Extension du produit scalaire à l espace

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Extension du produit scalaire à l espace"

Transcription

1 Extension du produit scalaire à l espace Table des matières 1 Rappel du produit scalaire dans le plan Définitions Orthogonalité Définition et propriétés du produit scalaire dans l espace Projection orthogonale dans l espace Définition du produit scalaire dans l espace Plusieurs expressions de produit scalaire Orthogonalité dans l espace Orthogonalité de droites Orthogonalité de plans Applications Equation cartésienne d un plan Distance à un plan

2 1 RAPPEL DU PRODUIT SCALAIRE DANS LE PLAN Terminale S-SI 1 Rappel du produit scalaire dans le plan Le plan P est muni d un repère orthonormal (O, i, j ). On rappelle dans un premier temps les principaux résultats de la classe de première. 1.1 Définitions Définition 1 Soit u et v deux vecteurs non nuls. On considère les deux points A et B du plan tels que : u = OA et v = OB. Le produit scalaire de u v est égal à : OA OB si uet v sont colinéaires de même sens OA OB si uet v sont colinéaires de sens contraire OA OB ou OA OB, où A et B désignent les projetés orthogonaux de A et B respectivement sur (OB) et sur (OA). A A O Dans le cas où l un des vecteurs est nul, le produit scalaire est nul. Les propriétés suivantes découlent naturellement de la définition ci-dessus. Proposition 1 1. Si u et v sont non nuls alors u v = OA OBcos( OA; OB) 2. Lorsque les coordonnées de u et de v sont (x;y) et (x ;y ) dans un repère orthonormal alors : u v = xx +yy 3. u v = 1 2 ( u 2 + v 2 u v 2 ) = 1 2 (OA2 +OB 2 AB 2 ) Remarques : On rappelle que l écriture u désigne la norme du vecteur u. On a alors dans un repère orthonormal du plan : u = OA = x 2 +y 2 cos( OA; OB) = cos( OB; OA) donc en particulier u v = v u Proposition 2 Pour tous vecteurs u, v, w et pour tout réel k, on a : 1. u v = v u 1.2 Orthogonalité 2. (k u) v = u (k v ) = k ( u v ) 3. u ( v + w) = u v + u w Deux vecteurs u et v sont orthogonaux si et seulement si l un au moins est nul ou s ils indiquent des directions perpendiculaires. Le symbole d orthogonalité des vecteurs est donc le même que la perpendicularité des droites ( ) 2/6

3 2 DÉFINITION ET PROPRIÉTÉS DU PRODUIT SCALAIRE DANS L ESPACE Terminale S-SI Proposition 3 Deux vecteurs u et v sont orthogonaux si et seulement si leur produit scalaire est nul. Remarque : Que devient l expression u v = 1 2 ( u 2 + v 2 u v 2 ) = 1 2 (OA2 +OB 2 AB 2 ) lorsque les deux vecteurs u et v sont orthogonaux? Le triangle AOB devient alors rectangle en O et on retrouve l expression du théorème de Pythagore :OA 2 +OB 2 AB 2 = 0. Théorème 1 ABC est un triangle quelconque et I est le milieu de [AB] Théorème d AL-KASHI Dans le triangle ABC,on a : a 2 = b 2 +c 2 2bccos Théorème de la médiane Pour tout point M du plan, on a : MA 2 +MB 2 = 2MI AB2 C M b B a A Ĉ c  A I Remarque : D autres formules se déduisent par permutation circulaire(a B,B C,C A). Le théorème d AL-KASHI est l extension du théorème de Pythagore à n importe quel triangle. 2 Définition et propriétés du produit scalaire dans l espace 2.1 Projection orthogonale dans l espace Définition 2 D est une droite et M un point de l espace. Le plan P M passant par M et perpendiculaire à D coupe D en un point M appelé projeté orthogonal de M sur la droite D. M DroiteD M De la même façon, on peut définir le projeté orthogonal d un point sur un plan. 3/6

4 2 DÉFINITION ET PROPRIÉTÉS DU PRODUIT SCALAIRE DANS L ESPACE Terminale S-SI 2.2 Définition du produit scalaire dans l espace Définition 3 u et v sont deux vecteurs de l espace et A,B et C sont trois points tels que u = AB et v = AC. Il existe au moins un plan P contenant les points A,B et C. Le produit scalaire des vecteurs u et v, est le produit scalaire des vecteurs AB et AC dans le plan P. Remarques : Le plan P est unique si les points A,B et C ne sont pas alignés. Dans le cas du produit scalaire dans l espace, on se ramène donc au produit scalaire dans le plan en recherchant ce plan P contenant des représentants des vecteurs u et v. 2.3 Plusieurs expressions de produit scalaire Dès lors que l on se ramène à étudier le produit scalaire de deux vecteurs dans un même plan, les règles énoncées dans le plan s appliquent à l espace. Proposition 4 Avec les notations usuelles, on a : 1. u v = AB ACcos( AB; AC) 2. u v = AB AC = AB AH où H désigne le projeté orthogonal de C sur la droite (AB). 3. Lorsque les coordonnées de u et de v sont (x;y;z) et (x ;y ;z ) dans un repère orthonormal alors u v = xx +yy +zz C A H Enfin les règles de calculs (linéarité, commutativité et distributivité) s appliquent au produit scalaire de l espace. 2.4 Orthogonalité dans l espace Orthogonalité de droites De la même façon, on peut caractériser l orthogonalité de l espace par le produit scalaire. Proposition 5 Soit D et D deux droites de vecteurs directeurs u et v. Alors les droites D et D sont orthogonales si et seulement si u v = Orthogonalité de plans Proposition 6 Soit D une droite de l espace de vecteur directeur u et P un plan. Alors la droite D est orthogonale à P si et seulement si il existe deux vecteurs k et l non colinéaires du plan P tels que u k = u l = 0. 4/6

