CALCUL VECTORIEL COMPOSANTES D UN VECTEUR - EXERCICES

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "CALCUL VECTORIEL COMPOSANTES D UN VECTEUR - EXERCICES"

Transcription

1 THEME : CALCUL VECTORIEL COMPOSANTES D UN VECTEUR - EXERCICES Exercice 1 : Dans le plan muni d'un repère ( O, I, J ), placer les points : A( - 2 ; 2 ) ; B( 3 ; 5 ) ; C( - 3 ; - 1 ) ; D( 4 ; - 2 ) et E( 3 ; 2 ) Calculer les coordonnées des vecteurs Exercice 2 : AB Soient A( - 5 ; 1 ) ; B( - 3 ; 2 ) et C( 1 ; 4 ) a)calculer les coordonnées du vecteur AB b)calculer les coordonnées du point D tel que :, AC, DA, AB = CD BE, EA, EC et CD. Vérifier sur le dessin. Exercice 3 : Soient A( - 1 ; - 2 ), B( 4 ; 0 ), C( 4 ; 4 ) et D( - 1 ; 2 ). Montrer que le quadrilatère ABCD est un parallélogramme. Exercice 4 : Le plan est muni d'un repère ( O, I, J ). Soient les points A( - 2 ; 1 ), B( 2 ; 2 ) et C( 1 ; 4 ). a)calculer les coordonnées du point D tel que AC = BD b) Calculer les coordonnées du point E tel que AE = BC c) Calculer les coordonnées du point F tel que FB = AC Exercice 5 : Le plan est muni d'un repère ( O, I, J ). Soient les points A( 1 ; 2 ), B( 2, 0 ) et C( 1 ; 4 ) a)calculer les coordonnées du point D afin que ABCD soit un parallélogramme. b) Calculer les coordonnées du point E afin que ABEC soit un parallélogramme. c) Calculer les coordonnées du point F afin que BCAF soit un parallélogramme. d)calculer les coordonnées des milieux des segments [ED], [DF] et [FE]. Que constate-t-on? Pourquoi? Exercice 6 : Dans un repère ( O, I, J ), on donne les points A( - 2 ; 4 ), B( 3 ; 5 ), C( - 4, 0 ) et D( 4 ; - 3 ). Calculer les coordonnées du point M vérifiant Exercice 7 : MA + MB = CD Dans le plan muni d'un repère ( O, I, J ), on considère les points A( 3 ; 2 ), B( - 1 ; - 2 ), C( 3 ; 0 ) et le vecteur u ( 3 ; - 1 ). Calculer les coordonnées des points A, B' et C, images respectives des points A, B et C dans la translation de vecteur u.

2 Exercice 8 : Le plan est muni d'un repère ( O, I, J ). Soient les points: A( - 1 ; 3 ), B( 4 ; 2 ), C( 5, 0 ) et D( 3 ; - 1 ) a)calculer les coordonnées du vecteur BA Calculer les coordonnées du point E tel que DE = BA. Quelle est la nature du quadrilatère ABDE? b)calculer les coordonnées du milieu M du segment [EB] et les coordonnées du point F, symétrique de C par rapport à M. Quelle est la nature du quadrilatère ECBF? c)montrer que FD = AC Exercice 9 : Le plan est muni d'un repère ( O, I, J ). Placer les points M( 3 ; 5 ), E( - 4 ; 6 ) et R( 2 ; - 2 ). a)calculer les coordonnées des vecteurs ME, MR et RE puis les distances ME, MR et RE. b)quelle est la nature du triangle MER? Pourquoi? Donner la mesure de ses angles. c)calculer les coordonnées des points T et S tels que : ME = RT et ME = SR Quelles sont les natures respectives des quadrilatères METR et MERS? Exercice 10 : Dans un repère orthonormal ( O, I, J ), placer les points A( - 4 ; 3 ), B( 0 ; 5 ) et C( 2 ; - 1 ). a)calculer les coordonnées du vecteur AB b)calculer les coordonnées des points D et E sachant que les quadrilatères ABCD et ABEC sont des parallélogrammes. c)calculer les coordonnées des points R et S, milieux respectifs des segments [BD] et [AE]. d)montrer que les droites (RS) et (AB) sont parallèles. Exercice 11 : d'après Brevet des Collèges Le plan est muni un repère orthonormal ( O, I, J ). a)placer les points A( 2 ; 5 ), B( 8 ; 2 ) et C( - 2 ; - 3 ) b)calculer les valeurs exactes des distances AB, AC et BC. En déduire la nature du triangle ABC. c)quelles sont les coordonnées de D image de C dans la translation de vecteur AB? En déduire que le quadrilatère ABDC est un rectangle. d)déterminer les coordonnées du point M centre du cercle circonscrit à ce rectangle. Exercice 12 : d'après Brevet des Collèges Soient A, B et D trois points du plan muni d'un repère orthonormal ( O, I, J ) A( 1 ; 4 ), B( - 1 ; 8 ) et D( 9 ; 8 ) a)quelles sont les coordonnées des vecteurs AB, AD et BD? b)calculer les longueurs des segments [AB], [AD] et [BD]. c)démontrer que le triangle ABD est rectangle en A. d)construire le point C tel que AC = AB + AD e)montrer que le quadrilatère ABCD est un rectangle. f)déterminer les coordonnées du point C. Exercice 13 : Brevet des Collèges - Dijon Dans le plan muni d'un repère orthonormal ( O, I, J ), on considère les points A( 5 ; 0 ), B( 7 ; 6 ), C( 1 ; 4 ) et D( - 1 ; - 2 ). a)faire une figure. b)calculer les coordonnées des vecteurs c)calculer les distances AB et AD. d)démontrer que ABCD est un losange. AB et DC

