Chapitre 3 Les fonctions exponentielles
|
|
|
- Joseph Dumont
- il y a 8 ans
- Total affichages :
Transcription
1 Alain. Arnautovic 3A & 3B ECG JP - Chapitre 3 Les Fonctions eponentielles / page Chapitre 3 Les fonctions eponentielles 3. Introduction : Dans ce chapitre, on définira dans un premier temps les fonctions eponentielles. Nous verrons les propriétés des ces fonctions et quelques applications pratiques. Nombreuses sont les applications où apparaissent ces types de fonctions ; pour ne pas citer des domaines purement mathématiques, les applications économiques sont un aspect concret où les modèles de croissance sont basés sur des fonctions eponentielles. Ainsi, le calcul de la valeur future des économies placées sur un compte pendant quelques années, à un certain tau d intérêt, est un problème faisant intervenir une fonction eponentielle. On peut aussi évoquer : l évolution de la population mondiale, la prolifération des bactéries, la décroissance radioactive, certaines réactions chimiques, A titre d eemple intéressons-nous à : La croissance du capital La valeur future C(n) d'un capital initial C placé à un tau d'intérêt périodique I pour une durée de n périodes est donnée par la formule : C( n) = C ( + I) n Cette équation met en relation quatre symboles : C( n ) : la valeur du capital futur en Fr. C I n : la valeur du capital initial en Fr. : le tau d intérêt annuel donné en %, eprimé en valeur décimale. : la durée du placement en années. La connaissance de trois de ces symboles nous permet de trouver le quatrième. Eemple : (Le calcul de la valeur future) Pour un placement de ' Fr. à % par année pendant une période de 5 ans, quel sera le capital futur. Eemple : (Le calcul de la valeur actuelle) On souhaite connaître la valeur actuelle d'une somme de 6,5 Fr. payable dans cinq ans, sachant que le tau annuel est de %.
2 Alain. Arnautovic 3A & 3B ECG JP - Chapitre 3 Les Fonctions eponentielles / page Eemple 3 : (Le calcul du tau) On souhaite connaître le tau capitalisé annuellement auquel il faut placer un montant de Fr. pour épargner 6,5 Fr. en 5 ans. Eercice : ) On place ' Fr. sur un compte épargne de 4,5 % par année pendant une période de 4 ans. Donner l état du compte futur. ) On veut connaître la valeur actuelle d'une somme de 3 Fr. payable dans si ans sachant que le tau annuel est de 5 %. 3) Donner le tau capitalisé annuellement auquel il faut placer un montant de 3 Fr. pour obtenir un bénéfice de 8 Fr. en 4 ans et 6 mois.
3 Alain. Arnautovic 3A & 3B ECG JP - Chapitre 3 Les Fonctions eponentielles / page 3 3. Les fonctions eponentielles Définition : * Soit R {} on appelle «eponentielle en base b» la fonction : b + ep : b R R y = b Eercice : Compléter le tableau ci-dessous et tracer les graphiques des fonctions : ep et ep, 5 y = y =,5 y Remarques : La fonction eponentielle possède comme ensemble de définition R = ] ; + [ * Son ensemble image est R = + ]; + [ * C est une bijection de R R + La fonction y = n a pas droit au titre d eponentielle car elle n est pas bijective : y y =
