LES NOMBRES RELATIFS.
|
|
|
- Georges Blanchard
- il y a 9 ans
- Total affichages :
Transcription
1 LES NOMRES RELTIFS.. Préliminaires.. Nombres relatifs. Ce sont des nombres qui sont pourvus d'un signe. Exemples : + 5,3 est un nombre relatif positif ; on dit que 5,3 est la "partie numérique" de ce nombre relatif. 4,7 est un nombre relatif négatif ; on dit que 4,7 est la "partie numérique" de ce nombre relatif. Les nombres 2,5 et - 2,5 sont dits opposés : ils ont le même "partie numérique", mais des signes différents..2 Représentation géométrique. Il est possible de placer des nombres relatifs sur une droite graduée. Tu remarqueras que les deux nombres opposés 2,5 et 2,5 sont placés symétriquement par rapport à O. (On peut dire aussi qu'ils sont à la même distance par rapport à O ) EXERCICE chercher. Sur une droite, placer les points,, C et D d abscisses respectives 2 7 ; ; ;3 3 3 ). Quelle unité "habile" vas-tu choisir pour la graduation d'origine O? 2 ). Place les points,, C, D 3 ). Place les points ', ', C', D' symétriques de,, C, D par rapport à l'origine O.
2 2. ddition et soustraction de nombres relatifs : points clés 2. Pour additionner deux nombres relatifs qui ont le même signe : On garde le signe des deux nombres. On additionne les parties numériques. Exemples : 3,8 4,5 8,3 5, 4 6,3,7 2.2 Pour additionner deux nombres relatifs de signes contraires : On garde le signe du nombre qui a la plus grande partie numérique. On soustrait la plus petite partie numérique de la plus grande. Exemples : 3,8 4,5 0, 7 8,5 3, 4 5, 2.3 Écriture d'un opposé. Le signe placé devant un nombre placé entre parenthèses indique un opposé. Exemples : 5 est l'opposé de 5. Donc : 5 5 3, 4 est l'opposé de 3, 4. Donc 3, 4 = 3, Propriété : La somme de deux opposés est nulle. 4, 2 4, 2 0 EXERCICE 2 chercher. Effectuer les additions suivantes : 5,3 9,8 ; 5,9 5,9 3,7 5,3 ; 4,5 4,5 4,7 5,9 ; ,8,7 2
3 2.5 Soustraction de deux nombres relatifs. Pour retrancher un nombre relatif, on additionne son opposé. 3, 4 ( + 7,8) = 3, 4 + ( 7,8) = ( 4, 4) 2.6 Suppression des parenthèses. Dans le calcul précédent, + ( 7,8) signifie qu on ajoute ( 7,8) L écriture simplifiée sera : 3,4 ( + 7,8) = 3,4 7,8 = 4,4, donc qu on retranche 7,8 utres exemples : Dans le calcul : 4,7 ( 5,3), l écriture ( 5,3) signifie qu on retranche ( 5,3) donc qu on ajoute 5,3. On écrira de manière simplifiée : 4,7 ( 5,3) = 4,7 + 5,3 = + 0,6 Cette écriture indique l addition de deux nombres relatifs de signes contraires. On écrira de manière simplifiée : 5,9 + ( 3, 7) = 5,9 3, 7 = 9, 6 Dans le calcul 5,9 + ( 3,7), l écriture ( 3, 7) Cette écriture indique l addition de deux nombres relatifs de même signe. + signifie qu on retranche 3,7. EXERCICE 3 chercher. Effectuer les calculs : 5,3 9, 4 6,9 3,5 7,3 8,4 4,5 5,5 3
4 3. Multiplication de nombres relatifs : points clés. 3. Règle des signes de la multiplication de 2 nombres relatifs. Le produit de deux nombres relatifs de même signe est positif le produit de deux nombres relatifs de signes différents est négatif Si on multiplie entre eux plus de deux nombres relatifs : Il faut alors appliquer la méthode suivante : On compte d'abord le nombre de signes S'il y a un nombre pair de signes, le résultat est positif il y a 2 signes S'il y a un nombre impair de signes, le résultat est négatif il y a 3 signes EXERCICE 4 chercher. Sans effectuer aucun calcul donner le signe des résultats des calculs suivants : 3,5 45, 7 56, 78 : signe car : : signe car : ,7 4,5 36 : signe car : 3.3 Distributivité de la multiplication Définition : La multiplication est distributive par rapport à l'addition signifie : k a b ka kb k a b ka kb Étant entendu que ka signifie k a et que k a b signifie k a b Les servent à regrouper les nombres sur lesquels on veut faire agir l opération multiplication. 4