3 Exercice 14 : Brevet des Collèges - Rouen ( O, I, J ) est un repère orthonormal du plan. a)placer les points A( 4. 2 ), B( 6 ; - 4 ), C( 0 ; - 2 ), E( - 2 ; 4 ) b)démontrer que le quadrilatère ABCE est un parallélogramme. c)calculer les longueurs AB et BC. Que peut-on en déduire pour le quadrilatère ABCE? Exercice 15 : Soient M( 3 ;2 ) et u( - 1 ;1 ). a)déterminer les coordonnées du point M' image de M dans la translation de vecteur u. b)déterminer les coordonnées du point M" image de M dans la symétrie de centre A( 1 ; 2 ). Exercice 16 : Dans un repère orthonormal, on donne les points A( 1 ; 6 ), B( 2 ; 1 ) et I( - 1 ; 4 ) a)calculer les coordonnées des vecteurs IA, IB et AB. b)calculer IA, IB et AB. c)en déduire que le triangle IAB est rectangle en I. d)soit C le point de coordonnées ( - 3 ; 2 ). Démontrer que le point I est milieu du segment [AC]. e)soit D le point symétrique de B par rapport au point I. Déterminer les coordonnées du point D. Démontrer que le quadrilatère ABCD est un losange. Exercice 17 : Dans un repère orthonormal, placer les points : A( - 1 ; 2 ), B( 2 ; 3 ) et C( 1 ; 0 ) a)calculer les distances AB, BC et AC. En déduire la nature du triangle ABC. b)calculer les coordonnées du point D tel que AB = DC. Démontrer alors que le quadrilatère ABCD est un losange. c)soit I le milieu du segment [BC]. Déterminer les coordonnées du point I. d)soit E le symétrique de A par rapport au point I. Calculer les coordonnées du point E. Exercice 18 : Dans le plan muni d'un repère orthonormal ( O, I, J ), placer les points : A( 3 ; 0 ), B( 0 ; 2 ), C( 4 ; 3 ) et D( 5 ; 1 ) a)déterminer les coordonnées des points M, N, P et Q milieux respectifs des segments [AB], [BC], [CD] et [DA]. b)démontrer que MN = QP. Que peut-on en conclure? Exercice 19 : Brevet - Clermont-Ferrand Construire un triangle BCD rectangle en B tel que BD = 2 et BC = 6, l'unité étant le cm. a)calculer DC ( on donnera une valeur exacte du résultat ). b)placer sur la figure le point A symétrique du point D par rapport au point B, puis le point E symétrique de C par rapport à B. Quelle est la nature du quadrilatère ACDE? Justifier. c)construire le point F tel que AF = DC ( on expliquera la construction ) Quelle est la nature du quadrilatère AFCD? Démontrer que : EA = AF Que représente le point A pour le segment [EF]? d)soit I le point d'intersection des droites (CF) et (DE). Montrer que C est milieu de [IF]. Calculer IF et IE. e)déterminer le centre et le rayon du cercle circonscrit au triangle ECF.

4 Exercice 20 : Brevet - Amérique du Nord Dans un repère ( O, I, J ), représenter les points suivants ( unité : le cm ) A( 1 ; - 1 ), B( 2 ; 3 ), C( - 2 ; 2 ) et D( 4 ; 2 ) a)placer le point E tel que b)placer le point F tel que CE = AB. AF = AB + AD c)quelle est la nature du quadrilatère CDFE? Justifier votre réponse. d)le quadrilatère ABFD est-il un losange? Justifier votre réponse. Exercice 21 : d'après Brevet - Nice Le plan est rapporté à un repère orthonormal ( O, U, V ). On considère les points A( - 5 ; 1 ), B( 1 ; 5 ), C( 3 ; 2 ), D( - 3 ; - 2 ) et M( 6 ; 4 ) a)placer ces points. b)calculer les coordonnées des vecteurs AB, BC et DC. c)calculer les distances AB, BC et AC. En déduire que le quadrilatère ABCD est un rectangle. Quelles sont les coordonnées de son centre I? Quelles sont les longueurs de ses côtés? d)on désigne par M' le symétrique de M par rapport au point B. Calculer les coordonnées du point M. e)soit u ( - 1 ; - 5 ). On désigne par M" l'image de C dans la translation de vecteur u. Déterminer les coordonnées du point M". f)montrer que I est le milieu de [M'M"]. Exercice 22 : Dans un repère orthonormé (O, I, J) avec OI = OJ = 1 cm placer les points A(4 ; 5) B (-3 ; 4) et C (1, 1). 1) Faire la figure 2) Calculez CA, CB, AB. En déduire la nature du triangle ABC 3) Trouver les coordonnées du points D tel que CBDA soit un parallélogramme. Quelle est la nature de CBDA? Pourquoi? 4) Calculer les coordonnées de S image de B par la translation de vecteur AC 5) Calculer les coordonnées de R image de A par la symétrie de centre C 6) Quelle est la nature de ABSR? Pourquoi? 7) Calculer l'aire de ABSR Exercice 23 : Dans un repère orthonormé (O,I,J) OI=OJ=1cm on considère les points A(-2;-3) ; B(-4;4); C(3 ; 6). 1) Faire un figure que l'on complétera tout au long du problème. 2) Calculer les coordonnées des vecteurs AB, BC et AC 3) Calculer AB ; BC ; AC Quelle est la nature du triangle ABC? Pourquoi? 4)Soit D le point tel que ABCD soit un parallélogramme. Calculer les coordonnées de D. Quelle est la nature de ABCD? Pourquoi? 5) Montrez que le triangle est inscrit dans un cercle dont on précisera le centre et le rayon. 6) Montrez que D appartient au cercle. 7) Soit E l'image de C par la translation de vecteur AB. Calculer les coordonnées de E. 8) Quelle est la nature du quadrilatère ABEC? Pourquoi? 9) Calculez l'aire de ABEC? Exercice 24 : Brevet des Collèges - Besançon-Lyon-Metz-Nancy Dans un repère orthonormal ( O, I, J ) tel que OI = OJ = 1 ( cm ), on considère les points A( 2 ; 6 ) ; B (-3 ; 3 ) ; C( 2 ; 0 ) et D( 7 ; 3 ) 1.Calculer les coordonnées des vecteurs AB et DC. Montrer que le quadrilatère ABCD est un parallélogramme.