5 3 APPLICATIONS Terminale S-SI D k A l On retrouve ici pour les vecteurs un résultat énoncé en classe de seconde. A savoir, pour qu une droite soit orthogonale à un plan P, il faut et il suffit qu elle soit perpendiculaire à deux droites sécantes du plan P. Définition 4 Un vecteur n est normal à un plan P lorsque toute droite de vecteur directeur n est orthogonale à P. On en déduit naturellement la propriété suivante : Proposition 7 Soit P et P deux plans de vecteurs normaux net n. Alors les plans P et P sont perpendiculaires si et seulement si n n = 0. PlanP n n PlanP A 3 Applications 3.1 Equation cartésienne d un plan Le vecteur normal n d un plan P, permet de caractériser le plan P comme l ensemble des points M de l espace tels que : AM n = 0, où A est un point de P. La propriété suivante définit l équation cartésienne d un plan. 5/6

6 3 APPLICATIONS Terminale S-SI Proposition 8 Dans un repère orthonormal de l espace, 1. Un plan P de vecteur normal n de coordonnées (a;b;c) a une équation de la forme : ax+by +cz +d = 0 2. Réciproquement, l ensemble des points M(x; y; z) de l espace tels que : Remarques : ax+by +cz +d = 0 où (a;b;c) (0;0;0) est un plan de vecteur normal n de coordonnées (a;b;c). 1. La démonstration repose sur la relation AM n = 0 énoncée ci-dessus. 2. Un plan a une infinité d équation; en effet si (P) : ax+by+cz+d = 0 alors (P) : kax+kby+kcz+kd = 0, où k est un réel non nul, est aussi une équation de P 3.2 Distance à un plan Proposition 9 Dans un repère orthonormal, on considère le plan P d équation ax+by+ cz +d = 0. Soit A le point de l espace de coordonnées (x A ;y A ;z A ). Alors la distance d du point A au plan P est : d = AH = ax A +by A +cz A +d n = ax A +by A +cz A +d a 2 +b 2 +c 2 A n H P : ax+by +cz +d = 0 6/6

Classe de Terminale S

Classe de Terminale S Pˆr o dˆuˆiˆt Œs c a l aˆiˆr e d e l e sœp a c e Classe de Terminale S I. GÉNÉRALISATION DU PRODUIT SCALAIRE À L ESPACE. Exercice 1 ABCDEFGH est un cube d arête 1, O est le centre de la face EFGH. 1. a)

Plus en détail

On appelle H la projection orthogonale de A sur la droite (BC).

On appelle H la projection orthogonale de A sur la droite (BC). Première S 2010-2011 Exercices sur le produit scalaire, équations de droite et de cercles Exercice 1 : Distance d'un point à une droite. On se donne une droite ( ) dont l'équation cartésienne est de la

Plus en détail

Orthogonalité de droites et de plans

Orthogonalité de droites et de plans Orthogonalité de droites et de plans Par Mathtous Ce mini cours s'adresse en priorité aux élèves de première. Il a pour objectif de rappeler les propriétés essentielles des droites orthogonales et des

Plus en détail

Le produit scalaire et ses applications

Le produit scalaire et ses applications 1 Le produit scalaire et ses applications Table des matières 1 Définitions et propriétés 1.1 Définition initiale............................. 1. Définition dans un repère orthonormal................. 1.3

Plus en détail

Géométrie analytique

Géométrie analytique 8 décembre 2009 Théorème Dans( le plan muni d un repère orthonormal O; i, ) j, on considère une droite( passant par A et α de vecteur directeur u. β) Tout point M de cette droite est tel que : AM = t u,

Plus en détail

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel Sommaire 1 Vecteurs Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel 2 Vecteurs colinéaires Définition Conséquences 3 Base du

Plus en détail

Équations cartésiennes de plans et de droites

Équations cartésiennes de plans et de droites Chapitre 4 Équations cartésiennes de plans et de droites Sommaire 4.1 Équation cartésienne d un plan........................................... 25 4.1.1 Équation cartésienne d un plan........................................