5 3.3.2 Vocabulaire employé : Quand on écrit que : k a b ka kb ou que k a b ka kb, on dit que l on a développé l expression. l expression. Quand on écrit que : ka + kb = k ( a + b) ou que ka kb k ( a b) Utilisations : La propriété de distributivité de la multiplication sur l'addition sera utilisée :. Pour développer (c est à dire effectuer) un calcul : ( a ) 3 2 = 3a 6 2. Dans un calcul du genre : qui peut s'écrire si on décompose 02 : =, on dit que l on a factorisé Ou encore si on développe en utilisant la distributivité de la multiplication : Soit : Finalement : 3570 Il faut comprendre que l'intérêt de cet exercice était de pouvoir calculer mentalement le produit EXERCICE 5 rédiger ; = Calculer en utilisant la propriété de la distributivité de la multiplication : = = = Puis : = = = = = 5
6 3. Pour effectuer un calcul à l aide d une factorisation. Par exemple, on veut calculer : = , ,3 On reconnaît que 452 est le facteur commun aux deux produits. Donc on peut factoriser par 452 : = , , 3 = = EXERCICE 6 rédiger. Effectuer les calculs à l aide d une factorisation : = = = C = 236 0, ,005 C = C = 4. Inverse d'un nombre relatif non nul. 4. Définition : L'inverse d'un nombre relatif non nul x se note x ou x 4.2 Propriétés : Le produit de deux nombres inverses l'un de l'autre est égal à. insi : x x Exemples : Si le produit de deux nombres est égal à, alors ces deux nombres sont inverses l'un de l'autre. 8 et 0,25 sont inverses l'un de l'autre, car : 8 0,25 De même : 0, 25 et 4 sont inverses l'un de l'autre car : 0,
7 ttention : le nombre 0 n'a pas d'inverse! 4.3 Quelques inverses à connaître ,5 0, 25 0, 2 0,25 Et réciproquement! EXERCICE 7 rédiger. Effectuer les produits suivants en utilisant la propriété des inverses. 4 0,75 3 = 2, 5 3 = 36 0, 25 = 56 0,25 = 5. Division de deux nombres décimaux relatifs. 5. Définition : Diviser un nombre a par un nombre b non nul, c'est multiplier a par l'inverse de b. insi : a b a b Exemples : 7
8 , 25 0, ,25 3, Règle des signes : C'est la même règle que pour la multiplication de deux relatifs. a C'est à dire que le signe du quotient, b b 0 est le même que celui du produit ab Valeur approchée d'un quotient. calculons à la calculatrice le quotient : La calculatrice donne : 9, ,5 4,4 L'arrondi à 0, 0 sera : 9, 20 (valeur approchée par excès) L'arrondi à 0, 00 sera : 9,20 (valeur approchée par excès) L'arrondi à 0, 000 sera : 9,204 (valeur approchée par défaut) ttention au raisonnement dans les nombres négatifs!! Si on arrondi sur la partie numérique inférieure, alors le nombre est pris par excès. En effet, par exemple 9,20 < 9, 20 < 9,200 donc 9, 20 est bien la valeur par excès à 0,0 près. EXERCICE 8 chercher. Calculer à 0, 0 près les inverses des nombres suivants :
9 6. La factorisation. 6. Qu est-ce que c est? C est écrire une somme sous la forme d un produit. Les termes du produits s appellent des facteurs. L action d obtenir des facteurs s appelle factoriser. 6.2 Comment factoriser? 6.2. Principe. Pour factoriser, on utilise la distributivité de la multiplication à l envers. 2 insi le calcul : 7 4,8 7,2 s'écrit en factorisant par 7 : 7 4,8,2 ici, si on distribuait 7, on retrouverait la ligne précédente. 7 3,6 d'où : 25, Méthode. Il faut regarder si les nombres qui composent le calcul possèdent un diviseur commun. insi dans l expression 65a 3, on peut remarquer que 65 = 5 3 On écrira donc que : 65a 3 = 5a 3 3 = 3 5a ( a ) 3 5 est la forme factorisée de 65a 3 EXERCICE 9 rédiger. Calculer en utilisant la factorisation :. 6 4,7 6 9,9 = = = 2. C = ,5 se reporter au besoin à la page 4. 9