5 2. Calculer les distances AB et AD ( on donnera les valeurs exactes. ) Que peut-on dire du parallélogramme ABCD? Justifier. 3. Construire le point M centre du parallélogramme ABCD. Calculer les coordonnées du point M. 4. a)quelle est l'image du triangle AMD par la symétrie centrale de centre M? b)citer une transformation qui permet de passer du triangle ACD au triangle ABC. Exercice 25 : d après Brevet des Collèges - Orléans 1995 Le plan est muni d'un repère orthonormal (O, I, J). L'unité est le centimètre. 1) Placer les points A( 3 ; 2,5), B( 0 ; - 1 ) et C( - 1 ; 3,5 ). 2) Calculer les distances AB et BC. On gardera les valeurs exactes. En déduire une propriété du triangle ABC. 3) Placer le point M défini par : CM = CA + CB. Exercice 26 : d après Brevet des Collèges Clermont-Ferrand 1996 Dans le plan muni d'un repère orthonormal (O, I, J), l'unité étant le centimètre, on considère les points : A( 2 ; 3 ) ; B( 5 ; 6 ) ; C( 7 ; 4 ) ; D( 4 ; 1 ). 1) Faire la figure sur papier millimétré. 2) Calculer les coordonnées du vecteur AB et celles du vecteur DC ; en déduire la nature du quadrilatère ABCD. 3) Calculer AC et BD. 4) Démontrer que ABCD est un rectangle. (On pourra utiliser les résultats obtenus à la question précédente ) Exercice 27 : d après Brevet des Collèges Amérique 1997 Le plan est muni d'un repère orthonormal (O, I, J) (unité : 1 cm). 1) Placer les points E ( 6 ; 3 ) ; F( 2 ; 5 ) et G( - 2 ; - 3 ) et tracer le cercle (C) de diamètre [EG]. 2) a) Calculer les coordonnées du centre H de (C). b) Calculer le rayon du cercle (C). 3) a) Déterminer la longueur HF. b) En déduire la nature du triangle EFG. 4) a) Construire le point K image de G par la translation de vecteur FE. b) Quelle est la nature du quadrilatère EFGK? Justifier. Exercice 27 : d après Brevet des Collèges Grenoble 1998 Le plan est rapporté à un repère orthonormé (O, I, J). L unité est le centimètre. On considère les points : A( 4 ; 4 ), B( 7 ; 5 ) et C( 8 ; 2 ) 1. Placer les points A, B, C sur une figure. 2. Calculer les longueurs AB, AC et BC (on donnera les valeurs exactes). 3. Démontrer que le triangle ABC est isocèle et rectangle. 4. Placer, sur la figure, le point D tel que DC AB =. 5. Quelle est la nature du quadrilatère ABCD? Justifier la réponse.

6 Exercice 28 : d après Brevet des Collèges Etrangers 1997 (O, I, J) est un repère othonormal du plan. 1. Placer les points A ( 4 ; 2 ), B ( 6 ; - 4 ) et C ( 0 ; - 2 ). 2. Déterminer les coordonnées du vecteur AB ; en déduire les coordonnées du point D pour que le quadrilatère ABCD soit un parallélogramme. 3. Calculer les longueurs AB et BC. En déduire la nature du parallélogramme ABCD. Exercice 29 : d après Brevet des Collèges Lille 1998 Soit un repère orthonormal (O, I, J). On donne les points : A(1 ; 3) B(3 ; 4) C(4 ; 1) 1. a) Placer les points A, B et C. b) Calculer les coordonnées du vecteur AB. 2. On considère le point D tel que : CD = AB. Calculer les coordonnées du point D. 3. Quelle est la nature du quadrilatère ABDC? Justifier la réponse. Exercice 30 : d après Brevet des Collèges Orléans Construire sur la copie un repère orthonormal (O, I, J) tel que OI = OJ = 1 cm et placer les points : A( 0 ; 4 ), B( 3 ; 8 ), C( 6 ; 4 ) et D( 3 ; 0 ) 2. Calculer les coordonnées du vecteurab. 3. Calculer la distance AB. 4. Démontrer que le quadrilatère ABCD est un losange. Exercice 31 : d après Brevet des Collèges Asie Tracer un repère orthogonal (O, I, J) du plan et placer les points : A( 2 ; 3 ), B( - 4 ; 6 ) et E( 6 ; 5 ) 2. Construire le point F image du point E par la translation de vecteurab. 3. Calculer les coordonnées du point F. Exercice 32 : d après Brevet des Collèges Réunion Dans un plan muni d'un repère orthonormé (O, I, J) (unité graphique : 1 cm), placer les points suivants : A( 5 ; 0 ), B( 7 ; 6 ), C( 1 ; 4 ) et D( - 1 ; - 2 ) 2. Calculer les coordonnées des vecteurs AB et DC. 3. Calculer les distances AB et AD. 4. En déduire la nature du quadrilatère ABCD.

GEOMETRIE ANALYTIQUE

GEOMETRIE ANALYTIQUE 1 Session du brevet 1996 GEMETRE ANALYTQUE Afrique 96 La liste suivante contient les équations de dix droites : y = 1 2 x + 4 y = 1 2 x 4 y = 1 2 x + 4 y = 1 2 x 4 y = x + 4 y = x 4 y = 2x + 4 y = 2x 4

Plus en détail

Exercices sur les vecteurs

Exercices sur les vecteurs Exercices sur les vecteurs Exercice 1 : Associativité de la somme de trois vecteurs. On donne trois vecteurs u, v et w. Sur les deux figures suivantes tracer la somme u + v + w de deux manières : u + v

Plus en détail

Seconde 4 Repérage dans le plan Vecteurs

Seconde 4 Repérage dans le plan Vecteurs Exercice 1 : repères du plan coordonnées de points et de vecteurs Quadrillage à maille carrée Lire les coordonnées dans le repère (O ; i ; j ) : a) des points A, B, C, D, E b) des vecteurs u et v Exercice

Plus en détail

Translations et vecteurs

Translations et vecteurs Translations et vecteurs A) Translation. 1. Définition. Soient trois points A, B et M. L image du point M par la translation qui transforme A en B est le point M tel que ABM M, dans cet ordre, soit un

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 La figure ci-dessous représente un rectangle ABCD tel que : AB = 5 et BC = ; un triangle ABF équilatéral et un triangle BCE rectangle et isocèle en C. Le point

Plus en détail

Nom : VECTEURS 2nde. Exercice 1. ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure.

Nom : VECTEURS 2nde. Exercice 1. ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure. Exercice 1 ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure. Illustration D. Le Fur 1/?? Exercice 2 ABCD est un parallélogramme de centre

Plus en détail

CONTRÔLE N 2. Exercice 2 : (sur la copie double)

CONTRÔLE N 2. Exercice 2 : (sur la copie double) NOM : Prénom : Classe : 2nde CONTRÔLE N 2 Consignes : - l utilisation de la calculatrice est autorisée - sauf mention contraire, toutes les réponses devront être soigneusement justifiées. Le tableau suivant

Plus en détail

NOM : ANGLES ET ROTATIONS 1ère S

NOM : ANGLES ET ROTATIONS 1ère S Exercice 1 ABC est un triangle de sens direct rectangle en A. On construit à l extérieur du triangle les carrés ACDE et BCF G. Démontrer que les droites (BD) et (AF ) sont perpendiculaires, et que BD =

Plus en détail

Seconde sujet 1 IE3 vecteurs et parallélogrammes somme de vecteurs. NOM : Prénom : Note :

Seconde sujet 1 IE3 vecteurs et parallélogrammes somme de vecteurs. NOM : Prénom : Note : Seconde 2009-2010 sujet 1 NOM : Prénom : Exercice 1 : (3 points) Dire pour chaque affirmation, si elle est vraie ou fausse. 1) ABCD est un parallélogramme a) AB = CD Vrai Faux b) BC = AD Vrai Faux c) AC