Plus en détail

I. Vecteur normal à une droite

I. Vecteur normal à une droite pplications du produit scalaire I. Vecteur normal à une droite 1. Définition : n D u Dire que n ( n ) est un vecteur normal à D de vecteur directeur u signifie que n est orthogonal à u.. Caractérisation

Plus en détail

Méthodes sur le produit scalaire

Méthodes sur le produit scalaire Méthodes sur le produit scalaire G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Méthodes sur le produit scalaire 10 juin 2007 1 / 32 1 connaître les différentes façons de calculer

Plus en détail

2. Donner des équations paramétriques et cartésiennes des droites passant par A et dirigées par v avec :

2. Donner des équations paramétriques et cartésiennes des droites passant par A et dirigées par v avec : Exo7 Droites du plan ; droites et plans de l espace Fiche corrigée par Arnaud Bodin 1 Droites dans le plan Exercice 1 Soit P un plan muni d un repère R(O, i, j), les points et les vecteurs sont exprimés

Plus en détail

Terminale S Géométrie dans l espace

Terminale S Géométrie dans l espace Terminale S Géométrie dans l espace 1 Positions relatives de droites et de plans 1.1 Positions relatives de deux droites Deux droites de l espace sont : soit..................... elles sont alors soit...............

Plus en détail

Géométrie dans l espace. Complément au chapitre «géométrie élémentaire du plan et de l espace»

Géométrie dans l espace. Complément au chapitre «géométrie élémentaire du plan et de l espace» Chapitre 9 truc Géométrie dans l espace Complément au chapitre «géométrie élémentaire du plan et de l espace» Prérequis On suppose ici connue toute la géométrie de collège et de lycée, en particulier les

Plus en détail

Géométrie analytique dans l espace

Géométrie analytique dans l espace Généralités Points coplanaires Quatre points de l espace sont dits coplanaires s ils appartiennent à un même plan (rappel : 3 points d un plan sont dits alignés s ils appartiennent à une même droite) Vecteurs

Plus en détail

Cours de Géométrie Pour BCPST 1

Cours de Géométrie Pour BCPST 1 Cours de Géométrie Pour BCPST 1 Année scolaire : 2004/2005 16 juin 2005 Mohamed TARQI Table des matières 1 Géométrie 2 1.1 Repère. Changement de repère......................... 2 1.1.1 Bases et repères..............................

Plus en détail

GÉOMÉTRIE DANS L ESPACE

GÉOMÉTRIE DANS L ESPACE GÉOMÉTRIE DANS L ESPACE On se place dans un repère orthonormal du plan ( O ; i, j, k ) I Équation de plan Exercice 1 : On considère le point A ( 0;1;4) et le vecteur n ( ;3; ) Déterminer une équation du

Plus en détail

Notions de géométrie

Notions de géométrie IUT Orsay Mesures Physiques Notions de géométrie Cours du 1 er semestre A. Les systèmes de coordonnées dans le plan A-I. Coordonnées cartésiennes Le plan étant muni d un repère orthonormé ( O, i, j) nombres

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace I Modes de repérage dans l espace 1 I.A Coordonnées cartésiennes...................... 1 I.B Coordonnées cylindriques...................... 2 I.C Coordonnées sphériques.......................

Plus en détail

Définition. Dans le plan muni d un repère (O;! i,! j ), les coordonnées d un vecteur! u sont les coordonnées de l unique point M tel que. OM=! u.

Définition. Dans le plan muni d un repère (O;! i,! j ), les coordonnées d un vecteur! u sont les coordonnées de l unique point M tel que. OM=! u. Interprétation Propriété Coordonnées d un vecteur Dans le plan muni d un repère (O; i, j ), les coordonnées d un vecteur u sont les coordonnées de l unique point M tel que OM= u. On écrit u (x; y) pour

Plus en détail

Les vecteurs du plan

Les vecteurs du plan Les vecteurs du plan Colinéarité Lycée du golfe de Saint Tropez Année 2015/2016 Première S ( Lycée du golfe de Saint Tropez) Vecteurs Année 2015/2016 1 / 13 1 Vecteurs colinéaires Définition et première

Plus en détail

Produit scalaire dans l Espace

Produit scalaire dans l Espace Produit scalaire dans l Espace Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Produit scalaire du plan 1.1 Différentes expressions du produit scalaire............................... 1.

Plus en détail

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment Chapitre : Géométrie plane 1 Calcul vectoriel 1.1 coordonnées d un vecteur dans un repère Définition 1. Soit #» u un vecteur du plan. Pour tout point O du plan, il existe un unique point M tel que OM #»

Plus en détail

III. Géométrie du plan

III. Géométrie du plan 1 Repérage dans le plan 11 Repérage cartésien Définition 1 On appelle base du plan un couple ( i, avec i et deux vecteurs non colinéaires du plan Tout vecteur u du plan s exprime de manière unique comme

Plus en détail

1 Équations cartésiennes, équations polaires d un ensemble de points

1 Équations cartésiennes, équations polaires d un ensemble de points Plans, cercles, droites et sphères Ce chapitre aborde les objets fondamentaux utilisés en géométrie : droites et cercles dans le plan, plans, droites et sphères dans l espace. Les objectifs du chapitre

Plus en détail

Droites et plans de l espace - Vecteurs

Droites et plans de l espace - Vecteurs Chapitre 8 Droites et plans de l espace - Vecteurs Objectifs du chapitre : item références auto évaluation étude de la position relative de droite(s) et de plan(s) vecteurs de l espace formules dans un

Plus en détail

Produit Scalaire. Site MathsTICE de Adama Traoré Lycée Technique Bamako

Produit Scalaire. Site MathsTICE de Adama Traoré Lycée Technique Bamako Produit Scalaire Site MathsTICE de dama Traoré Lycée Technique amako I- Norme d un vecteur 1 ) Définition : u étant un vecteur de représentant le bipoint (;), on appelle norme de u le nombre réel positif