4 Alain. Arnautovic 3A & 3B ECG JP - Chapitre 3 Les Fonctions eponentielles / page 4 Graphes : On obtient les deu types de représentations graphiques : image f ( ) = b b > image f ( ) = b < b < domaine domaine Une fonction eponentielle est croissante lorsque b > et décroissante lorsque < b <. Propriétés des fonctions eponentielles : Les propriétés vues pour les puissances sont valables dans le cas où l on considère les fonctions eponentielles : b = b = b b = b b + y y b = ( b ) b = b y y Eemple : f ( ) = 4 4 = Eercice : Représenter graphiquement l évolution de la valeur future C(n) d'un capital initial C = Fr placé à un tau d'intérêt périodique I = 5% =, 5 en fonction de la durée n en années :,,,5,,,5,7. C( n) = C ( + I) n
5 Alain. Arnautovic 3A & 3B ECG JP - Chapitre 3 Les Fonctions eponentielles / page Les fonctions eponentielles en base et en base e Définition : On appelle «eponentielle en base di» la fonction : ep : R R y = Propriétés : = + = = y y = ( ) = y y Définitions : Le nombre irrationnel e est définit par : e = , ! +! + 3! + + n! + = La fonction eponentielle en base e est notée par : ep : e R R y = e Remarque : La fonction eponentielle en base e est très importante en mathématiques. Elle permet entre autre de définir les fonctions hyperboliques ( sinh, cosh, ). Dans l ensemble des nombres complees, elle donne la forme polaire d un nombre complee et il eiste une relation forte entre les fonctions trigonométriques (cos, sin, ) et la fonction eponentielle en base e. Propriétés : e = e = e e = e e + y y e = ( e ) e y = e y Représentation graphique : y y = ep( ) = e -
6 Alain. Arnautovic 3A & 3B ECG JP - Chapitre 3 Les Fonctions eponentielles / page 6 Eercice : Représenter la fonction y = e Eemple : Résolution algébrique d une équation eponentielle Résoudre l équation : 3 = = (3 ) eprimer les deu membres avec la même base = règle de calcul des puissances 5 8 = + 4 les fonctions eponentielles sont bijectives 3 = = 4 Eercice : Résoudre les équations suivantes : a) 6 = b) = 7 c) 5 = Eercice 3 : Résoudre les équations suivantes : 3+ 9 a) = b) 65 =
7 Alain. Arnautovic 3A & 3B ECG JP - Chapitre 3 Les Fonctions eponentielles / page 7 Eercice 4 : Résoudre graphiquement : 3 =
8 Alain. Arnautovic 3A & 3B ECG JP - Chapitre 3 Les Fonctions eponentielles / page 8 Eercice 5 : Résoudre graphiquement,5 = +
9 Alain. Arnautovic 3A & 3B ECG JP - Chapitre 3 Les Fonctions eponentielles / page 9 Application : Croissance bactérienne On peut utiliser les fonctions eponentielles pour décrire la croissance de certaines populations. Par eemple, supposons qu on ait observé epérimentalement que le nombre de bactéries dans une culture double chaque jour. S il y a au départ bactéries, nous obtenons le tableau suivant, où t est le temps en jours et f(t) le nombre de bactéries au temps t. t (temps en jours) 3 4 f(t) (nombre de bactéries) On voit que : f ( t ) = t Avec cette formule, nous pouvons prévoir le nombre de bactéries qu il y a à un temps quelconque t. Eercice 6 : a) Prévoir le nombre de bactéries après,5 jours. b) Prévoir le nombre de bactéries après une semaine. c) Prévoir le nombre de bactéries après un mois Eercice 7 : Donner la loi décrivant une croissance de population sachant qu au départ il y a individus et que chaque jour la population triple. Représenter graphiquement la situation.