Plus en détail

Géométrie 1 Vecteurs Translation et vecteurs

Géométrie 1 Vecteurs Translation et vecteurs Géométrie 1 Vecteurs Translation et vecteurs Compétences Construire l image d un point (d une figure) par une translation Exemples 1 à 5 Connaître le vocabulaire lié aux vecteurs Exemples 6 et 7 Utiliser

Plus en détail

Aide : Vecteurs distance - colinéarité

Aide : Vecteurs distance - colinéarité Exercice : calculs de distances en repère orthonormal On donne les points A(- ;) B( ;) et C( ;-). Placer ces points dans un repère. ) Calculer les longueurs AB, BC et CA. En déduire la nature du triangle

Plus en détail

Exercices de géométrie analytique

Exercices de géométrie analytique Exercice 1 Exercices de géométrie analytique (1) Déterminer les coordonnées des vecteurs représentés dans la base ( i, j ) () Déterminer les coordonnées des vecteurs représentés dans la base ( j, i ) ()

Plus en détail

CHAPITRE I GÉOMÉTRIE ANALYTIQUE DANS LE PLAN EXERCICES

CHAPITRE I GÉOMÉTRIE ANALYTIQUE DANS LE PLAN EXERCICES CHAPITRE I GÉOÉTRIE ANALYTIQUE DANS LE PLAN EXERCICES 1) Le plan étant muni d un repère ( O, i, j ) 4 u 6 et v Calculez les coordonnées de : 1 2,4 a) AB d) u + v b) 2 CA c) BC, on donne A( 5; 7,3), ( 9;0)

Plus en détail

Fiche 1 Calcul vectoriel dans R 2 et R 3

Fiche 1 Calcul vectoriel dans R 2 et R 3 Université Paris, IUT de Saint-Denis Année universitaire 0-0 Licence Pro MDQ Géométrie Fiche Calcul vectoriel dans R et R Dans les exercices suivants, on suppose le plan muni d un repère orthonormal (O,,

Plus en détail

DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007

DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007 1 sur 7 http://www.ilemaths.net/maths_3-sujet-brevet-07-07-correction.php#c... DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007 L'emploi de la calculatrice est autorisé. La rédaction

Plus en détail

Chapitre : VECTEURS SESSION ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure.

Chapitre : VECTEURS SESSION ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure. SESSION 2006 Chapitre : VECTEURS 1 ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure. D. Le FUR 1/ 21 2 ABCD est un parallélogramme de centre

Plus en détail

NOM : GEOMETRIE 4ème

NOM : GEOMETRIE 4ème Exercice 1 Soit une droite (d) et un point G situé en dehors de la droite (d). On veut construire la parallèle à la droite (d) passant par le point G. Dans chacun des cas suivants, faire une figure, en

Plus en détail

Théorème de Pythagore Exercice 1 : Le triangle DEF est rectangle en F, DF = 36 mm, DE = 85 mm, calculer EF.

Théorème de Pythagore Exercice 1 : Le triangle DEF est rectangle en F, DF = 36 mm, DE = 85 mm, calculer EF. Théorème de Pythagore Exercice 1 : Le triangle D est rectangle en F, = 36 mm, DE = 85 mm, calculer. Le triangle D est rectangle en F. D'après le théorème de Pythagore : ED 85 36 75-196 599 599 77 mm Exercice

Plus en détail

1. Tracer un triangle ABC et placer le point M milieu de [AB]. Soit le point N symétrique

1. Tracer un triangle ABC et placer le point M milieu de [AB]. Soit le point N symétrique 4 ème D DS4 triangles : milieux, parallèles sujet 1 2009-2010 Agrandissement - réduction NOM : Prénom : Note : 20 Objectif Acquis En cours Non Acquis d acquisition Connaître et utiliser les théorèmes relatifs

Plus en détail

Ch3 : configurations du plan - repérage d un point

Ch3 : configurations du plan - repérage d un point Ch3 : configurations du plan - repérage d un point 1. Coordonnées d un point sur un plan : repère orthonormé 1 (O,I,J et repérage d un point distance de deux points - démonstration avec le théorème de

Plus en détail

On dit que M est l origine du vecteur et N son extrémité.

On dit que M est l origine du vecteur et N son extrémité. ❶ - Vecteurs I-- Définition d un vecteur Définition : Lorsqu on choisit deux points distincts M et N dans cet ordre, on définit : - une direction : celle des droites parallèles à (MN) ; - un sens : de

Plus en détail

3 ème BREVET : théorème de Thalès

3 ème BREVET : théorème de Thalès Exercice 1 1 Tracer en triangle ABC rectangle en A tel que : AB = 5 cm et AC = 3 cm. Placer le point D sur [AB] tel que BD = 4 cm. Tracer la perpendiculaire à (AB) passant par D, elle coupe [BC] en E.

Plus en détail

Exercices sur le barycentre

Exercices sur le barycentre Exercices sur le barycentre Exercice 1 : ABCD est un quadrilatère quelconque, I le milieu de [AD] et J celui de [BC]. 1) Ecrire IJ comme la somme de AB et de deux autres vecteurs que l on précisera. 2)

Plus en détail

Chapitre 9 : Géométrie vectorielle

Chapitre 9 : Géométrie vectorielle Chapitre 9 : Géométrie vectorielle I Notion de vecteur 1 Translation et vecteur Soit A et B deux points du plan La translation qui transforme A en B associe à tout point C du plan l unique point D tel

Plus en détail

QUADRILATERES. Exercice 1. Sur la figure ci-contre, on a : (AC) (AB) et (BD) (AB). 1) Montrer que (AC) et (ED) sont parallèles.

QUADRILATERES. Exercice 1. Sur la figure ci-contre, on a : (AC) (AB) et (BD) (AB). 1) Montrer que (AC) et (ED) sont parallèles. Exercice 1 Sur la figure ci-contre, on a : (AC) (AB) et (BD) (AB). 1) Montrer que (AC) et (ED) sont parallèles. A B 70 E 2) Montrer que (AE) et (CD) sont parallèles. 3) En déduire que AEDC est un parallélogramme.

Plus en détail

I Définition. Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D.