Plus en détail

Terminale S Chapitre «Géométrie dans l espace» Page 1 sur 17

Terminale S Chapitre «Géométrie dans l espace» Page 1 sur 17 Terminale S Chapitre «Géométrie dans l espace» Page sur 7 Terminale S Chapitre «Géométrie dans l espace» Page sur 7 I) Produit scalaire Dans tout ce paragraphe, on travaillera dans un repère orthonormé

Plus en détail

Feuille de TD n o 13. Géométrie

Feuille de TD n o 13. Géométrie Mathématiques BCPST1 Lycée Roland Garros 2016-2017 πππππππππππππππππππππππππππππππππππππππππππππππππππππππππππ Feuille de TD n o 13. Géométrie πππππππππππππππππππππππππππππππππππππππππππππππππππππππππππ

Plus en détail

Produit scalaire dans le plan

Produit scalaire dans le plan CH 1 Géométrie : 3 ème Sciences Septembre 009 A LAATAOUI Produit scalaire dans le plan 1 ) PRODUIT SCALAIRE A) DEFINITION Ce n est pas une multiplication Soit u et v deux vecteurs non nuls du plan Le produit

Plus en détail

UNIVERSITÉ DE CERGY. U.F.R. Économie & Gestion. LICENCE d ÉCONOMIE et GESTION. Première année - Semestre 2 MATHÉMATIQUES

UNIVERSITÉ DE CERGY. U.F.R. Économie & Gestion. LICENCE d ÉCONOMIE et GESTION. Première année - Semestre 2 MATHÉMATIQUES Année 011-01 UNIVERSITÉ DE CERGY U.F.R. Économie & Gestion LICENCE d ÉCONOMIE et GESTION Première année - Semestre MATHÉMATIQUES MATH10 : Fonctions de plusieurs variables Enseignant responsable : C. Andrianasitera

Plus en détail

Systèmes de coordonnées

Systèmes de coordonnées 29 septembre 2009 Définition Dans( le plan ) muni d un repère orthonormal O ; i, j les coordonnées polaires d un point M(x, y) sont les nombres ρ et θ tels que : { ρ = ( OM θ = i, ) OM Théorème Si x 0

Plus en détail

Géométrie Chapitre 1 : Vecteurs et droites du plan

Géométrie Chapitre 1 : Vecteurs et droites du plan Géométrie Chapitre 1 : Vecteurs et droites du plan I- Rappels et compléments sur les vecteurs 1) Vecteurs égaux La translation qui transforme en est appelée la translation de vecteur. Le point s appelle

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Prérequis Vecteurs système d équations Plan du cours 1. Équations cartésiennes 2. Caractérisations vectorielles et représentations paramétriques 3. Intersections et parallélisme 4. Orthogonalité 1. Équations

Plus en détail

GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES

GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES Géométrie analytique C est Descartes (1596-1650) qui a développé l idée de représenter les figures géométriques dans un repère, les points du plan étant définis

Plus en détail

Géométrie dans l'espace

Géométrie dans l'espace Géométrie dans l'espace 1. Rappels de géométrie dans l'espace 1.1. Positions relatives de droites et plans 1.1.1. Position relative de deux plans Définition : On dit que deux plans sont strictement parallèles

Plus en détail

Les nombres complexes

Les nombres complexes DERNIÈRE IMPRESSION LE 17 février 016 à 15:35 Les nombres complexes Table des matières 1 Introduction 1.1 Un problème historique......................... 1. Création d un nouvel ensemble.....................

Plus en détail

La Droite dans le Plan Site MathsTICE de Adama Traoré Lycée Technique Bamako

La Droite dans le Plan Site MathsTICE de Adama Traoré Lycée Technique Bamako La Droite dans le Plan Site MathsTICE de Adama Traoré Lycée Technique Bamako I Équation d une droite 1- Condition d alignement de trois points A B C Trois points A ; B ; C du plan sont alignés s il existe

Plus en détail

Positions relatives de droites et de plans

Positions relatives de droites et de plans TS éométrie dans l espace 2012-2013 I Positions relatives de droites et de plans I.1 Positions relatives de deux droites Propriété : eux droites d 1 et d 2 sont soit coplanaires (appartiennent à un même

Plus en détail

NOM : PRODUIT SCALAIRE 1ère S

NOM : PRODUIT SCALAIRE 1ère S Exercice 1 R D Q C Soit un carré ABCD. On construit un rectangle AP QR tel que : P et R sont sur les côtés [AB] et [AD] du carré ; AP = DR. Le problème a pour objet de montrer que les droites (CQ) et (P

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Chapitre 11 Géométrie dans l espace Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 1ère partie Droites et plans Positions relatives de droites et de plans : intersection

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

On dit que M est l origine du vecteur et N son extrémité.