10 C = C = C = C = 7. Organiser et effectuer un calcul. 7. Calculs sans parenthèses. Dans une suite d'additions et de multiplications : priorité à la multiplication (ou à la division). Exemples : 3, 2 5 La multiplication est prioritaire sur l'addition C 32 5, 75 5 La division est prioritaire sur la soustraction. C 32 3,5 Enfin, seulement on soustrait. C 28, Calculs avec parenthèses. Dans une telle suite de calculs, il faut d'abord effectuer les calculs entre parenthèses. Il y a priorité aux calculs situés dans les parenthèses les plus intérieures, puis aux multiplications. = 3,2 20 5,3+,7 On calcule le contenu de la parenthèse intérieure d abord. 3, On calcule le contenu de la parenthèse. 3, 2 3 On effectue la multiplication enfin. 9,6 Réfléchissons : Quel est le rôle des? Quel set le rôle des [ ]? Dans une suite de calculs à même niveau de priorité, on peut : 0
11 - soit effectuer les calculs dans l ordre où ils se présentent. - Soit calculer «habilement» ( Cf «calculs habiles» ) 7.3 Calculs "habiles". Ils consistent à retirer les parenthèses, et à procéder à des regroupements judicieux. On regroupera les nombres décimaux qui permettent d'obtenir des entiers On regroupera les fractions qui ont le même dénominateur. On regroupera les nombres opposés, afin d obtenir 0 (zéro) On regroupera les nombres inverses l un de l autre, afin d obtenir Pourquoi chercher à obtenir 0? Parce que ce nombre est : Neutre pour l addition : c est à dire qu ajouter 0 ne modifie pas un résultat. bsorbant pour la multiplication, c est à dire que multiplier par 0 donne au résultat la valeur Pourquoi chercher à obtenir? Parce que ce nombre est : Neutre pour la multiplication : c est à dire que multiplier par ne modifie pas le résultat Exemples de calculs :. 29,3 4,6 39,7 5,4 3,9 s'écrira : 29,3 39,7 4, 6 5, 4 3, 9 C est à dire : ,9 52, s'écrira en retirant les parenthèses : Qui s'écrira en regroupant les fractions de même dénominateur : On calcule le contenu de chaque parenthèse :
12 EXERCICE 0 chercher Calculer habilement : 25,7 32,6 4,7 0,4 8,
13 8. Voici des exercices adaptés à cette leçon. Ces exercices sont à faire sur le cahier d exercices. 8. Calculer après avoir supprimé les parenthèses = = ,2 + ( 0,25) = Calculer astucieusement = ,3 +, ,3 + = = = = = 3 3 ( 7, 5 3) ( 8 0, 5 3) + = 4, , ,3 + 0, 2 = 3
14 8.3 Calculer en respectant les priorités de calcul. = = C = D = E = F = 6 7 2, ( 4 8,5)( 7 3,2) 5 ( 8,4 5 4,5) G = = 38 4 = = 2 5 = = ( 3 5) ( 4) = 4
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?
Priorités de calcul :
EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant
Factorisation Factoriser en utilisant un facteur commun Fiche méthode
Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en
CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»
Corrigé Cours de Mr JULES v3.3 Classe de Quatrième Contrat 1 Page 1 sur 13 CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» «Correction en rouge et italique.» I. Les nombres décimaux relatifs.
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer
OPÉRATIONS SUR LES FRACTIONS
OPÉRATIONS SUR LES FRACTIONS Sommaire 1. Composantes d'une fraction... 1. Fractions équivalentes... 1. Simplification d'une fraction... 4. Règle d'addition et soustraction de fractions... 5. Règle de multiplication
Glossaire des nombres
Glossaire des nombres Numérisation et sens du nombre (4-6) Imprimeur de la Reine pour l'ontario, 008 Nombre : Objet mathématique qui représente une valeur numérique. Le chiffre est le symbole utilisé pour
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3
8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes
ANNUITES I Notions d annuités a.définition Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. Le processus de versements dépend du montant de l annuité,
FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines
FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html
avec des nombres entiers
Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0
Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro.