10 Alain. Arnautovic 3A & 3B ECG JP - Chapitre 3 Les Fonctions eponentielles / page Certaines quantités physiques décroissent de manière eponentielle. L un des eemples les plus communs de décroissance eponentielle est la décomposition d une substance radioactive, ou isotope. Application : Décroissance radioactive L activité radioactive A(t) d un échantillon évolue dans le temps de la manière suivante : k t A( t) = A e avec : A : l activité initiale k : la constante qui dépend de la nature de l élément t : le temps en années. La demi-vie d un isotope est le temps nécessaire pour que la moitié d un échantillon donné se désintègre. La demi-vie est la principale caractéristique utilisée pour distinguer une substance radioactive d une autre. L isotope Po du polonium a une demi-vie d environ 4 jours, c est-à-dire qu étant donné une certaine quantité de Po, la moitié se désintégrera en 4 jours. S il y a au départ milligrammes de Po, le tableau suivant indique les quantités résiduelles après différents intervalles de temps. temps en jours mg résiduels 5,5,5 D autres substances radioactives ont des demi-vies beaucoup plus longues. En particulier, les réacteurs nucléaires produisent l isotope 39 Pu du plutonium, dont la demi-vie est d environ 4 ans. C est pour cette raison que le stockage des déchets radioactifs est un problème majeur de la société moderne. Eercice 8 : Un échantillon radioactif a une activité initiale de '8 des/sec. Sachant que la constante de cet échantillon vaut,6 : a) Calculer son activité après an, ans, ans, ans et 5 ans. b) Montrer, à l aide d un graphique, l évolution de l activité.
11 Alain. Arnautovic 3A & 3B ECG JP - Chapitre 3 Les Fonctions eponentielles / page Solutions : 5 Eemple : C (5) = ' ( +,) = '6,5 Fr. '6,5 Eemple : C = = '. Fr. 5 ( +,) Eemple 3: I = 6,5 5 =, = % Eercice page : ) 43.- ) ) Eercice : (page 6) a) -6/7 b) 9/ c) /3
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Exo7. Limites de fonctions. 1 Théorie. 2 Calculs
Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication
Aide - mémoire gnuplot 4.0
Aide - mémoire gnuplot 4.0 Nicolas Kielbasiewicz 20 juin 2008 L objet de cet aide-mémoire est de présenter les commandes de base pour faire rapidement de très jolis graphiques et courbes à l aide du logiciel
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
O, i, ) ln x. (ln x)2
EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On
La physique nucléaire et ses applications
La physique nucléaire et ses applications I. Rappels et compléments sur les noyaux. Sa constitution La représentation symbolique d'un noyau est, dans laquelle : o X est le symbole du noyau et par extension
10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)
0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2
Chapitre 5. Calculs financiers. 5.1 Introduction - notations
Chapitre 5 Calculs financiers 5.1 Introduction - notations Sur un marché économique, des acteurs peuvent prêter ou emprunter un capital (une somme d argent) en contrepartie de quoi ils perçoivent ou respectivement
SERIE 1 Statistique descriptive - Graphiques
Exercices de math ECG J.P. 2 ème A & B SERIE Statistique descriptive - Graphiques Collecte de l'information, dépouillement de l'information et vocabulaire La collecte de l information peut être : directe:
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes.
Plan Intérêts 1 Intérêts 2 3 4 5 6 7 Retour au menu général Intérêts On place un capital C 0 à intérêts simples de t% par an : chaque année une somme fixe s ajoute au capital ; cette somme est calculée
FONCTION EXPONENTIELLE ( ) 2 = 0.
FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons
Les travaux doivent être remis sous forme papier.
Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24
UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.
UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases
A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE
CP7 MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE 1 ) Relation d'équivalence entre la masse et l'énergie -énergie de liaison 2 ) Une unité d énergie mieux adaptée 3 ) application 4
TD: Cadran solaire. 1 Position du problème
Position du problème On souhaite réaliser un cadran solaire à l aide d un stylet, de longueur a, perpendiculaire à un plan. (Le stylet n est donc pas orienté vers le pôle nord céleste). Ce cadran solaire
Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction
Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses
Comparer l intérêt simple et l intérêt composé
Comparer l intérêt simple et l intérêt composé Niveau 11 Dans la présente leçon, les élèves compareront divers instruments d épargne et de placement en calculant l intérêt simple et l intérêt composé.
PROBLEME(12) Première partie : Peinture des murs et du plafond.
PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de
Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur
Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur Nature de l activité : Réaliser 3 types de productions écrites (réécriture de notes, production d une synthèse de documents, production d une argumentation)
Mathématiques financières
Ecole Nationale de Commerce et de Gestion de Kénitra Mathématiques financières Enseignant: Mr. Bouasabah Mohammed ) بوعصابة محمد ( ECOLE NATIONALE DE COMMERCE ET DE GESTION -KENITRA- Année universitaire:
P17- REACTIONS NUCLEAIRES
PC A DOMICILE - 779165576 P17- REACTIONS NUCLEAIRES TRAVAUX DIRIGES TERMINALE S 1 Questions de cours 1) Définir le phénomène de la radioactivité. 2) Quelles sont les différentes catégories de particules
L'INTÉRÊT COMPOSÉ. 2.1 Généralités. 2.2 Taux
L'INTÉRÊT COMPOSÉ 2.1 Généralités Un capital est placé à intérêts composés lorsque les produits pendant la période sont ajoutés au capital pour constituer un nouveau capital qui, à son tour, portera intérêt.
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Physique, chapitre 8 : La tension alternative
Physique, chapitre 8 : La tension alternative 1. La tension alternative 1.1 Différence entre une tension continue et une tension alternative Une tension est dite continue quand sa valeur ne change pas.
FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines
FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html
Terminale SMS - STL 2007-2008
Terminale SMS - STL 007-008 Annales Baccalauréat. STL Biochimie, France, sept. 008. SMS, France & La Réunion, sept 008 3 3. SMS, Polynésie, sept 008 4 4. STL Chimie de laboratoire et de procédés industriels,
Mathématiques financières
Mathématiques financières Table des matières 1 Intérêt simple 1 1.1 Exercices........................................ 1 2 Intérêt composé 2 2.1 Taux nominal, taux périodique, taux réel.......................
Transformations nucléaires
Transformations nucléaires Stabilité et instabilité des noyaux : Le noyau d un atome associé à un élément est représenté par le symbole A : nombre de masse = nombre de nucléons (protons + neutrons) Z :
Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)
Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre) 1. A la découverte de la radioactivité. Un noyau père radioactif est un noyau INSTABLE. Il se transforme en un noyau fils STABLE
K W = [H 3 O + ] [OH - ] = 10-14 = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide
La constante d autoprotolyse de l eau, K W, est égale au produit de K a par K b pour un couple acide/base donné : En passant en échelle logarithmique, on voit donc que la somme du pk a et du pk b d un
aux différences est appelé équation aux différences d ordre n en forme normale.
MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire
SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)
Terminale S CHIMIE TP n 2b (correction) 1 SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Objectifs : Déterminer l évolution de la vitesse de réaction par une méthode physique. Relier l absorbance
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Atelier : L énergie nucléaire en Astrophysique
Atelier : L énergie nucléaire en Astrophysique Elisabeth Vangioni Institut d Astrophysique de Paris Fleurance, 8 Août 2005 Une calculatrice, une règle et du papier quadrillé sont nécessaires au bon fonctionnement
Chapitre 5 : Noyaux, masse et énergie
Chapitre 5 : Noyaux, masse et énergie Connaissances et savoir-faire exigibles : () () (3) () (5) (6) (7) (8) Définir et calculer un défaut de masse et une énergie de liaison. Définir et calculer l énergie
MATHÉMATIQUES FINANCIÈRES
MATHÉMATIQUES FINANCIÈRES Table des matières Version 2012 Lang Fred 1 Intérêts et taux 2 1.1 Définitions et notations................................ 2 1.2 Intérêt simple......................................
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
Chapitre 1 Régime transitoire dans les systèmes physiques
Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer
Premiers pas avec Mathematica
Premiers pas avec Mathematica LP206 : Mathématiques pour physiciens I Année 2010/2011 1 Introduction Mathematica est un logiciel de calcul formel qui permet de manipuler des expressions mathématiques symboliques.