I Définition. Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D. QUADRILATERES I Définition Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D. Quatre côtés : les segments [AB], [BC], [CD] et

Plus en détail

THEOREMES DES MILIEUX DROITES PARALLELES Corrigés 1/9

THEOREMES DES MILIEUX DROITES PARALLELES Corrigés 1/9 DROITES PARALLELES Corrigés 1/9 Corrigé 01 Corrigé 02 On sait que ABC est un triangle, que I est le milieu de [ AB ] et J le milieu de [ BC ]. (IJ) est donc parallèle à la droite (BC). Corrigé 03 On sait

Plus en détail

HOMOTHÉTIES - TRANSLATIONS - ROTATIONS

HOMOTHÉTIES - TRANSLATIONS - ROTATIONS HOOTHÉTIES - TRASLATIOS - ROTATIOS I s - Propriétés On appelle translation de vecteur u, l'application qui à un point associe l'unique point tel que = u On la note souvent t u (ou simplement t lorsqu'il

Plus en détail

NOM : THALES 4ème. Exercice 1

NOM : THALES 4ème. Exercice 1 Exercice 1 1) Construire un triangle RST tel que RT = 7cm et RS = 6cm. 2) Placer le point A sur le segment [RS] tel que RA = 2cm. Tracer la parallèle à la droite (ST ) passant par A : elle coupe le segment

Plus en détail

Décrire la méthode utilisée pour trouver le nombre de rosiers nécessaires.

Décrire la méthode utilisée pour trouver le nombre de rosiers nécessaires. 3 ème A IE3 théorème de Thalès 2015-2016 S1 Utiliser la figure suivante pour démontrer que les droites (TU) et (RS) sont parallèles. Calculer ensuite RS. UT = 3,5 cm OT = 3 cm OU = 2,7 cm OR = 7,2 cm OS

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

TRANSFORMATIONS DU PLAN - Exercices - SERIE 1

TRANSFORMATIONS DU PLAN - Exercices - SERIE 1 THEME : TRANSFORMATIONS DU PLAN - Exercices - SERIE 1 Exercice 1 : Brevet - Amiens - 1994 La figure ci-dessous est formée de triangles équilatéraux désignés chacun par un numéro. Répondre aux questions

Plus en détail

Première S 2 mai 2011

Première S 2 mai 2011 Première S mai 011 Exercices 11 1 Homothétie 1 Mathématiques Soit ABC un triangle, ( Γ ) son cercle circonscrit et O le centre de ( Γ ) Soit H le milieu de [BC] et D le point de ( Γ ) diamétralement opposé

Plus en détail

EC 9A : ELEMENTS DE MATHEMATIQUES TRANSFORMATIONS EXERCICES

EC 9A : ELEMENTS DE MATHEMATIQUES TRANSFORMATIONS EXERCICES EC 9A : ELEMENTS DE MATHEMATIQUES TRANSFORMATIONS EXERCICES EXERCICE N 1 : Pour chacun des neuf cas ci-après, préciser s il existe une transformation qui permette de passer de la figure a à la figure b.

Plus en détail

NOM : PRODUIT SCALAIRE 1ère S

NOM : PRODUIT SCALAIRE 1ère S Exercice 1 R D Q C Soit un carré ABCD. On construit un rectangle AP QR tel que : P et R sont sur les côtés [AB] et [AD] du carré ; AP = DR. Le problème a pour objet de montrer que les droites (CQ) et (P

Plus en détail

Produit scalaire dans le plan

Produit scalaire dans le plan ème année Maths Produit scalaire dans le plan Octobre 009 A LAATAOUI Exercice n 1 La figure ci-dessous représente un rectangle ABCD tel que : AB = 5 et BC = ; un triangle ABF équilatéral et un triangle

Plus en détail

3 ème BREVET THEOREME DE THALES

3 ème BREVET THEOREME DE THALES Exercice 1 1 Construire un triangle ABC tel que AB = 6 cm AC = 7,2 cm et BC = 10 cm Placer les points R, T et E tels que : R [AB] et AR = 4,5 cm T [AC] et (RT) // (BC) E [AB) et E [AB] et BE = 2 cm 1 2

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

Le Repérage dans le plan

Le Repérage dans le plan Les différents types de repère Le dans le plan Lycée du golfe de Saint Tropez Année 2016/2017 Les différents types de repère 1 Les différents types de repère 2 3 Comment prouver qu un quadrilatère est

Plus en détail

I. Propriétés de géométrie analytique.

I. Propriétés de géométrie analytique. I. Propriétés de géométrie analytique. Activité 1 Dans un repère orthonormé (O ; I ; J), a. Distance entre deux points. Dans un repère orthonormée (O ; I ; J) on considère deux point A(2 ; 1) et B(5 ;

Plus en détail

Géométrie analytique plane

Géométrie analytique plane Exercice 1 EXERCICES SUR LE CHAPITRE 8 Géométrie analytique plane Soit ( O, i ) un repère d une droite d (1) Placer sur cette droite les points I ( 1), A ( 3) et B( 2) (2) Déterminer l abscisse du point

Plus en détail

CALCUL LITTERAL. Programme de calcul

CALCUL LITTERAL. Programme de calcul 1 Session du brevet 1996 Allemagne 96 On considère l expression A = (x + 5) 2 (x + 5)(2x + 1). 1) Développer et réduire A. 2) Factoriser l expression A. 3) Résoudre l équation (x + 5)( x + 4) = 0. Amiens

Plus en détail

Similitudes directes du plan

Similitudes directes du plan Similitudes directes du plan I Transformations du plan - Déplacements Définition On dit qu'une application f du plan dans lui-même est une transformation si f est une bijection du plan dans lui-même, c'est-à-dire

Plus en détail

Figure de l exercice 4. Devoir Surveillé de Mathématiques n 1 Exercice n 1 En détaillant les calculs, donne les valeurs des expressions suivantes :

Figure de l exercice 4. Devoir Surveillé de Mathématiques n 1 Exercice n 1 En détaillant les calculs, donne les valeurs des expressions suivantes : evoir Surveillé de Mathématiques n 1 401S1 Exercice n 1 En détaillant les calculs, donne les valeurs des expressions suivantes : Figure de l exercice 4 A = 10 + 7 ( 4) B = ( 2) 3 C = ( 4) ( 5) E = ( 4)

Plus en détail

Seconde 2 DST2 vecteurs Sujet 1-9 février 2015

Seconde 2 DST2 vecteurs Sujet 1-9 février 2015 Seconde DST vecteurs Sujet 1-9 février 01 Exercice 1 : ( points) Soit ABCD un parallélogramme. I, J, K et L sont les milieux respectifs de [AB], [BC], [CD] et [DA]. Recopier et compléter les égalités suivantes

Plus en détail

REPERAGE DANS LE PLAN

REPERAGE DANS LE PLAN 1 sur 12 REPERAGE DANS LE PLAN I. Repère du plan Trois points distincts deux à deux O, I et J du plan forment un repère, que l on peut noter (O, I, J). L origine O et les unités OI et OJ permettent de

Plus en détail

Seconde 1 IE3 géométrie vectorielle Sujet

Seconde 1 IE3 géométrie vectorielle Sujet Seconde 1 IE3 géométrie vectorielle Sujet 1 2016-2017 NOM : Prénom : Exercice 1 : Reconnaître des vecteurs égaux (5 points) Voici deux cercles concentriques de centre O, de rayon r et 2r. Indiquer les