Chapitre : Les nombres rationnels Programme officiel BO du 8/08/08 Connaissances : Diviseurs communs à deux entiers, PGCD. Fractions irréductibles. Opérations sur les nombres relatifs en écriture fractionnaire.
Le chiffre est le signe, le nombre est la valeur.
Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.
a)390 + 520 + 150 b)702 + 159 +100
Ex 1 : Calcule un ordre de grandeur du résultat et indique s il sera supérieur à 1 000 L addition est une opération qui permet de calculer la somme de plusieurs nombres. On peut changer l ordre de ses
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
Puissances d un nombre relatif
Puissances d un nombre relatif Activités 1. Puissances d un entier relatif 1. Diffusion d information (Activité avec un tableur) Stéphane vient d apprendre à 10h, la sortie d une nouvelle console de jeu.
La correction des erreurs d'enregistrement et de traitement comptables
La correction des erreurs d'enregistrement et de traitement comptables Après l'étude des différents types d'erreurs en comptabilité (Section 1) nous étudierons la cause des erreurs (Section 2) et les techniques
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications
THEME : CLES DE CONTROLE. Division euclidienne
THEME : CLES DE CONTROLE Division euclidienne Soit à diviser 12 par 3. Nous pouvons écrire : 12 12 : 3 = 4 ou 12 3 = 4 ou = 4 3 Si par contre, il est demandé de calculer le quotient de 12 par 7, la division
Exercices sur les équations du premier degré
1 Exercices sur les équations du premier degré Application des règles 1 et Résoudre dans R les équations suivantes en essayant d appliquer une méthode systématique : 1 x + = x + 9 x + = x x 1 = x + x +
Présentation du cours de mathématiques de D.A.E.U. B, remise à niveau
i Présentation du cours de mathématiques de D.A.E.U. B, remise à niveau Bonjour, bienvenue dans votre début d étude du cours de mathématiques de l année de remise à niveau en vue du D.A.E.U. B Au cours
LES NOMBRES DECIMAUX. I. Les programmes
LES NOMBRES DECIMAUX I. Les programmes Au cycle des approfondissements (Cours Moyen), une toute première approche des fractions est entreprise, dans le but d aider à la compréhension des nombres décimaux.
EXERCICES DE REVISIONS MATHEMATIQUES CM2
EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
Fonction inverse Fonctions homographiques
Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................
Codage d information. Codage d information : -Définition-
Introduction Plan Systèmes de numération et Représentation des nombres Systèmes de numération Système de numération décimale Représentation dans une base b Représentation binaire, Octale et Hexadécimale
D'UN THÉORÈME NOUVEAU
DÉMONSTRATION D'UN THÉORÈME NOUVEAU CONCERNANT LES NOMBRES PREMIERS 1. (Nouveaux Mémoires de l'académie royale des Sciences et Belles-Lettres de Berlin, année 1771.) 1. Je viens de trouver, dans un excellent
I. Ensemble de définition d'une fonction
Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux
Date : 18.11.2013 Tangram en carré page
Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :
Eercice a Développer les epressions suivantes : A-(-) - + B-0(3 ²+3-0) -0 3²+-0 3+00 B -30²-30+00 C-3(-) -3 + 3-3²+6 D-(-) + ² Eerciceb Parmi les epressions suivantes, lesquelles sont sous forme réduite?
Nombre dérivé et tangente
Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative
La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient
par un nombre entier I La division euclidienne : le quotient est entier Faire l activité division. Exemple Sur une étagère de 4mm de large, combien peut on ranger de livres de mm d épaisseur? La question
Par combien de zéros se termine N!?