Indications pour une progression au CM1 et au CM2
Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
UNE EXPERIENCE, EN COURS PREPARATOIRE, POUR FAIRE ORGANISER DE L INFORMATION EN TABLEAU
Odile VERBAERE UNE EXPERIENCE, EN COURS PREPARATOIRE, POUR FAIRE ORGANISER DE L INFORMATION EN TABLEAU Résumé : Cet article présente une réflexion sur une activité de construction de tableau, y compris
Calculs financiers (1) : intérêts simples, composés.
Calculs financiers (1) : intérêts simples, composés. 1. Intérêts simples Paul doit 10 000 à son fournisseur. Celui-ci lui accorde un crédit au taux annuel de 5% à intérêts simples (capitalisation annuelle).
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)
BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre
Chapitre 2 Les ondes progressives périodiques
DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................
Utiliser des fonctions complexes
Chapitre 5 Utiliser des fonctions complexes Construire une formule conditionnelle avec la fonction SI Calculer un remboursement avec la fonction VPN Utiliser des fonctions mathématiques Utiliser la fonction
ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.
L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.
Système binaire. Algèbre booléenne
Algèbre booléenne Système binaire Système digital qui emploie des signaux à deux valeurs uniques En général, les digits employés sont 0 et 1, qu'on appelle bits (binary digits) Avantages: on peut utiliser
Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de :
Chapitre 1 L intérêt Au terme de ce chapitre, vous serez en mesure de : 1. Comprendre la notion générale d intérêt. 2. Distinguer la capitalisation à intérêt simple et à intérêt composé. 3. Calculer la
DP 500/ DP 510 Appareils de mesure du point de rosée mobiles avec enregistreur
DP 500/ DP 510 Appareils de mesure du point de rosée mobiles avec enregistreur de données Les nouveaux appareils DP 500/ DP 510 sont les appareils de service mobiles idéaux pour mesure le point de rosée
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Rapport du Directeur général
Mis en distribution générale le 7 mars 2007 (Ce document a été mis en distribution générale à la réunion du Conseil du 7 mars 2007.) Conseil des gouverneurs GOV/2007/8 22 février 2007 Français Original:
ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes
ANNUITES I Notions d annuités a.définition Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. Le processus de versements dépend du montant de l annuité,
Calculatrices BA II PLUS / BAII PLUS PROFESSIONAL
Calculatrices BA II PLUS / BAII PLUS PROFESSIONAL Important Texas Instruments n offre aucune garantie, expresse ou tacite, concernant notamment, mais pas exclusivement, la qualité de ses produits ou leur
TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée
TS1 TS2 02/02/2010 Enseignement obligatoire DST N 4 - Durée 3h30 - Calculatrice autorisée EXERCICE I : PRINCIPE D UNE MINUTERIE (5,5 points) A. ÉTUDE THÉORIQUE D'UN DIPÔLE RC SOUMIS À UN ÉCHELON DE TENSION.
Suites numériques 4. 1 Autres recettes pour calculer les limites
Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est
avec des nombres entiers
Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0
SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases
SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Simulation numérique d un stockage de déchets nucléaires en site géologique profond
Simulation numérique d un stockage de déchets nucléaires en site géologique profond Page 1 de 12 G. Allaire, M. Briane, R. Brizzi and Y. Capdeboscq CMAP, UMR-CNRS 7641, Ecole Polytechnique 14 juin 2006
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :
Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point
Partie 1 - Séquence 3 Original d une fonction
Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2 I. Généralités I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t)
Seconde Généralités sur les fonctions Exercices. Notion de fonction.
Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Taux d intérêts simples
Taux d intérêts simples Les caractéristiques : - < à 1 ans - Rémunération calculée uniquement sur investissement initial. Période de préférence = période sur laquelle on définit le taux de l opération
LE RESEAU GLOBAL INTERNET
LE RESEAU GLOBAL INTERNET 1. INTRODUCTION Internet est un réseau international, composé d'une multitude de réseaux répartis dans le monde entier - des réseaux locaux, régionaux et nationaux, ainsi que
Les machines de traitement automatique de l information
L ordinateur quantique : un défi pour les epérimentateurs Fonder un système de traitement de l information sur la logique quantique plutôt que sur la logique classique permettrait de résoudre infiniment
Cours de mathématiques Première année. Exo7
Cours de mathématiques Première année Eo7 2 Eo7 Sommaire Logique et raisonnements 9 Logique 9 2 Raisonnements 4 2 Ensembles et applications 9 Ensembles 20 2 Applications 23 3 Injection, surjection, bijection
Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée
EXAMENS D'ADMISSION Admission RÉCAPITULATIFS DES MATIÈRES EXAMINÉES MATIÈRES Préparation en 3 ou 4 semestres Formation visée Préparation complète en 1 an 2 ème partiel (semestriel) Niveau Durée de l examen
THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE
THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE 1. RAPPEL: L ATOME CONSTITUANT DE LA MATIERE Toute la matière de l univers, toute substance, vivante ou inerte, est constituée à partir de particules
enquête pour les fautes sur le fond, ce qui est graves pour une encyclopédie.
4.0 Contrôles /4 4 e enquête pour les fautes sur le fond, ce qui est graves pour une encyclopédie. RPPEL de 0. Wikipédia 2/2 Dans le chapitre : XX e siècle : ( 4.0 mythe paroxysme ) sous la photo d un
Etude de fonctions: procédure et exemple
Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons
MATHÉMATIQUES. Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN
MATHÉMATIQUES Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN Mars 2001 MATHÉMATIQUES Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN Mars 2001 Direction
Chapitre 6. Réactions nucléaires. 6.1 Généralités. 6.1.1 Définitions. 6.1.2 Lois de conservation
Chapitre 6 Réactions nucléaires 6.1 Généralités 6.1.1 Définitions Un atome est constitué d électrons et d un noyau, lui-même constitué de nucléons (protons et neutrons). Le nombre de masse, noté, est le
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
NOTIONS DE PROBABILITÉS
NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...
LE CONSEIL DES COMMUNAUTÉS EUROPÉENNES,
DIRECTIVE DU CONSEIL du 22 février 1990 modifiant la directive 87/102/CEE relative au rapprochement des dispositions législatives, réglementaires et administratives des États membres en matière de crédit
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au
Progresser sur la voie du stockage géologique des déchets radioactifs
Gestion des déchets radioactifs ISBN 978-92-64-99058-6 Progresser sur la voie du stockage géologique des déchets radioactifs Déclaration collective du Comité de la gestion des déchets radioactifs (RWMC)
FINANCE Mathématiques Financières
INSTITUT D ETUDES POLITIQUES 4ème Année, Economie et Entepises 2005/2006 C.M. : M. Godlewski Intéêts Simples Définitions et concepts FINANCE Mathématiques Financièes L intéêt est la émunéation d un pêt.
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
EPFL 2010. TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian
1 EPFL 2010 Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilia Nafaï Weil Florian 11 Table de matière Ø Introduction 3 Ø Objectif 3 Ø Déroulement de l eai 4 Ø Exécution de deux palier de charge 6 Ø Calcul
L équilibre Ressources Emplois de biens et services schématisé par une balance
IV) l équilibre ressources - emplois et son interprétation Cet article fait suite à ceux du 19 janvier et du 18 février 2013. Il en est le complément logique sur les fondamentaux macro- économiques d un
Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2
éducalgo Manuel d utilisation 26 juin 2011 Table des matières 1 Tâche à effectuer : écrire un algorithme 2 2 Comment écrire un algorithme? 3 2.1 Avec quoi écrit-on? Avec les boutons d écriture........
REPRESENTER LA TERRE Cartographie et navigation
REPRESENTER LA TERRE Seconde Page 1 TRAVAUX DIRIGES REPRESENTER LA TERRE Cartographie et navigation Casterman TINTIN "Le trésor de Rackham Le Rouge" 1 TRIGONOMETRIE : Calcul du chemin le plus court. 1)