On dit que M est l origine du vecteur et N son extrémité. ❶ - Vecteurs I-- Définition d un vecteur Définition : Lorsqu on choisit deux points distincts M et N dans cet ordre, on définit : - une direction : celle des droites parallèles à (MN) ; - un sens : de

Plus en détail

Géométrie vectorielle

Géométrie vectorielle Géométrie vectorielle L1 SPC, semestre 2 Année 2012 1 Généralités L objectif de ce chapitre est de faire un rapide survol des éléments essentiels de géométrie vectorielle (et un peu affine). Il s agit

Plus en détail

Bases et repères. Coordonnées d'un vecteur dans une base, d'un point dans un repère

Bases et repères. Coordonnées d'un vecteur dans une base, d'un point dans un repère I Les vecteurs du plan, de l'espace Dans le plan P Soit O un point du plan, i et j deux vecteurs non colinéaires. On dit que : i, j est une base du plan vectoriel P O, i, j est un repère de P Bases et

Plus en détail

1S DS 4 Durée : 2h. ( 5,5 points ) Exercice 1

1S DS 4 Durée : 2h. ( 5,5 points ) Exercice 1 1S DS Durée : h Exercice 1 (, points ) Dans un repère orthonormé (annexe exercice 1), on donne la droite (d) d équation x 3y + 6 = 0, le point A(1; 7) et le vecteur v (; 3). 1. Pour tracer (d) on peut

Plus en détail

Chapitre 4: Géométrie analytique dans l'espace

Chapitre 4: Géométrie analytique dans l'espace GEOMETRIE ANALYTIQUE DANS L'ESPACE 35 Chapitre 4: Géométrie analytique dans l'espace Prérequis: Géom. vectorielle dans V 3, géom. analytique dans le plan Requis pour: Algèbre linéaire, examen de maturité.

Plus en détail

PRODUIT SCALAIRE EXERCICES CORRIGES

PRODUIT SCALAIRE EXERCICES CORRIGES Exercice n. (correction) Répondre par VRAI (V) ou FAUX (F) : Question Soient A, B et C trois points distincts du plan. PRODUIT SCALAIRE EXERCICES CORRIGES a) A, B et C sont alignés si et seulement si :

Plus en détail

Pour démarrer la classe de seconde. Paul Milan

Pour démarrer la classe de seconde. Paul Milan Pour démarrer la classe de seconde Tout ce qu il faut savoir Paul Milan DERNIÈRE IMPRESSION LE 1 juin 014 à 1:7 Table des matières 1 Calcul 1 Calcul sur les fractions................................ Calcul

Plus en détail

LEÇON N 22 : Équation cartésienne d une droite du plan. Problèmes d intersection, parallélisme. Condition pour que trois droites soient concourantes.

LEÇON N 22 : Équation cartésienne d une droite du plan. Problèmes d intersection, parallélisme. Condition pour que trois droites soient concourantes. LEÇON N 22 : Équation cartésienne d une droite du plan. Problèmes d intersection, parallélisme. Condition pour que trois droites soient concourantes. Pré-requis : Déterminants ; Définition vectorielle

Plus en détail

Chapitre 1 : Équations de la droite dans le plan

Chapitre 1 : Équations de la droite dans le plan EQUATIONS DE LA DROITE DANS LE PLAN 1 Chapitre 1 : Équations de la droite dans le plan 1.1 Introduction Exercice d introduction : On considère l équation vectorielle: x = 3 3 + k. y 2 2 Représenter, dans

Plus en détail

Géométrie de l espace

Géométrie de l espace [http://mp.cpgedupuydelome.fr] édité le 4 septembre 06 Enoncés Géométrie de l espace Notions communes Exercice [ 087 ] [Correction] À quelle(s) condition(s) simple(s) l intersection de trois plans de l

Plus en détail

Application du produit scalaire: Géométrie analytique

Application du produit scalaire: Géométrie analytique Application du produit scalaire: Géométrie analytique I) Vecteur normal et équation de droite 1) Vecteur normal à une droite Dire que est un vecteur non nul normal à une droite (d) de vecteur directeur

Plus en détail

Nombres complexes - Équations et forme trigonométrique

Nombres complexes - Équations et forme trigonométrique Lycée Paul Doumer 0-04 TS Cours Nombres complexes - Équations et forme trigonométrique Contents Équation du second degré. Racines carrées..................................... Équation du second degré à

Plus en détail

1.2.2 Cas général d une perpendiculaire commune

1.2.2 Cas général d une perpendiculaire commune 1.. Cas général d une perpendiculaire commune Quand deux droites sont orthogonales Une perpendiculaire commune à deux droites orthogonales est contenue dans le plan passant par l une des droites et perpendiculaire

Plus en détail

Produit scalaire dans l espace-equations de plans et de droites

Produit scalaire dans l espace-equations de plans et de droites Mme Morel-TS 1 Produit scalaire dans l espace-equations de plans et de droites 1 Produit scalaire dans l espace 1.1 Définition Définition 1.1.1. Dasn l espace, une unité de longueur étant choisie, le produit

Plus en détail

Produit vectoriel dans l espace euclidien orienté de dimension 3. Point de vue géométrique, point de vue analytique. Applications.

Produit vectoriel dans l espace euclidien orienté de dimension 3. Point de vue géométrique, point de vue analytique. Applications. Produit vectoriel dans l espace euclidien orienté de dimension 3. Point de vue géométrique, point de vue analytique. Applications. Chantal Menini 18 mai 2009 Avant de vous lancer dans cet exposé assurez-vous

Plus en détail

Géométrie dans l espace

Géométrie dans l espace ERNIÈRE IMPRESSION LE 6 juin 013 à 15:11 Géométrie dans l espace Table des matières 1 roites et plans 1.1 Perspective cavalière........................... 1. Le plan...................................