La recherche à l'école page 79 Par combien de zéros se termine N!? par d es co llèg es An dré Do ucet de Nanterre et Victor Hugo de Noisy le Grand en seignants : Danielle Buteau, Martine Brunstein, Marie-Christine
Groupe symétrique. Chapitre II. 1 Définitions et généralités
Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations
6. Les différents types de démonstrations
LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Les nombres entiers. Durée suggérée: 3 semaines
Les nombres entiers Durée suggérée: 3 semaines Aperçu du module Orientation et contexte Pourquoi est-ce important? Dans le présent module, les élèves multiplieront et diviseront des nombres entiers concrètement,
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
EVALUATIONS MI-PARCOURS CM2
Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
Conversion d un entier. Méthode par soustraction
Conversion entre bases Pour passer d un nombre en base b à un nombre en base 10, on utilise l écriture polynomiale décrite précédemment. Pour passer d un nombre en base 10 à un nombre en base b, on peut
Pour monter un escalier, on peut, à chaque pas, choisir de monter une marche ou de monter deux marches. Combien y a-t-il de façons de monter un
Pour monter un escalier, on peut, à chaque pas, choisir de monter une marche ou de monter deux marches Combien y a-t-il de façons de monter un escalier de marche? De marches? De marches? De marches? De
Seconde et première Exercices de révision sur les probabilités Corrigé
I_ L'univers. _ On lance simultanément deux dés indiscernables donc il n'y a pas d'ordre. Il y a répétition, les dbles. On note une issue en écrivant le plus grand chiffre puis le plus petit. 32 signifie
Exercice numéro 1 - L'escalier
Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.
UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases
Partie 1 - Séquence 3 Original d une fonction
Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2 I. Généralités I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t)
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Synthèse «Le Plus Grand Produit»
Introduction et Objectifs Synthèse «Le Plus Grand Produit» Le document suivant est extrait d un ensemble de ressources plus vastes construites par un groupe de recherche INRP-IREM-IUFM-LEPS. La problématique
Licence Sciences et Technologies Examen janvier 2010
Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.
Chapitre 1 I:\ Soyez courageux!
Chapitre 1 I:\ Soyez courageux! Pour ne rien vous cacher, le langage d'assembleur (souvent désigné sous le terme "Assembleur", bien que ce soit un abus de langage, puisque "Assembleur" désigne le logiciel
Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES
Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable
Développement décimal d un réel
4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce
Calculons avec Albert!
Calculons avec Albert! Par : Guy Lefebvre, 1257 rue Principale, St-Prime, G8J 1V2, 418-251-2170 Guillaume Rainville, 610 8 e rue, St-Prime, G8J 1P6, 418-251-8290 Résumé : Lefebvre G. et Rainville G., 2001,
Agent DEXXON DATAMEDIA GENNEVILLIERS
FX JUNIOR GARANTIE 3 ANS CARTE DE GARANTIE FX JUNIOR Ce modèle est garanti pendant TROIS ans, à compter de la date d achat. Sont exclus de cette garantie: les piles livrées avec l appareil tous dommages
Concours 2008 / 2009 externe et interne réservé d ingénieurs des services culturels et du patrimoine, spécialité «services culturels»
Concours 2008 / 2009 externe et interne réservé d ingénieurs des services culturels et du patrimoine, spécialité «services culturels» Le présent rapport a pour objet de donner une appréciation générale
I- Définitions des signaux.
101011011100 010110101010 101110101101 100101010101 Du compact-disc, au DVD, en passant par l appareil photo numérique, le scanner, et télévision numérique, le numérique a fait une entrée progressive mais
Activité 1 : De nouveaux nombres
ctivités ctivité 1 : De nouveaux nombres 1 re approche : a. Trace une demi-droite graduée d'origine le point O en prenant le centimètre comme unité. Place les points (3), (4) et D(9). b. onstruis le point
Proposition de programmes de calculs en mise en train
Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée
1/5 Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée Étape 1 : associer la droite graduée à deux objets du quotidien : la règle graduée ici, celle de l'enseignant
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
S entraîner au calcul mental
E F C I - R E H S E S O S A PHOTOCOPIER S R U C Une collection dirigée par Jean-Luc Caron S entraîner au calcul mental CM Jean-François Quilfen Illustrations : Julie Olivier Sommaire Introduction au calcul
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
Technique opératoire de la division (1)
Unité 17 Technique opératoire de la division (1) Effectuer un calcul posé : division euclidienne de deux entiers. 1 Trois camarades jouent aux cartes. Manu fait la distribution en donnant à chaque joueur