Plus en détail

NOM : GEOMETRIE DANS L ESPACE 1ère S

NOM : GEOMETRIE DANS L ESPACE 1ère S Exercice 1 On donne A(2 ; 1 ; 3), B(1 ; 2 ; 0), C( 2 ; 1 ; 2) et D( 1 ; 2 ; 5). 1) ABCD est-il un parallélogramme? Un rectangle? 2) Calculer les coordonnées de l isobarycentre du quadrilatère ABCD. Figure

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

1 Lire les coordonnées des onze points marqués sur la figure.

1 Lire les coordonnées des onze points marqués sur la figure. Seconde 1 xercices (Chap. Repérage dans le plan) xercices de repérage dans le plan Tous les graphiques des exercices de ce chapitre peuvent être faits sur papier quadrillé. e plan est muni d un repère

Plus en détail

ANGLES ORIENTES+TRIGONOMETRIE

ANGLES ORIENTES+TRIGONOMETRIE ANGLES ORIENTES+TRIGONOMETRIE LISTE DES COMPETENCES CODE DENOMINATION T0 T0 T0 T0 T05 T0 T07 T08 T09 T0 T T T T T5 T T7 T8 T9 T0 T T T 99 Douala Mathematical Society : www.doualamaths.net : Workbook :

Plus en détail

Exercice 1 (5,5 points)

Exercice 1 (5,5 points) Devoir commun de mathématiques Durée : heures SUJET A Exercice 1 (5,5 points) QCM questions 1 à 6 (réponse exacte +0,75 point, pas de réponse 0 point, réponse fausse 0,5 point) Sachant que une et une seule

Plus en détail

Fiche(1) Trigonométrie. Exercice 1. Exercice 2. Exercice 3. Exercice 4. Exercice 5

Fiche(1) Trigonométrie. Exercice 1. Exercice 2. Exercice 3. Exercice 4. Exercice 5 Trigonométrie Fiche(1) La droite (PP ) est le support de la bissectrice de l angle. (RR ) est perpendiculaire à (PP ). 1) Par quels réels sont repérés chacun des points P, P, R, R sur le cercle trigonométrique?

Plus en détail

Géométrie dans l'espace

Géométrie dans l'espace M- SE - ST Géométrie dans l'espace Exercice Dans l'espace muni du repère orthonormé O, i, j, k, on considère les points : A; ; -, B; ; C; -; 0. - Calculer les coordonnées des vecteurs AB, AC AB AC. Les

Plus en détail

Corrigé des exercices sur les vecteurs. Septembre 2010

Corrigé des exercices sur les vecteurs. Septembre 2010 Septembre 2010 Exercice 1 Soient un triangle ABC et les points I et J tels que AI = 1 AB et AJ = 3 AC 3 1 Exprimer le vecteur BJ en fonction des vecteurs BA et AC. 2 Exprimer le vecteur IC en fonction

Plus en détail

4 ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : Note : ème C IE5 triangles : milieux, parallèles sujet

4 ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : Note : ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : ABC est un triangle rectangle en A. Le point I est le milieu du segment [BC]. Le point J est le milieu du segment [AB]. Démontrer que les droites (IJ) et (AB) sont perpendiculaires. Note

Plus en détail

Chapitre 14 Propriétés de Thalès

Chapitre 14 Propriétés de Thalès Chapitre 14 Propriétés de Thalès Pour les exercices 1 et 2, écrire les égalités données par le théorème de Thalès sans rédiger la justification. 1 a. Les droites (NP) et (QM) sont parallèles. b. Les droites

Plus en détail

Fiche d exercices 9 : Géométrie et orthogonalité dans l espace

Fiche d exercices 9 : Géométrie et orthogonalité dans l espace Fiche d exercices 9 : Géométrie et orthogonalité dans l espace Droites et plans de l espace Exercice SABC est un tétraèdre, la droite (SA) est orthogonale au plan (ABC), le triangle ABC est rectangle en

Plus en détail

Théorème de Pythagore

Théorème de Pythagore Théorème de Pythagore A) Vocabulaire. Définition : Dans un triangle rectangle l hypoténuse est le côté opposé à l angle droit. Exemple : Si ABC est un triangle rectangle en A alors le côté [BC] est sont

Plus en détail

BAC BLANC DE MATHEMATIQUES Durée : 4 heures

BAC BLANC DE MATHEMATIQUES Durée : 4 heures Terminale S Jeudi 1 avril 2010 BAC BLANC DE MATHEMATIQUES Durée : 4 heures L usage de la calculatrice est autorisé. Le sujet comporte pages. Exercice 1 (6 points) : Pour les candidats n ayant pas suivi

Plus en détail

TRANSLATION et VECTEURS : Composition de deux symétries centrales. 3ème_Chap.5_Translation et Vecteurs

TRANSLATION et VECTEURS : Composition de deux symétries centrales. 3ème_Chap.5_Translation et Vecteurs TRANSLATION et VECTEURS : Composition de deux symétries centrales 1 Activité «avant de démarrer» p200 LIEN ENTRE TRANSLATION ET VECTEUR 2 I VECTEURS 1. Définition Un vecteur est défini par une direction,

Plus en détail

LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST...

LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST... THEME : LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST... SOMMAIRE : PARALLELOGRAMME? RECTANGLE? LOSANGE? CARRE? PARALLELOGRAMME? Vous disposez principalement de deux méthodes, une concernant

Plus en détail

Exercices Géométrie plane

Exercices Géométrie plane I Notions élémentaires et compléments sur les vecteurs Savoir-faire 1 : Démontrer avec des vecteurs Exercice 1 ABCD et BDFE sont deux parallélogrammes. Le point K est défini par BK = CB. 1. Justifier les

Plus en détail

Chapitre 8 : Droites et plans de l espace - Vecteurs. Deux droites de l'espace sont soit coplanaires, soit non coplanaires. Elles ont un point commun.

Chapitre 8 : Droites et plans de l espace - Vecteurs. Deux droites de l'espace sont soit coplanaires, soit non coplanaires. Elles ont un point commun. Chapitre 8 : Droites et plans de l espace - Vecteurs I Positions relatives de droites et de plans Positions relatives de deux droites Deux droites de l'espace sont soit coplanaires, soit non coplanaires

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR. SOUS ÉPREUVE : MATHÉMATIQUES Le GROUPEMENT F de 2004 à 2010

BREVET DE TECHNICIEN SUPÉRIEUR. SOUS ÉPREUVE : MATHÉMATIQUES Le GROUPEMENT F de 2004 à 2010 BREVET DE TECHNICIEN SUPÉRIEUR A. P. M. E. P. SOUS ÉPREUVE : MATHÉMATIQUES Le GROUPEMENT F de 2004 à 2010 Design d espace 2004.................................... 3 Design d espace 2005....................................

