Les Mathématiques de l'hérédité

Dimension: px
Commencer à balayer dès la page:

Download "Les Mathématiques de l'hérédité"

Transcription

1 Les Mathématiques de l'hérédité Mai 2011 LIESSE

2 Introduction Darwin (1859) dénissait l'évolution comme un processus de descendance avec modication En terme génétique, les organismes transmettent les allèles de leurs gènes à leurs descendants. Génétique des populations: Discipline qui étudie la variation des fréquences d'allèle dans les populations. Fondateurs: S. Wright, R. Fisher, J. Haldane, G. Malécot.

3 Lois de Mendel

4 Données de polymorphisme génétique Marqueurs alléliques (ex: microsatellites GATAGATAGATA) Séquences d'adn, haplotypes Puces à SNPs (Single Nucleotide Polymorphisms) Génomes complets

5 Applications Recherche de gènes impliqués dans les maladies (ou tout autre phénotype) : GWAS Genome-Wide Association Studies Médecine P4 : personnalisée, prédictive, préventive et participative. Compréhension des mécanismes moléculaires de l'adaptation Interprétation de la diversité et de la variation génétique au sein des populations

6 Objectifs de l'exposé Un modèle mathématique de la génétique d'une population : le modèle de Wright-Fisher Une vision rétrospective de la transmission de l'hérédité : le modèle de coalescence de Kingmann. Age de l'ancêtre commun le plus récent Des mutations dans les généalogies Estimation de la diversité génétique d'une population

7 La transmission des gènes

8 Arbres d'espèces

9 Arbres de populations

10 Histoire de l'espèce humaine

11 et des espèces s ures Green et al Science (2010)

12 Quelles mathématiques pour les modèles en Biologie? Outils analytiques traditionnels pour obtenir des formules explicites

13 Quelles mathématiques pour les modèles en Biologie? Qu'apportent les mathématiques que l'on ne peut pas explorer par la simulation informatique? Plusieurs représentations des objets étudiés, qui permettent ensuite des algorithmes de simulation ecaces pour l'exploration et l'inférence numériques.

14 Intro aux modèles : la dynamique de Wright-Fisher La population est de taille constante, notée N, Les générations sont non-chevauchantes, Le nombre de descendants de chaque gène est aléatoire, de loi de Poisson conditionnée à être plus petite que N. Dans le cas de reproduction sexuée nous supposons que les mariages se font au hasard.

15 Modèle de Wright-Fisher

16 Un modèle d'urne Théorème. Dans le modèle de Wright-Fisher, chaque descendant choisit un parent par un tirage avec remise dans une urne où sont placés les N parents. Preuve. Soit ν i le nombre d'enfants de i, i = 1,..., N. Par hypothèse, ν i suit la loi de Poisson de moyenne λ. Soit n 1,..., n N des entiers tels que i n i = N. Nous avons N Pr(ν 1 = n 1,..., ν N = n N ν i = N) = i=1 N! n 1! n N! ( ) N 1. N

17 Pourquoi c'est vrai Suite de la preuve. Soit ν i le nombre d'enfants de i, i = 1,..., N. Nous avons Pr(ν i = n i ) = λn i n i! e λ et Pr( N i=1 ν i = N) = (Nλ)N e Nλ. N!

18 Simulation : x = sample(x, replace = T)

19 Généalogies dans le modèle de Wright-Fisher

20 Temps de coalescence de 2 gènes Dénition. On appelle temps de coalescence, τ 2, de deux lignées le nombre de générations qu'il est nécessaire de remonter pour trouver le premier ancêtre commun des deux lignées.

21 Temps de coalescence Si l'unité de temps est une génération, alors la probabilité pour que τ 2 = 1 est 1/N et plus généralement Pr(τ 2 > k) = (1 1/N) k Si l'unité de temps est N générations, k = tn et τ 2 = T 2 N Pr(τ 2 > k) = Pr(T 2 > t) exp( t), N.

22 Le processus ancestral {A N n (k), k = 0, 1,..., } décrit le nombre d'ancêtres distincts d'un échantillon de n gènes à la génération k en remontant le temps. est une chaîne de Markov à valeurs dans {1,..., n} telle que A N n Pr(A N n (k + 1) = j A N n (k) = i) = S j i N(N 1)(N j + 1) N j, où j = 1,..., i et S j i est un nombre de Stirling de seconde espèce (nombre de manière de partitionner un ensemble de i éléments en j sous-ensemble non-vides).