Plus en détail

Géométrie dans l'espace

Géométrie dans l'espace 1 arallélisme 1.1 osition relative de deux droites Géométrie dans l'espace Droites coplanaires Г // et sécantes = ={A} Droites non coplanaires Г = 1.2 osition relative de deux plans lans parallèles lans

Plus en détail

Dans cette partie, ABCD est un tétraèdre régulier, c'est-à-dire un solide dont les quatre faces sont des triangles équilatéraux.

Dans cette partie, ABCD est un tétraèdre régulier, c'est-à-dire un solide dont les quatre faces sont des triangles équilatéraux. Pondichery Avril 2011 Série S Exercice Partie I Dans cette partie, ABCD est un tétraèdre régulier, c'est-à-dire un solide dont les quatre faces sont des triangles équilatéraux. A D B A C A' est le centre

Plus en détail

LEÇON N 35 : Produit vectoriel dans l espace euclidien orienté de dimension trois. Point de vue géométrique, point de vue analytique. Applications.

LEÇON N 35 : Produit vectoriel dans l espace euclidien orienté de dimension trois. Point de vue géométrique, point de vue analytique. Applications. LEÇON N 35 : Produit vectoriel dans l espace euclidien orienté de dimension trois. Point de vue géométrique, point de vue analytique. pplications. Pré-requis : Généralités sur les espaces euclidiens affines

Plus en détail

Méthodes de géométrie dans l espace

Méthodes de géométrie dans l espace Déterminer une équation cartésienne de plan L équation cartésienne d un plan est du type ax + by + cz + d 0 avec (a ;b ;c) les coordonnées d un vecteur normal du plan. On procède en deux étapes : D abord

Plus en détail

un repère orthonormé de l espace.

un repère orthonormé de l espace. Terminale S GEOMETRIE Ch 13 DANS L ESPACE. Soit ( O ; i, j, k ) un repère orthonormé de l espace. I) Droites et plans dans l espace : Propriété 1 : Soient A et B deux points de l espace. AB est l ensemble

Plus en détail

Equations cartésiennes. Fiche(1)

Equations cartésiennes. Fiche(1) Fiche(1) Le tableau suivant indique, dans la case située ligne l et colonne c, l altitude (exprimée en centaines de mètres) au point dont l abscisse est c et l ordonnée l : par exemple, l altitude du point

Plus en détail

b) Déterminer les valeurs de m pour lesquelles la distance de A à P m est égale à

b) Déterminer les valeurs de m pour lesquelles la distance de A à P m est égale à 4 éme Année *** Maths Série d exercices Prof : Dhahbi. A *, Por : 97441893 Géométrie dans l espace Dans tous les exercices, 1'espace est rapporté à un repère orthonormé ( 0, i, j, k ). EXER CICE N 1 :

Plus en détail

i, j, k ) un repère orthonormal direct de l'espace.

i, j, k ) un repère orthonormal direct de l'espace. EXERCICES DE CLCUL VECTORIEL DNS LE PLN ET L'ESPCE EUCLIDIEN Exercice 1 On considère, dans l'espace, les points (0 ; 1 ; 1), B(6 ; 1 ; 9) et C(1 ; 0 ; 0) 1. Déterminer une équation cartésienne du plan

Plus en détail

APPLICATIONS DU PRODUIT SCALAIRE

APPLICATIONS DU PRODUIT SCALAIRE APPLICATIONS DU PRODUIT SCALAIRE I. Calculs d'angles et de longueurs 1) Calculs d'angles Méthode : Déterminer un angle à l'aide du produit scalaire Vidéo https://youtu.be/ca_pw79ik9a. " Calculer la mesure

Plus en détail

Espace. + β v = 0. On dit aussi que les deux vecteurs sont

Espace. + β v = 0. On dit aussi que les deux vecteurs sont I Vecteurs dans l espace. II Notion de plan. III Coordonnées. IV Equations dans l espace. Espace. «Espace, frontière de l'infini vers lequel voyage notre vaisseau spatial. Sa mission: Explorer de nouveaux

Plus en détail

Chapitre 10 Nombres complexes NOMBRES COMPLEXES. et Im(z) =

Chapitre 10 Nombres complexes NOMBRES COMPLEXES. et Im(z) = Chapitre 0 Nombres complexes NOMBRES COMPLEXES I- - Forme algébrique d un nombre complexe Définition : On note C l ensemble des nombres de la forme z = x + iy, où x et y sont deux nombres réels et ii un

Plus en détail

Géométrie dans l espace On désigne par E l ensemble des points de l espace et par w l ensemble k est Wmuni de la base B i

Géométrie dans l espace On désigne par E l ensemble des points de l espace et par w l ensemble k est Wmuni de la base B i Maths site Résmé d cors Géométrie dans l espace On désigne par E l ensemble des points de l espace et par w l ensemble o, i, j, k est Wmni de la base B i, j, k des vecters de l espace. E est mni d n repère