Plus en détail

MATHÉMATIQUES. MAT Introduction aux vecteurs PRÉTEST A

MATHÉMATIQUES. MAT Introduction aux vecteurs PRÉTEST A MATHÉMATIQUES MAT-5110-1 Introduction aux vecteurs PRÉTEST A Durée 2 heures 30 QUESTIONNAIRE Préparé par Roderich Jr Denis Vérifié par Gilles Dulac et par Martin Leblanc Novembre 2006 Mat-5110-1 Dimension

Plus en détail

x(a + b) = 2 Pythagore et Thalès

x(a + b) = 2 Pythagore et Thalès Pythagore et Thalès Exercice 1 : On a découpé 4 exemplaires de la figure 0 pour les assembler et obtenir la figure 1. La mesure de l aire de la figure 1 est celle d un carré dont le côté a pour mesure

Plus en détail

DROITES REMARQUABLES DANS UN TRIANGLE EXERCICES ( demonstrations )

DROITES REMARQUABLES DANS UN TRIANGLE EXERCICES ( demonstrations ) THEME : DROITES REMARQUABLES DANS UN TRIANGLE EXERCICES ( demonstrations ) Exercice 1 : Médiatrices Deux points A et B appartiennent à un cercle de centre O. Démontrer que la médiatrice de la corde [AB]

Plus en détail

Similitudes planes. I Transformations du plan. Définition. Propriété (voir démonstration 01) Exemple. Exercice 01. Exercice 02. Exemple.

Similitudes planes. I Transformations du plan. Définition. Propriété (voir démonstration 01) Exemple. Exercice 01. Exercice 02. Exemple. Similitudes planes I Transformations du plan On dit qu'une application f du plan dans lui-même est une transformation si f est une bijection du plan dans lui-même, c'est-à-dire si pour tout point N du

Plus en détail

Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007

Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007 Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007 L emploi de la calculatrice est autorisé. La rédaction et la présentation seront notées sur 4 points. Coefficient : 2 Activités

Plus en détail

2 des Composition de mathématiques 3h calculatrice autorisée 8IV15

2 des Composition de mathématiques 3h calculatrice autorisée 8IV15 des Composition de mathématiques h calculatrice autorisée 8IV5 I) Soit f une fonction définie sur [ 0 ; 0] telle que f ( 5)= f (4)=0 et dont le tableau de variations est ci-dessous : x 0 7 0 6 0 var f

Plus en détail

Exercice 1: Une unité de longueur étant choisie dans l espace, ABCDEFGH est un parallélépipède. L espace est munie du repère ( A, i, j,

Exercice 1: Une unité de longueur étant choisie dans l espace, ABCDEFGH est un parallélépipède. L espace est munie du repère ( A, i, j, Exercice 1: Une unité de longueur étant choisie dans l espace, ABCDEFGH est un parallélépipède droit tel que AB=3, AD=1 et AE=4 I est le milieu de [CH] L espace est munie du repère ( A, i, j, k ) tel que

Plus en détail

Théorème de Pythagore

Théorème de Pythagore Théorème de Pythagore A) Vocabulaire. Définition : Dans un triangle rectangle l hypoténuse est le côté opposé à l angle droit. Exemple : Si ABC est un triangle rectangle en A alors le côté [BC] est sont

Plus en détail

Comme son lien avec la Physique le laisse supposer, les vecteurs permettent d'introduire la notion de mouvement dans la Géométrie.

Comme son lien avec la Physique le laisse supposer, les vecteurs permettent d'introduire la notion de mouvement dans la Géométrie. Les vecteurs Introduction : Les vecteurs sont fondamentaux : En Mathématiques : Le calcul vectoriel est un outil très puissant apparu à la fin du 19 ième siècle pour effectuer des démonstrations en Géométrie

Plus en détail

Bases et repères. Coordonnées d'un vecteur dans une base, d'un point dans un repère

Bases et repères. Coordonnées d'un vecteur dans une base, d'un point dans un repère I Les vecteurs du plan, de l'espace Dans le plan P Soit O un point du plan, i et j deux vecteurs non colinéaires. On dit que : i, j est une base du plan vectoriel P O, i, j est un repère de P Bases et

Plus en détail

Composition n 2 de Mathématiques Seconde. Mercredi 30 Janvier 2013 Classe : NOTE : Nom : Signature : Prénom : /20. Observations :

Composition n 2 de Mathématiques Seconde. Mercredi 30 Janvier 2013 Classe : NOTE : Nom : Signature : Prénom : /20. Observations : Nom : Composition n 2 de Mathématiques Seconde Mercredi 30 Janvier 2013 Classe : NOTE : Signature : Prénom : /20 Observations : 1 La calculatrice est autorisée. Il sera tenu compte de la rigueur et du

Plus en détail

I) Droites du triangle

I) Droites du triangle SEMAINE 2 I) Droites du triangle 1) Les médiatrices ; cercle circonscrit a) Rappels de vocabulaire Deux droites sont parallèles ou sécantes. Elles sont sécantes si elles se coupent. Le point où elles se

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui compose ce polygone

Plus en détail

Devoir de vacances de mathématiques Année 2013/2014 Classe : 5 e

Devoir de vacances de mathématiques Année 2013/2014 Classe : 5 e Nom : N o : Devoir de vacances de mathématiques Année 013/014 Classe : 5 e SEMAINE 1 : Exercice 1 : Choisir deux nombres a) Trouve deux nombres relatifs dont le produit est positif et la somme est négative.

Plus en détail

Configurations du plan et trigonométrie

Configurations du plan et trigonométrie Configurations du plan et trigonométrie A) Le triangle rectangle. 1. Le théorème de Pythagore et sa réciproque. Si ABC est un triangle rectangle en A, alors Théorème réciproque : Si ABC est un triangle

Plus en détail

Parallélogrammes Particuliers

Parallélogrammes Particuliers Parallélogrammes Particuliers I) Définitions et propriétés Les parallélogrammes particuliers étudiés sont les rectangles, les carrés et les losanges. 1) Le rectangle a) Définition : Un rectangle est un

Plus en détail

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle.