23 L'approximation de Kingman : le coalescent(1981) Théorème. Supposons que l'unité de temps est N générations (k = tn ), alors A N n ( N. ) A n (.), N où {A n (t), t 0}, est un chaîne de Markov à temps continu telle que A n (0) = n. Les taux de transition sont

24 L'approximation de Kingman : le coalescent(1981) Les durées séparant les coalescences successives des lignées sont indépendantes, de loi exponentielle de moyennes respectives E[T j ] = 2 j(j 1) j = n,..., 2. Le processus est facile à simuler informatiquement (exemple de simulateur : le programme ms).

25 Variabilité des généalogies

26 Le temps écoulé depuis l'ancêtre commun le plus récent, T MRCA Dans la représentation limite de l'arbre de coalescence, la hauteur de l'arbre est égale à T MRCA = T T n où T j est de loi exponentielle de moyenne 2/j(j 1). La fonction de répartition de T MRCA se calcule de la manière suivante Pr(T MRCA t) = Pr(A n (t) = 1).

27 Le temps écoulé depuis l'ancêtre commun le plus récent, T MRCA Pour une chaîne de Markov, les probabilités Pr(A n (t) = j) sont solutions d'un système d'équations diérentielles linéaires. Nous trouvons Pr(A n (t) = 1) = n j=2 ( 1) j 1 (2j 1) n [j] n (j) e j(j 1)t/2 n [j] = n(n 1) (n j + 1) et n (j) = n(n + 1) (n + j 1).

28 Loi de T MRCA obtenue par simulation(n = 30) Histogram of tmrca Density tmrca

29 Quelques propriétés simples de T MRCA Espérance Variance E[T MRCA ] = n j=2 ( 2 j(j 1) = ) n Var[T MRCA ] = n j=2 4 j 2 (j 1) π2 12

30 Quelles conclusions pour les espèces Le temps T MRCA est exprimé en unité de la taille ecace de la population N, aussi notée N e Il faut donc estimer N ou N e. Pour cela, les données génétiques entrent en jeu.

31 Partie 2 Des mutations dans les gènes

32 Un modèle à innité d'allèles

33 Mutations On suppose que les mutations n'ont pas d'eet sélectif sur la séquence d'adn étudiée (ADN neutre). On note µ la probabilité de mutation de la séquence étudiée par génération. On mesure le temps en prenant pour unité N générations (N est la taille de la population) θ = 2µN Les mutations sont aléatoirement réparties dans la généalogie des n séquences selon un processus de Poisson de paramètre θ/2.

34 Spectre de fréquences On appelle spectre de fréquences le vecteur c = (c 1,..., c n ) où c i est le nombres d'allèles présents en i copies dans l'échantillon de n gènes. Nous avons c 1 + 2c nc n = n Le nombre d'allèles distincts présents dans l'échantillon est K n = c 1 + c c n.

35 Petit exemple On observe un échantillon de 10 allèles A 1, A 1, A 2, A 1, A 3, A 2, A 3, A 4, A 4, A 4 Le spectre est c = (0, 2, 2, 0, 0, 0, 0, 0, 0, 0) Le nombre d'allèles distincts présents dans l'échantillon est k = 4.

36 La formule d'ewens (1972) Théorème. Pour le modèle de mutation à innité d'allèles et un échantillon de taille n Pr(c) = n! n ( ) θ cj 1 θ (n) j c j! où θ (n) = θ(θ + 1) (θ + n 1). j=1

37 Le processus du restaurant chinois

38 Le processus du restaurant chinois Imaginons un restaurant avec un nombre inni de tables. Les n clients arrivent un par un, et choisissent leur table de la manière suivante. Le client j choisit une table inoccupée avec la probabilité θ j 1 + θ et une table occupée avec la probabilité n j j 1 + θ où n j est le nombre de personnes assises à la table en question.

