommaire 1 Rappels. 2 2 Triangle rectangle et cercle circonscrit. 7 2.1 Propriété n 1............................. 7 2.2 Exemple d utilisation de la propriété n 1.............. 8 2.3 Propriété n 2.............................

Plus en détail

LES VECTEURS : Un exemple de cours.

LES VECTEURS : Un exemple de cours. LES VECTEURS : Un exemple de cours. I) De la translation Du latin transfere transporter aux vecteurs Du latin vector véhicule, de vehere transporter Introduction : Activités de groupe. Objectif : utiliser

Plus en détail

4B Devoir Surveillé n 2 Les calculatrices sont autorisées.

4B Devoir Surveillé n 2 Les calculatrices sont autorisées. 4B Devoir Surveillé n 2 Les calculatrices sont autorisées. Exercice n 1 :(7,5 points) Tracer un triangle ABC rectangle en B tel que AB = 6 cm et BC = 8 cm. Placer I le milieu de [AB] et placer J le milieu

Plus en détail

Une année de Mathématiques en classe de Première S

Une année de Mathématiques en classe de Première S Une année de Mathématiques en classe de Première S Freddy Mérit Année scolaire 2012-2013 Ce manuel, à destination des élèves de Première S, a été en partie réalisé à partir de la consultation des ouvrages

Plus en détail

Vecteurs. I.Translations et Vecteurs du plan...1. II.Somme et différence de deux vecteurs...2

Vecteurs. I.Translations et Vecteurs du plan...1. II.Somme et différence de deux vecteurs...2 Vecteurs 2 nde Table des matières I.Translations et Vecteurs du plan...1 A.Translation et vecteur associé...1 B.Égalité de deux vecteurs...1 C.Vecteur nul...2 D.Opposé d un vecteur...2 II.Somme et différence

Plus en détail

Produit scalaire dans l espace-equations de plans et de droites

Produit scalaire dans l espace-equations de plans et de droites Mme Morel-TS 1 Produit scalaire dans l espace-equations de plans et de droites 1 Produit scalaire dans l espace 1.1 Définition Définition 1.1.1. Dasn l espace, une unité de longueur étant choisie, le produit

Plus en détail

THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX

THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX Pour prendre un bon départ Initiation à la démonstration 1 ) Lire la partie A de la synthèse : «Notion de démonstration» 2 ) Complète les raisonnements

Plus en détail

Chapitre 4 : Matrices

Chapitre 4 : Matrices Lycée Paul Sabatier Classe de Première ES, Spécialité Chapitre 4 : C. Aupérin 008-009 Télécharger c est tuer l industrie, tuons les tous Thurston Moore Dernière modification : 4 avril 009 Table des matières

Plus en détail