Plus en détail

Produit scalaire et géométrie analytique de l espace. Corrigés d exercices

Produit scalaire et géométrie analytique de l espace. Corrigés d exercices Produit scalaire et géométrie analytique de l espace Corrigés d exercices Les exercices du livre corrigés dans ce document sont les suivants : Page 319 : N 76, 77, 81 Page 35 : N 117 Page 30 : N 85, 86,

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Géométrie analytique (affine ou euclidienne) Exercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moyenne **** difficile ***** très

Plus en détail

Ex 8 : Angles orientés de vecteurs. Ex 9 : Vrai ou faux. Ex 10 : Entre deux droites. Ex 11 : Entre une droite et un plan

Ex 8 : Angles orientés de vecteurs. Ex 9 : Vrai ou faux. Ex 10 : Entre deux droites. Ex 11 : Entre une droite et un plan Produit scalaire et orthogonalité dans l'espace : exercices page Produit scalaire dans l'espace Pour les exercices à 4, on considère le cube ci contre de côté a. M, N, P et I sont les milieux respectifs

Plus en détail

Chapitre : Repérage et vecteurs dans le plan

Chapitre : Repérage et vecteurs dans le plan Chapitre : Repérage et vecteurs dans le plan Introduction : Dès l'antiquité les problèmes de repérage se sont posés dans les domaines de l'astronomie et de la navigation. La notion de coordonnées dans

Plus en détail

Chapitre 2 : Distance point-droite et bissectrices

Chapitre 2 : Distance point-droite et bissectrices DISTANCE POINT-DROITE ET BISSECTRICES 17 Chapitre 2 : Distance point-droite et bissectrices 2.1 L équation normale d une droite Introduction : L équation normale d une droite nous permettra de calculer

Plus en détail

I. Relations métriques

I. Relations métriques 1 sur 8 08/04/2005 22:29 LEÇON 38 : RELATIONS MÉTRIQUES ET TRIGONOMÉTRIQUES DANS UN TRIANGLE QUELCONQUE. APPLICATIONS. Niveau : Première S Prérequis : i) Produit scalaire : Définitions (par distances et

Plus en détail

CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES

CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES Configurations du plan Le théorème de Pythagore s applique à un triangle rectangle ; le théorème de Thalès, à une figure qui comprend des droites parallèles

Plus en détail

PRODUIT SCALAIRE DANS L'ESPACE

PRODUIT SCALAIRE DANS L'ESPACE PRODUIT SCLIRE DNS L'ESPCE Dans tout ce chapitre, les bases ou repères considérés sont orthonormés. Pour des révisions sur le produit scalaire dans le plan, voir le cours de première. 1. Définition du

Plus en détail

Produit scalaire. Expressions et propriétés du produit scalaire

Produit scalaire. Expressions et propriétés du produit scalaire Produit scalaire 1ère STI I - Expressions et propriétés du produit scalaire 1 éfinitions Le produit scalaire de deux vecteurs non nuls u et v, noté u v, est le nombre, u v = u. u.cos ( u, v. u v θ u v

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

Géométrie du plan. Barycentre. Notions communes. Mesures algébriques. Produits scalaires et mixtes

Géométrie du plan. Barycentre. Notions communes. Mesures algébriques. Produits scalaires et mixtes [http://mp.cpgedupuydelome.fr] édité le 4 septembre 016 Enoncés 1 Géométrie du plan Notions communes Exercice 1 [ 01903 ] [Correction] Montrer que deux droites parallèles sont disjointes ou confondues.

Plus en détail

XII. Géométrie analytique de l'espace

XII. Géométrie analytique de l'espace XII. Géométrie analytique de l'espace 1. Introduction 1.1 Rappels. Avant de généraliser à l'espace la notion de vecteurs rencontrée dans le plan, reprenons les essentiels de cette matière. On appelle vecteur

Plus en détail

Première S 2 mai 2011

Première S 2 mai 2011 Première S mai 011 Exercices 11 1 Homothétie 1 Mathématiques Soit ABC un triangle, ( Γ ) son cercle circonscrit et O le centre de ( Γ ) Soit H le milieu de [BC] et D le point de ( Γ ) diamétralement opposé

Plus en détail

I- Les rappels : des triangles particuliers. Trigonométrie

I- Les rappels : des triangles particuliers. Trigonométrie Index I- Les rappels : des triangles particuliers... 1 I-1- Triangle équilatéral... 1 I-2- Triangle rectangle isocèle... 1 II- Sur le cercle trigonométrique... 2 II-1- Comment graduer un cercle? (se repérer

Plus en détail

Coniques. Ellipses. Définition monofocale. Hyperboles. Paraboles. Equations polaires

Coniques. Ellipses. Définition monofocale. Hyperboles. Paraboles. Equations polaires [http://mp.cpgedupuydelome.fr] édité le 4 septembre 06 Enoncés Coniques Ellipses Définition monofocale Exercice [ 099 ] [Correction] Soit D une droite du plan P et F un point non situé sur D. (a) Justifier

Plus en détail

DROITES, PLANS ET VECTEURS DE L ESPACE.

DROITES, PLANS ET VECTEURS DE L ESPACE. DROITES, PLANS ET VECTEURS DE L ESPACE. I- Droites et plans de l espace : Rappels des règles de base Par deux points distincts de l espace, passe une unique droite. Par trois points non alignés passe un

Plus en détail

Résumé : Coniques Niveau : Bac mathématiques Réalisé par : Prof. Benjeddou Saber

Résumé : Coniques Niveau : Bac mathématiques Réalisé par : Prof. Benjeddou Saber Résumé : Coniques Niveau : Bac mathématiques Réalisé par : Prof. Benjeddou Saber saberbjd2003@yahoo.fr éfinition : "Parabole" Soit une droite et un point n appartenant pas à. Pour tout point M du plan,

Plus en détail

LEÇON N 36 : Produit vectoriel, produit mixte.

LEÇON N 36 : Produit vectoriel, produit mixte. LEÇON N 36 :. Pré-requis : Généralités sur les espaces euclidiens affines et vectoriels de dimension inférieure ou égale à trois ; Orientation de l espace (base orthonormée directe, indirecte) : règle

Plus en détail

Chapitre 9 Les nombres complexes

Chapitre 9 Les nombres complexes Chapitre 9 Les nombres complexes Vocabulaire-représentation Définition des nombres complexes Définition Nombres complexes, partie réelle, partie imaginaire) On introduit i, un nombre qui vérifie i = On

Plus en détail

Université Joseph Fourier, Grenoble. Plan et espace. Eric Dumas, Emmanuel Peyre et Bernard Ycart

Université Joseph Fourier, Grenoble. Plan et espace. Eric Dumas, Emmanuel Peyre et Bernard Ycart Université Joseph Fourier, Grenoble Maths en Ligne Plan et espace Eric Dumas, Emmanuel Peyre et Bernard Ycart Ce chapitre est pour l essentiel une révision des programmes de géométrie de vos années de

Plus en détail

Isométries planes. 1 Transformations du plan. 1.1 Dé nitions. 1.2 Composition

Isométries planes. 1 Transformations du plan. 1.1 Dé nitions. 1.2 Composition Isométries planes 1 Transformations du plan 1.1 Dé nitions Dé nition 1 Une transformation f du plan est une application du plan dans lui-même telle que pour tout point M 0 duplan,ilexisteununique point

Plus en détail

(Isométrie et produit scalaire)

(Isométrie et produit scalaire) 1. Définitions et propriétés Définition (d une isométrie) Soit f une application du plan dans lui-même. On dit que f est une isométrie du plan si elle conserve la distance c est-à-dire pour tous points

Plus en détail

4 : Géométrie plane. 1. Repérage dans le plan

4 : Géométrie plane. 1. Repérage dans le plan 4 : Géométrie plane 1. Repérage dans le plan 1.1 Vocabulaire de la géométrie vectorielle On identifie le plan vectoriel R 2 à l ensemble des nombres complexes. On note o le vecteur d affixe nulle. éfinition

Plus en détail

PRODUIT SCALAIRE DANS L'ESPACE

PRODUIT SCALAIRE DANS L'ESPACE PROUIT SLIR NS L'SP I éfinition - Propriétés éfinition (rappel) ( voir animation ) Soient et v dex vecters d plan. On considère n point O et les points et tels qe : O = et O = v. On appelle prodit scalaire

Plus en détail

Minimum vital pour des études scientifiques à l université

Minimum vital pour des études scientifiques à l université Faculté des Sciences & Techniques de Limoges 2012-2013 Portails MASS et SI- Premier Semestre Mathématiques Minimum vital pour des études scientifiques à l université La lecture active de ce document fait

Plus en détail

1 Produit scalaire hermitien

1 Produit scalaire hermitien Espaces préhilbertiens complexes. Espaces hermitiens. PSI Paul Valéry Dans tout ce chapître on travaille avec des espaces vectoriels complexes. z représente le module du complexe z et z son conjugué z.

Plus en détail

Vecteurs et droites. u = 0 et on dit que

Vecteurs et droites. u = 0 et on dit que Vecteurs et droites ) Rappels sur les vecteurs Généralités Définitions : ) Un vecteur u ou B est défini par : une direction (la droite (B)) un sens (de vers B) une longueur : la norme du vecteur u ou B

Plus en détail

Les programmes de géométrie plane en

Les programmes de géométrie plane en Les programmes de géométrie plane en 2011-2012 1 Ecole primaire CYCLE 1 Dessiner un rond, un carré, un triangle 2 CYCLE 2 Les élèves enrichissent leurs connaissances en matière d orientation et de repérage.

Plus en détail

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2013

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2013 COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2013 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Remarque : A chaque translation correspond un vecteur qu on appelle vecteur de la

Remarque : A chaque translation correspond un vecteur qu on appelle vecteur de la Vecters I. Notion de vecters a) Vecters et translations Définition : A et B désignent dex points d plan. La translation qi transforme A en B associe à tot point C d plan l'niqe point D tel qe les segments

Plus en détail

EXERCICES SUR LES SUITES

EXERCICES SUR LES SUITES EXERCICES SUR LES SUITES EXERCICE 1 u est une suite définie sur IN par u 7 = 6 et u 10 = 162 Déterminer sa raison, son premier terme u 0, ainsi que la somme S = u 10 + u 11 + + u 25 : 1) dans le cas où

Plus en détail