39 Le processus du restaurant chinois Pr(c) = θ θ

40 Le processus du restaurant chinois Pr(c) = θ θ θ 1 + θ

41 Le processus du restaurant chinois Pr(c) = θ θ θ θ 2 + θ

42 Le processus du restaurant chinois Pr(c) = θ θ θ 1 + θ θ θ 3 + θ

43 Le processus du restaurant chinois Pr(c) = θ θ θ 1 + θ θ θ 3 + θ θ

44 Le processus du restaurant chinois Pr(c) = θ θ θ 1 + θ θ θ 3 + θ θ θ

45 Ewens au restaurant Théorème. La conguration c obtenue à l'issue de n étapes du processus appelé restaurant chinois obéit à la formule d'ewens.

46 Nombre d'allèles distincts Théorème. Pour le modèle de mutation à innité d'allèles et un échantillon de taille n Pr(K n = k) = θk θ (n) S k n où S k n est le coecient de θ k dans le développement de θ(θ + 1) (θ + n 1). S k n est appelé nombre de Stirling de première espèce et dénombre les permutations de n éléments ayant k cycles.

47 Nombre d'allèles distincts Preuve. Pour le modèle de mutation à innité d'allèles et un échantillon de taille n Pr(K n = k) = θk n ( ) cj n! 1 1. θ (n) j c j! c j : c j =k Par normalisation, le coecient orange est nécessairement le coecient de θ k dans le développement de θ (n). j=1 Remarque. Sn k = (n 1) S k k 1 n 1 + S n 1

48 Nombre de tables occupées au restaurant chinois Pr(c) = θ θ θ 1 + θ θ θ 3 + θ θ θ La probabilité Pr(c) est invariante par permutation des indices ( S k n possibilités) Elle est proportionnelle à θ k

49 Un autre représentation de la loi de K n Fonction génératrice. Pour le modèle de mutation à innité d'allèles et un échantillon de taille n G Kn (z) = n k=1 Pr(K n = k)z k = (θz) (n) θ (n). En explicitant cette relation, on obtient G Kn (z) = n j=1 G X j (z) où X j {0, 1} est une variable de Bernoulli Pr(X j = 1) = θ θ + j 1 (Initiation d'une table dans le restaurant chinois).

50 Quelques propriétés simples de K n (1972) Espérance Espérance E[K n ] = n E[X j ] = j=1 n j=1 θ θ + j 1 θ log n, n Var[K n ] = Var[X j ] = j=1 n j=1 θj (θ + j 1) 2 θ log n K n / log n est un estimateur de θ parfois appelé diversité génétique. Il converge en 1/ log n, avec une vitesse asymtotiquement optimale.

51 Une application à l'adn mitochondrial

52 Une application à l'adn mitochondrial Chez les mammifères, l'adn mitochondrial est transmis par la mère. Pour les études généalogiques, on séquence la boucle de contrôle D ( 500bp). On considère que la probabilité de mutation de cette séquence est µ 10 6 par génération par paire de base. Pour la tribu amérindienne Nuu-Chah-Nulth, on observe 8 allèles dans un échantillon de n = 55 séquences d'individus non apparentés.

53 Taille ecace de la population Nuu-Chah-Nulth Pour estimer la taille ecace de la population N e θ 2µL où θ 2.7 est solution de 8 = 55 j=2 θ θ + j 1 La taille ecace est N e 2700 individus. T MRCA ans!

54 Messages à ramener à la maison L'étude de l'hérédité est une discipline ayant une longue tradition mathématique Les mathématiciens ont proposé de nouvelles représentations des modèles manipulés par la génétique des populations, en particulier, rétrospectives. En retour, ces representations permettent de simuler ecacement le polymorphisme génétique au sein des populations

55 Pour aller plus loin Tavaré S (2004) Ancestral inference in population genetics, Springer NY. Durrett R (2006) Probability models of DNA sequence evolution, Springer NY.

56 Du temps pour une discussion Merci de votre attention!

Au-delà du coalescent : quels modèles pour expliquer la di

Au-delà du coalescent : quels modèles pour expliquer la di Au-delà du coalescent : quels modèles pour expliquer la diversité génétique? LPMA, Université Paris 6, CMAP Polytechnique 13 octobre 2009 A partir de travaux conjoints avec N. Berestycki, V. Limic, J.

Plus en détail

MABioVis. Bio-informatique et la

MABioVis. Bio-informatique et la MABioVis Modèles et Algorithmes pour la Bio-informatique et la Visualisation Visite ENS Cachan 5 janvier 2011 MABioVis G GUY MELANÇON (PR UFR Maths Info / EPI GRAVITE) (là, maintenant) - MABioVis DAVID

Plus en détail

Gènes Diffusion - EPIC 2010

Gènes Diffusion - EPIC 2010 Gènes Diffusion - EPIC 2010 1. Contexte. 2. Notion de génétique animale. 3. Profil de l équipe plateforme. 4. Type et gestion des données biologiques. 5. Environnement Matériel et Logiciel. 6. Analyses

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008) Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

Génétique et génomique Pierre Martin

Génétique et génomique Pierre Martin Génétique et génomique Pierre Martin Principe de la sélections Repérage des animaux intéressants X Accouplements Programmés Sélection des meilleurs mâles pour la diffusion Index diffusés Indexation simultanée

Plus en détail

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,

Plus en détail

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr Introduction à la théorie des files d'attente Claude Chaudet Claude.Chaudet@enst.fr La théorie des files d'attente... Principe: modélisation mathématique de l accès à une ressource partagée Exemples réseaux

Plus en détail

Chaînes de Markov au lycée

Chaînes de Markov au lycée Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat

Plus en détail

Sur quelques applications des processus de branchement en biologie moléculaire

Sur quelques applications des processus de branchement en biologie moléculaire Sur quelques applications des processus de branchement en biologie moléculaire Didier Piau Exposés donnés les 3 et 4 novembre 2003 à l ÉNS dans le cadre de l atelier «Applications à la biologie et à la

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Objets Combinatoires élementaires

Objets Combinatoires élementaires Objets Combinatoires élementaires 0-0 Permutations Arrangements Permutations pour un multi-ensemble mots sous-ensemble à k éléments (Problème du choix) Compositions LE2I 04 1 Permutations Supposons que

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Chapitre 7. Récurrences

Chapitre 7. Récurrences Chapitre 7 Récurrences 333 Plan 1. Introduction 2. Applications 3. Classification des récurrences 4. Résolution de récurrences 5. Résumé et comparaisons Lectures conseillées : I MCS, chapitre 20. I Rosen,

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16 ACTUARIAT 1, ACT 2121, AUTOMNE 201 #16 ARTHUR CHARPENTIER 1 Dans une petite compagnie d assurance le nombre N de réclamations durant une année suit une loi de Poisson de moyenne λ = 100. On estime que

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Coefficients binomiaux

Coefficients binomiaux Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes

Plus en détail

Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch

Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch Pre-MBA Statistics Seances #1 à #5 : Benjamin Leroy-Beaulieu Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch Mise à niveau statistique Seance #1 : 11 octobre Dénombrement et calculs de sommes 2 QUESTIONS

Plus en détail

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université

Plus en détail

CHAPITRE 3 LA SYNTHESE DES PROTEINES

CHAPITRE 3 LA SYNTHESE DES PROTEINES CHAITRE 3 LA SYNTHESE DES ROTEINES On sait qu un gène détient dans sa séquence nucléotidique, l information permettant la synthèse d un polypeptide. Ce dernier caractérisé par sa séquence d acides aminés

Plus en détail

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d Laboratoire de Mécanique et Ingénieriesnieries EA 3867 - FR TIMS / CNRS 2856 ER MPS Modélisation stochastique d un d chargement d amplitude variable à partir de mesures Application à l approche fiabiliste

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

PRIME D UNE OPTION D ACHAT OU DE VENTE

PRIME D UNE OPTION D ACHAT OU DE VENTE Université Paris VII - Agrégation de Mathématiques François Delarue) PRIME D UNE OPTION D ACHAT OU DE VENTE Ce texte vise à modéliser de façon simple l évolution d un actif financier à risque, et à introduire,

Plus en détail

ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE

ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE P. Baudet, C. Azzaro-Pantel, S. Domenech et L. Pibouleau Laboratoire de Génie Chimique - URA 192 du

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

FIMA, 7 juillet 2005

FIMA, 7 juillet 2005 F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N ENS de Lyon TD 7-8 septembre 0 Introduction aux probabilités Exercice Soit (u n ) n N une suite de nombres réels. On considère σ une bijection de N dans N, de sorte que (u σ(n) ) n N est un réordonnement

Plus en détail

TESTS D HYPOTHÈSE FONDÉS SUR LE χ². http://fr.wikipedia.org/wiki/eugénisme

TESTS D HYPOTHÈSE FONDÉS SUR LE χ². http://fr.wikipedia.org/wiki/eugénisme TESTS D HYPOTHÈSE FONDÉS SUR LE χ² http://fr.wikipedia.org/wiki/eugénisme Logo du Second International Congress of Eugenics 1921. «Comme un arbre, l eugénisme tire ses constituants de nombreuses sources

Plus en détail

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Introduction à la Statistique Inférentielle

Introduction à la Statistique Inférentielle UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique

Plus en détail

1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert

1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert 1 de 46 Algorithmique Trouver et Trier Florent Hivert Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert 2 de 46 Algorithmes et structures de données La plupart des bons algorithmes

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

LES GENERATEURS DE NOMBRES ALEATOIRES

LES GENERATEURS DE NOMBRES ALEATOIRES LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires

Plus en détail

INF 162 Probabilités pour l informatique

INF 162 Probabilités pour l informatique Guy Melançon INF 162 Probabilités pour l informatique Licence Informatique 20 octobre 2010 Département informatique UFR Mathématiques Informatique Université Bordeaux I Année académique 2010-2011 Table

Plus en détail

4. Martingales à temps discret

4. Martingales à temps discret Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les

Plus en détail

INFORMATION GÉNÉTIQUE et REPRODUCTION SEXUÉE

INFORMATION GÉNÉTIQUE et REPRODUCTION SEXUÉE Partie 1, Chapitre 4 INFORMATION GÉNÉTIQUE et REPRODUCTION SEXUÉE Constat : à l'exception des jumeaux, chaque individu est unique. Ses caractères héréditaires dependent des info génétiques (allèles) portées

Plus en détail

Master de Bioinformatique et Biologie des Systèmes Toulouse http://m2pbioinfo.biotoul.fr Responsable : Pr. Gwennaele Fichant

Master de Bioinformatique et Biologie des Systèmes Toulouse http://m2pbioinfo.biotoul.fr Responsable : Pr. Gwennaele Fichant Master de Bioinformatique et Biologie des Systèmes Toulouse http://m2pbioinfo.biotoul.fr Responsable : Pr. Gwennaele Fichant Parcours: Master 1 : Bioinformatique et biologie des Systèmes dans le Master

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

SERVICES DE SEQUENÇAGE

SERVICES DE SEQUENÇAGE MARCH 16, 2014 SERVICES DE SEQUENÇAGE Centre d innovation Génome Québec et Université McGill Services de Validation et détection de SNP Technologie de Séquençage de Nouvelle Génération Guide de l utilisateur

Plus en détail

Grandes lignes ASTRÉE. Logiciels critiques. Outils de certification classiques. Inspection manuelle. Definition. Test

Grandes lignes ASTRÉE. Logiciels critiques. Outils de certification classiques. Inspection manuelle. Definition. Test Grandes lignes Analyseur Statique de logiciels Temps RÉel Embarqués École Polytechnique École Normale Supérieure Mercredi 18 juillet 2005 1 Présentation d 2 Cadre théorique de l interprétation abstraite

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

Value at Risk. CNAM GFN 206 Gestion d actifs et des risques. Grégory Taillard. 27 février & 13 mars 20061

Value at Risk. CNAM GFN 206 Gestion d actifs et des risques. Grégory Taillard. 27 février & 13 mars 20061 Value at Risk 27 février & 13 mars 20061 CNAM Gréory Taillard CNAM Master Finance de marché et estion de capitaux 2 Value at Risk Biblioraphie Jorion, Philippe, «Value at Risk: The New Benchmark for Manain

Plus en détail

MIS 102 Initiation à l Informatique

MIS 102 Initiation à l Informatique MIS 102 Initiation à l Informatique Responsables et cours : Cyril Gavoille Catherine Pannier Matthias Robine Marc Zeitoun Planning : 6 séances de cours 5 séances de TD (2h40) 4 séances de TP (2h40) + environ

Plus en détail

L informatique comme discipline au gymnase. Renato Renner Institut für Theoretische Physik ETH Zürich

L informatique comme discipline au gymnase. Renato Renner Institut für Theoretische Physik ETH Zürich L informatique comme discipline au gymnase Renato Renner Institut für Theoretische Physik ETH Zürich Comment puis-je transférer des fichiers de musique sur mon nouvel iphone? Comment puis-je archiver mes

Plus en détail

III- Raisonnement par récurrence

III- Raisonnement par récurrence III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,

Plus en détail

Big data et sciences du Vivant L'exemple du séquençage haut débit

Big data et sciences du Vivant L'exemple du séquençage haut débit Big data et sciences du Vivant L'exemple du séquençage haut débit C. Gaspin, C. Hoede, C. Klopp, D. Laborie, J. Mariette, C. Noirot, MS. Trotard bioinfo@genopole.toulouse.inra.fr INRA - MIAT - Plate-forme

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Introduction à la statistique non paramétrique

Introduction à la statistique non paramétrique Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non

Plus en détail

Cours de Probabilités et de Statistique

Cours de Probabilités et de Statistique Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,

Plus en détail

Introduction au Calcul des Probabilités

Introduction au Calcul des Probabilités Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex Introduction au Calcul des Probabilités Probabilités à Bac+2 et plus

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

La gestion de données dans le cadre d une application de recherche d alignement de séquence : BLAST.

La gestion de données dans le cadre d une application de recherche d alignement de séquence : BLAST. La gestion de données dans le cadre d une application de recherche d alignement de séquence : BLAST. Gaël Le Mahec - p. 1/12 L algorithme BLAST. Basic Local Alignment Search Tool est un algorithme de recherche

Plus en détail

TESTS D'HYPOTHESES Etude d'un exemple

TESTS D'HYPOTHESES Etude d'un exemple TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

VI. Tests non paramétriques sur un échantillon

VI. Tests non paramétriques sur un échantillon VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes

Plus en détail

Que faire lorsqu on considère plusieurs variables en même temps?

Que faire lorsqu on considère plusieurs variables en même temps? Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

L E Ç O N. Marches aléatoires. Niveau : Terminale S Prérequis : aucun

L E Ç O N. Marches aléatoires. Niveau : Terminale S Prérequis : aucun 9 L E Ç O N Marches aléatoires Niveau : Terminale S Prérequis : aucun 1 Chaînes de Markov Définition 9.1 Chaîne de Markov I Une chaîne de Markov est une suite de variables aléatoires (X n, n N) qui permet

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

3: Clonage d un gène dans un plasmide

3: Clonage d un gène dans un plasmide 3: Clonage d un gène dans un plasmide Le clonage moléculaire est une des bases du génie génétique. Il consiste à insérer un fragment d'adn (dénommé insert) dans un vecteur approprié comme un plasmide par

Plus en détail

Résumé des communications des Intervenants

Résumé des communications des Intervenants Enseignements de la 1ere semaine (du 01 au 07 décembre 2014) I. Titre du cours : Introduction au calcul stochastique pour la finance Intervenante : Prof. M hamed EDDAHBI Dans le calcul différentiel dit

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des

Plus en détail

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6 Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6 1 1.But et théorie: Le but de cette expérience est de comprendre l'intérêt de la spectrophotométrie d'absorption moléculaire

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

Couplage efficace entre Optimisation et Simulation stochastique Application à la maintenance optimale d une constellation de satellites

Couplage efficace entre Optimisation et Simulation stochastique Application à la maintenance optimale d une constellation de satellites Couplage efficace entre Optimisation et Simulation stochastique Application à la maintenance optimale d une constellation de satellites Benoît Beghin Pierre Baqué André Cabarbaye Centre National d Etudes

Plus en détail

Modélisation des risques

Modélisation des risques 2 Modélisation des risques 2. Introduction L objectif de ce chapitre est de présenter les modèles de base utilisés pour décrire le comportement aléatoire d un risque en actuariat pour une période xe. Les

Plus en détail

Maîtrise universitaire ès sciences en mathématiques 2012-2013

Maîtrise universitaire ès sciences en mathématiques 2012-2013 1 / 6 Remarques liminaires : Ce master à (3 semestres) permet 2 orientations distinctes : - Un master général : "Mathématiques, Systèmes dynamiques et phénomènes d'évolution" - Un master qui permet de

Plus en détail