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle. 6 e Décrire des figures usuelles Objectif 04 Livre 12 Mots clefs. Cercle Rayon, diamètre, corde et arc d un cercle Équidistance Triangle, triangle isocèle, triangle rectangle, triangle équilatéral Base

Plus en détail

Coordonnées dans le plan

Coordonnées dans le plan Coordonnées dans le plan. Repérer un point donné du plan, placer un point connaissant ses coordonnées.. Repères du plan (vidéo ) Repère quelconque : y Repère orthogonal : 0 y 0 y Repère orthonormal : 0

Plus en détail

Correction: 1) SU = RT donc le quadrilatère RSUT est un parallélogramme. S U

Correction: 1) SU = RT donc le quadrilatère RSUT est un parallélogramme. S U Exercice : (aen 96) 1) onstruire un triangle tel que : = 3,5 cm ; = 5 cm ; = 4 cm. 2) onstruire le point tel que =. 3) onstruire le point E symétrique de par rapport à. 4) Quelle est la nature du quadrilatère

Plus en détail

ANGLES ORIENTES ET TRIGONOMETRIE

ANGLES ORIENTES ET TRIGONOMETRIE Douala Mathematical Society : www.doualamaths.net: Workbook : Classes de c : Tome 0 ANGLES ORIENTES ET TRIGONOMETRIE EXERCICE Compléter le tableau de conversion suivant : Radian Degré 0 0 7 EXERCICE Placements

Plus en détail

Cosinus d un angle aigu

Cosinus d un angle aigu Cosinus d un angle aigu A) Définition. Définition : Dans un triangle rectangle, le cosinus de l un des angles aigus est le rapport : longueur du côté adjacent à l' angle aigu. longueur de l' hypoténuse

Plus en détail

Le point. 2. Axiome d'euclide (III ème IV ème siècle av J.C.) 3. Parties d'une droite. RAPPELS DE GÉOMÉTRIE

Le point. 2. Axiome d'euclide (III ème IV ème siècle av J.C.) 3. Parties d'une droite. RAPPELS DE GÉOMÉTRIE 1. Le point. C'est l élément élémentaire de la géométrie. Une infinité de points constitue une droite. Sur le dessin, la droite (D) passe par une infinité de points : on dit que ces points sont alignés.

Plus en détail

M : Zribi. 4 ème Maths Cour. Produit scalaire dans l espace : Définition:

M : Zribi. 4 ème Maths Cour. Produit scalaire dans l espace : Définition: Produit scalaire dans l espace : Définition: Soit A, B et C trois points, le produit scalaire des vecteurs AB et AC est le réel défini par : AB AC = si AB = 0 ou AC = 0 AB AC = si AB 0 et AC 0 Conséquence

Plus en détail

Exercice 1 (4 points) Dans chacun des cas suivants, calculer AB. On donnera la valeur exacte puis la valeur arrondie au dixième.

Exercice 1 (4 points) Dans chacun des cas suivants, calculer AB. On donnera la valeur exacte puis la valeur arrondie au dixième. 4 ème D DS3 théorème de Pythagore sujet 1 2009-2010 NOM : Prénom : Compétences Acquis En cours d acquisition Caractériser le triangle rectangle par le théorème de Pythagore et sa réciproque Calculer la

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 01 Enoncés On demandait de résoudre trois questions

Plus en détail

Volume d une boule = 4 3 π r3

Volume d une boule = 4 3 π r3 Page 1 sur 5 Figure : Calcul d aires : exemple Parallélogramme Rectangle... Base hauteur Triangles base hauteur 2 Aire du parallélogramme ABCD = DC AE pour repérer la hauteur et la base, j ai repassé l

Plus en détail

Terminale S - Nombres Complexes

Terminale S - Nombres Complexes Exercice - 1 Terminale S - Nombres Complexes Ecrire le nombre complexe z = 1 + i 3 sous sa forme exponentielle En déduire la forme algébrique de z 5 Exercice - 2 2iπ On pose ω = e 5 1 Calculer ω 5 et prouver

Plus en détail

Seconde Repères Quelques démonstrations :... 5

Seconde Repères Quelques démonstrations :... 5 Index I- Sur un axe, droite graduée... 1 I-1- La droite graduée... 1 Exemple... 1 I-- Distance sur un axe gradué, distance entre deux nombres... 1 I-3- Abscisse du milieu sur un axe gradué.... II- Repère

Plus en détail

Le théorème de Thalès

Le théorème de Thalès Le théorème de Thalès Programmes : 4 e : - Triangles, milieux et parallèles : théorèmes relatifs aux milieux de deux côtés d un triangle - Triangles déterminés par 2 droites parallèles coupant deux demi-droites

Plus en détail

DROITES REMARQUABLES DANS UN TRIANGLE - EXERCICES CORRIGES SERIE 3

DROITES REMARQUABLES DANS UN TRIANGLE - EXERCICES CORRIGES SERIE 3 THEME : DROITES REMARQUABLES DANS UN TRIANGLE - EXERCICES CORRIGES SERIE 3 Exercice 14 : O est le centre du cercle circonscrit au triangle ABC. Soient A',B' et C' les milieux des côtés respectifs [BC],

Plus en détail

Les angles LNO et ÎLz sont correspondants. LNO = LON le triangle LNO est isocèle en L LN = LO. Les angles ÔLI et LON sont alternes internes

Les angles LNO et ÎLz sont correspondants. LNO = LON le triangle LNO est isocèle en L LN = LO. Les angles ÔLI et LON sont alternes internes 5 ème Devoir Maison Parallélogrammes Correction 07/05/12 Exercice 81 page 196 (6 points) 1. a. LION est un parallélogramme, donc : (NL)//(OI) Les angles LNO et ÎOx sont correspondants LNO = ÎOx b. D après

Plus en détail

Annales sur la géométrie dans l espace

Annales sur la géométrie dans l espace Annales sur la géométrie dans l espace Exercice I : France juin 200 Soient a un réel strictement positif et OABC un tétraèdre tel que : OAB, OAC et OBC sont des triangles rectangles en O, OA = OB = OC

Plus en détail

Configurations du plan en seconde Parallélogrammes Rectangles

Configurations du plan en seconde Parallélogrammes Rectangles Configurations du plan en seconde Parallélogrammes Rectangles Exercices avec GéoPlan : parallélogrammes, problèmes d'alignement. Sommaire Théorème de Varignon 1. Thalès et parallélogramme 2. Projections

Plus en détail

Seconde sujets Année

Seconde sujets Année Seconde sujets Année 2016-2017 Ph DEPRESLE 0 avril 2017 Table des matières 1 Devoir n 1 Septembre 2016 2 heures 2 2 Devoir n 2 Octobre 2016 2 heures Devoir n Novembre 2016 2 heures 5 4 Devoir n 4 Novembre

Plus en détail

Exercices de mathématiques sur vecteurs, translations et coordonnées dans le plan

Exercices de mathématiques sur vecteurs, translations et coordonnées dans le plan Exercice :1 Exercices de mathématiques sur vecteurs, translations et coordonnées dans le plan Démontrer que les points B et D sont confondus sachant que : Exercice :2 ABCD est un parallélogramme de centre

Plus en détail