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
Les indices à surplus constant
Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté
Compter à Babylone. L écriture des nombres
Compter à Babylone d après l article de Christine Proust «Le calcul sexagésimal en Mésopotamie : enseignement dans les écoles de scribes» disponible sur http://www.dma.ens.fr/culturemath/ Les mathématiciens
Cours d arithmétique Première partie
Cours d arithmétique Première partie Pierre Bornsztein Xavier Caruso Pierre Nolin Mehdi Tibouchi Décembre 2004 Ce document est la première partie d un cours d arithmétique écrit pour les élèves préparant
LES REGLEMENTS AVEC SOCIEL.NET DERNIERE MISE A JOUR : le 14 juin 2010
LES REGLEMENTS AVEC SOCIEL.NET DERNIERE MISE A JOUR : le 14 juin 2010 Guillaume Informatique 10 rue Jean-Pierre Blachier 42150 La Ricamarie Tél. : 04 77 36 20 60 - Fax : 04 77 36 20 69 - Email : [email protected]
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
CH.6 Propriétés des langages non contextuels
CH.6 Propriétés des langages non contetuels 6.1 Le lemme de pompage 6.2 Les propriétés de fermeture 6.3 Les problèmes de décidabilité 6.4 Les langages non contetuels déterministes utomates ch6 1 6.1 Le
1 Année LMD-STSM Algorithmique et Programmation. Série de TD 2
Série de TD 2 Exercice 2.1 Quel résultat produit le programme suivant? Var val, double : entier ; Val := 231 ; Double := Val * 2 ; Ecrire (Val) ; Ecrire (Double) ;. Exercice 2.2 Ecrire un programme qui
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)
1/4 Objectif de ce cours /4 Objectifs de ce cours Introduction au langage C - Cours Girardot/Roelens Septembre 013 Du problème au programme I passer d un problème exprimé en français à la réalisation d
Cours Informatique Master STEP
Cours Informatique Master STEP Bases de la programmation: Compilateurs/logiciels Algorithmique et structure d'un programme Programmation en langage structuré (Fortran 90) Variables, expressions, instructions
Exercices de dénombrement
Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.
Géométrie dans l espace Produit scalaire et équations
Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire
DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )
DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité
Partie 1 : la construction du nombre chez l'enfant. Page 2. Partie 2 : Des jeux et des nombres Page 8
Partie 1 : la construction du nombre chez l'enfant. Page 2 Partie 2 : Des jeux et des nombres Page 8 1 La construction du nombre Le nombre est invariant : Le nombre ne change pas quelles que soient les
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
Les structures. Chapitre 3
Chapitre 3 Les structures Nous continuons notre étude des structures de données qui sont prédéfinies dans la plupart des langages informatiques. La structure de tableau permet de regrouper un certain nombre
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
CHAPITRE VIII : Les circuits avec résistances ohmiques
CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On
REGLEMENT DES PARIS GENYBET.FR
REGLEMENT DES PARIS GENYBET.FR Copyright 2015 GENYinfos, tous droits réservés Sommaire 1 DEFINITIONS 6 2 ARTICLES RELATIFS AU REGLEMENT DU PARI MUTUEL EN LIGNE 7 3 ENREGISTREMENT DES PARIS 8 4 RESULTAT
Fractions. Pour s y remettre. 66 5 Division 67. Dans ce chapitre, on apprendra à :
Dans ce chapitre, on apprendra à : Fractions Repérer des fractions sur une demi-droite graduée. Identifier une fraction comme le quotient de deux nombres entiers. Reconnaître que deux fractions peuvent
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS. Dossier n 1 Juin 2005
UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS Dossier n 1 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE
Initiation à la programmation OEF pour Wims (exercices).
page 1 sur 9 Initiation à la programmation OEF pour Wims (exercices). Les titres des différentes parties de ce document, en grisé, sont donnés en référence au document Wims «DocAide Exercices OEF» rédigé
Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES
Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une
Sites web éducatifs et ressources en mathématiques
Sites web éducatifs et ressources en mathématiques Exercices en ligne pour le primaire Calcul mental élémentaire : http://www.csaffluents.qc.ca/wlamen/tables-sous.html Problèmes de soustraction/addition
Fiche PanaMaths Calculs avec les fonctions sous Xcas
Fiche PanaMaths Calculs avec les fonctions sous Xcas Cette fiche destinée aux élèves des classes de Terminale requiert un premier niveau de connaissance du logiciel Xcas. Définition d une fonction Fonctions
Diviser un nombre décimal par 10 ; 100 ; 1 000
Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les
Indications pour une progression au CM1 et au CM2
Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir
