Problèmes de Mathématiques Matrices et carrés magiques

Dimension: px
Commencer à balayer dès la page:

Download "Problèmes de Mathématiques Matrices et carrés magiques"

Transcription

1 Énoncé Dans tout le problème, n est un entier supérieur ou égal à 2. On désigne par M n (IR) l algèbre des matrices carrées d ordre n à coefficients réels. Pour tout A de M n (IR), on note a ij le coefficient de A en ligne i, colonne j. On note A = (a ij ). On note I n la matrice identité d ordre n On note J n la matrice de M n (IR) dont tous les coefficients valent 1. On note (E ij ) la base canonique de M n (IR) : pour tout couple (i, j) de {1,..., n} 2, E ij est la matrice dont tous les coefficients sont nuls sauf celui situé en position (i, j), qui vaut 1. Pour toute matrice A = (a ij ) et tous entiers i, j de {1,..., n}, on note : ϕ i (A) = n a ik, ψ j (A) = k=1 n a kj, tr(a) = k=1 n a ii, δ(a) = n a i,n+1 i ϕ i (A) est la somme des coefficients de la i-ème ligne de A. ψ j (A) est la somme des coefficients de la j-ème colonne de A. Ainsi : tr(a) est la somme des coefficients de la diagonale principale de A (la trace de A). δ(a) est la somme des coefficients de la diagonale non principale de A. On note P n l ensemble des matrices A de M n (IR) telles que (i, j) {1,..., n} 2, ϕ i (A) = ψ j (A). Pour toute matrice A de P n, on note σ(a) la valeur commune des quantités ϕ i (A) et ψ j (A). On note Q n le sous-ensemble de P n des matrices A qui vérifient en outre tr(a) = δ(a) = σ(a). Les matrices de P n sont dites semi-magiques ; celles de Q n sont dites magiques. On dit qu une matrice magique A de M n (IR) est un carré magique d ordre n si l ensemble des coefficients de A est égal à {1, 2,..., n 2 }. Par exemple : A = 3 5 7, B = sont des carrés magiques d ordres respectifs 3, 4, , C = Page 1 Jean-Michel Ferrard c EduKlub S.A.

2 Énoncé Partie I 1. Question préliminaire Soit E un espace vectoriel de dimension finie n 1. Soit f 1, f 2,..., f p une famille de p formes linéaires indépendantes sur E, avec 1 p n. Soit H = {x E, f 1 (x) = f 2 (x) = = f p (x) = 0}. Montrer que H est un sous-espace vectoriel de dimension n p de E. Indication : compléter la famille f 1,..., f p en une base (f) du dual de E, puis introduire la base (e) de E dont (f) est la base duale. [ S ] 2. Montrer que ϕ 1, ϕ 2,..., ϕ n et ψ 1, ψ 2,..., ψ n sont des formes linéaires sur M n (IR). [ S ] 3. Montrer rapidement que les formes linéaires ϕ 1, ϕ 2,..., ϕ n, ψ 1, ψ 2,..., ψ n sont liées. [ S ] 4. Montrer que ϕ 1, ϕ 2,..., ϕ n, ψ 1, ψ 2,..., ψ n 1 sont libres. On utilisera les matrices E kn (avec 1 k n) puis les E nk (avec 1 k n 1). [ S ] 5. Dans cette question, on cherche la dimension de P n. Pour tout i de {1,..., n 1}, on pose Φ i = ϕ i ϕ n et Ψ i = ψ i ϕ n. (a) Montrer que les formes linéaires Φ 1,..., Φ n 1, Ψ 1,..., Ψ n 1 sont indépendantes. [ S ] (b) Montrer qu une matrice A de M n (IR) est dans P n on a les égalités : Φ 1 (A) = = Φ n 1 (A) = Ψ 1 (A) =... = Ψ n 1 (A) = 0. [ S ] (c) En déduire que P n est un sous-espace de dimension n 2 2n + 2 de M n (IR). [ S ] 6. Dans cette question, on cherche la dimension de Q n. On rappelle que l application A σ(a) est la forme linéaire définie sur P n par la restriction commune à P n de chacune des formes linéaires ϕ i et ψ j. (a) Identifier les matrices de P 2 et celle de Q 2. [ S ] (b) On suppose provisoirement que n est supérieur ou égal à 3. Soient f, g les formes linéaires sur P n définie par : A P n { f(a) = tr(a) σ(a) g(a) = δ(a) σ(a) Montrer que f et g sont indépendantes (indication : utiliser deux matrices A particulières de P n telles que σ(a) = 0.) [ S ] (c) Déduire de ce qui précéde que Q n est un sous-espace vectoriel de M n (IR), de dimension n 2 2n si n 3, et de dimension 1 si n = 2. [ S ] Page 2 Jean-Michel Ferrard c EduKlub S.A.

3 Énoncé Partie II 1. Montrer que A M n (IR) est dans P n il existe λ IR tel que AJ n = J n A = λj n. Quelle est alors la signification de λ? [ S ] 2. Montrer que P n est une sous-algèbre de M n (IR). En est-il de même de Q n? [ S ] 3. Montrer que l application σ est un morphisme d algèbres de P n dans IR. [ S ] 4. Soit A une matrice de P n. (a) On suppose que A est inversible. Montrer alors que σ(a) est non nul, que A 1 est dans P n et que σ(a 1 ) = 1 σ(a). [ S ] (b) Réciproquement, on suppose seulement que σ(a) est non nul. Peut-on en conclure que A est inversible? [ S ] 5. Pour n = 3 et n = 4, trouver une matrice A de Q n dont le carré n est pas dans Q n. [ S ] Partie III Dans cette partie, on suppose que n est égal à Soit A = (a ij ) une matrice de Q n. On note α = a 22. (a) Montrer que σ(a) = 3α. [ S ] (b) Montrer que B = A αj 3 = (b ij ) est un élément de Q 3 tel que σ(b) = 0. [ S ] (c) On note β = b 11 et γ = b 31. Exprimer B en fonction α, β, γ. Montrer que l expression de A en fonction de α, β, γ est : β + α β + γ + α γ + α A = β γ + α α β + γ + α γ + α β γ + α β + α [ S ] (d) Réciproquement, vérifier que l expression précédente de A donne toutes les matrices de l espace vectoriel Q 3. Retrouver ainsi que Q 3 est de dimension 3 et en préciser une base. [ S ] 2. On reprend l expression générale de la matrice A de Q n vue dans la question (1c). (a) Montrer que A est à coefficients dans IN α, β, γ sont des entiers relatifs vérifiant les conditions β + γ α et β γ α. Montrer que A est à coefficients dans IN ces inégalités sont strictes. [ S ] (b) Montrer que ces deux conditions sur α, β, γ équivalent à dire que le point Ω(β, γ) du plan appartient (respectivement est intérieur) au domaine carré K α dont les sommets sont les points (±α, 0), et (0, ±α). [ S ] Page 3 Jean-Michel Ferrard c EduKlub S.A.

4 Énoncé (c) Pour tout entier naturel α, déterminer le nombre de points à coordonnées entières qui appartiennent à la frontière du domaine K α, puis le nombre de tels points qui appartiennent à K α (bords compris). [ S ] (d) En déduire que pour tout entier naturel α, il y a : 2α 2 + 2α + 1 matrices A de Q n qui sont à coefficients dans IN. 2α 2 2α + 1 matrices A de Q n qui sont à coefficients dans IN. [ S ] 3. On se propose de trouver tous les carrés magiques A d ordre 3. (a) Montrer que le coefficient a 22 est nécessairement égal à 5. [ S ] (b) Montrer qu à une rotation ou à une symétrie près du tableau A, on peut toujours se ramener à a 11 = 1 ou à a 21 = 1. [ S ] (c) En déduire les 8 carrés magiques d ordre 3. [ S ] 4. Calculer les déterminants des matrices A, B et C, utilisées comme exemples dans le préambule du problème. [ S ] Page 4 Jean-Michel Ferrard c EduKlub S.A.

5 du problème Partie I 1. D après le théorème de la base incomplète, il est possible de trouver des formes linéaires f p+1,..., f n telles que (f) = f 1, f 2,..., f p,..., f n soit une base de E. (f) est de manière unique la base duale d une base (e) = e 1, e 2,..., e n de E. n On sait que tout x de E s écrit sur cette base en x = x i e i, avec x i = f i (x). On en déduit que x est dans H si et seulement si x 1 = x 2 = = x p = 0, c est-à-dire x est uniquement combinaison linéaire de e p+1,..., e n. Ainsi H = Vect {e p+1,..., e n } : H est donc un sous-espace de dimension n p de E. [ Q ] 2. Pour tout couple (k, l), l application qui à une matrice A = (a ij ) associe son coefficient a kl est une forme linéaire sur M n (IR) (c est la forme coordonnée associée à la matrice E kl de la base canonique de M n (IR).) Les applications ϕ i et ψ j, qui sont des sommes de telles formes coordonnées, sont donc elles-mêmes des formes linéaires sur M n (IR). [ Q ] 3. Pour toute matrice A de M n (IR), la quantité ϕ 1 (A) + ϕ 2 (A) + + ϕ n (A) représente la somme de tous les coefficients de A. Il en est de même de ψ 1 (A) + ψ 2 (A) + + ψ n (A). On a donc l égalité ϕ 1 +ϕ 2 + +ϕ n = ψ 1 +ψ 2 + +ψ n, ce qui répond à la question. [ Q ] n n 1 4. On se donne des scalaires λ 1,..., λ n, µ 1,..., µ n 1 tels que φ = λ i ϕ i + µ j ψ j 0. Il faut montrer que les λ i et les µ j sont nuls. Soit k un entier de {1,..., n}, et A = E kn. On a ϕ k (A) = 1 et ϕ i (A) = 0 si i k. De même, ψ j (A) = 0 si j n 1. On en déduit 0 = φ(a) = λ k. Ainsi les coefficients λ k sont nuls. Supposons maintenant 1 k n 1 et soit A = E nk. On a ψ k (A) = 1 et ψ j (A) = 0 si j k. On en déduit (sachant que les λ i sont nuls) : 0 = φ(a) = µ k. Ainsi les µ k sont nuls. Conclusion : les formes linéaires ϕ 1, ϕ 2,..., ϕ n, ψ 1, ψ 2,..., ψ n 1 sont libres. [ Q ] 5. (a) On se donne les 2n 2 scalaires λ 1,..., λ n 1, µ 1,..., µ n 1. j=1 n 1 n 1 λ i Φ i + µ i Ψ i = 0 n 1 n 1 n 1 λ i ϕ i (λ i + µ i )ϕ n + µ i ψ i = 0 De la question précédente, il découle que les λ i et les µ i sont nuls. Ainsi les 2n 2 formes linéaires Φ 1,..., Φ n 1, Ψ 1,..., Ψ n 1 sont indépendantes. [ Q ] Page 5 Jean-Michel Ferrard c EduKlub S.A.

6 (b) Soit A une matrice de P n. Par définition, on a : (i, j) {1,..., n} 2, ϕ i (A) = ψ j (A). En particulier : i {1,..., n 1}, ϕ i (A) = ψ i (A) = ϕ n (A). Autrement dit : i {1,..., n 1}, Φ i (A) = Ψ i (A) = 0. Réciproquement, soit A dans M n (IR) telle que : i {1,..., n 1}, Φ i (A) = Ψ i (A) = 0. Cela signifie que : (i, j) {1,..., n 1} 2, ϕ i (A) = ψ j (A) = ϕ n (A). Il reste donc à montrer que ψ n (A) est aussi égal à ϕ n (A). Or on sait que ϕ ϕ n = ψ ψ n. Appliquant cette égalité à A, il vient : n n 1 ψ n (A) = ϕ i (A) ψ j (A) = nϕ n (A) (n 1)ϕ n (A) = ϕ n (A). j=1 On a ainsi démontré que A est un élément de P n, ce qui achève cette question. [ Q ] (c) C est une conséquence de la question précédente et de la question préliminaire. P n est en effet le sous-ensemble de M n (IR) formé des matrices qui sont dans les noyaux des 2n 2 formes linéaires indépendantes Φ 1,..., Φ n 1, Ψ 1,..., Ψ n 1. On en déduit que P n est un sous-espace de M n (IR), de dimension n 2 (2n 2). [ Q ] ( ) ( ) (a) On sait que dim P 2 = 2 : A = et B = en constituent une base ( ) a b P 2 est donc l ensemble des matrices M a,b =, pour tous réels a, b. b a Avec ces notations : M a,b Q 2 2a = 2b = a + b a = b. ( ) a a Q 2 est donc la droite vectorielle des matrices M =, avec a réel. [ Q ] a a (b) Soient λ et µ deux scalaires tels que λf + µg = 0. Pour toute matrice A de P n, on a donc : λf(a) + µg(a) = 0, ou encore λtr(a) + µδ(a) = (λ + µ)σ(a) (1). Appliquons (1) aux deux matrices A et A, avec : A = et A = A et A sont deux matrices de P n et elles vérifient σ(a ) = σ(a ) = 0. Avec A = A, l égalité (1) devient : 2λ 2µ = 0. Donc λ = µ. Page 6 Jean-Michel Ferrard c EduKlub S.A.

7 Partie II Avec A = A, l égalité (1) devient : { 2λ + µ = 0 si n = 3 2λ = 0 si n > 3 On trouve λ = µ = 0 : les formes linéaires f et g sur P n sont donc indépendantes. [ Q ] (c) Le cas n = 2 a déjà été traité. On suppose donc n 3. On sait que Q n est le sous-ensemble des matrices A de P n telles que tr(a) = δ(a) = σ(a), c est-à-dire telles que f(a) = g(a) = 0 en reprenant les notations de la question précédente. Or f et g sont des formes linéaires indépendantes sur P n. On en déduit en utilisant la question préliminaire que Q n est un sous-espace vectoriel de P n (donc de M n (IR)) et que : dim Q n = dim P n 2 = n 2 2n. [ Q ] 1. Soit A une matrice quelconque de M n (IR), on a : ψ 1 (A) ψ 2 (A)... ψ n (A) ϕ 1 (A) ϕ 1 (A)... ϕ 1 (A) ψ J n A = 1 (A) ψ 2 (A)... ψ n (A).... et AJ ϕ n = 2 (A) ϕ 2 (A)... ϕ 2 (A).... ψ 1 (A) ψ 2 (A)... ψ n (A) ϕ n (A) ϕ n (A)... ϕ n (A) Dire que AJ n = J n A = λj n, c est-dire que tous les ϕ i (A) et ψ j (A) sont égaux à λ, ce qui signifie que A appartient à P n, le scalaire λ représentant nécessairement σ(a). [ Q ] 2. On sait déjà que P n est un sous-espace vectoriel de M n (IR). Il reste à vérifier que I n appartient à P n (c est évident) et que P n est stable pour le produit. { ABJn = σ(b)aj Or si A et B appartiennent à P n, alors : n = σ(a)σ(b)j n J n AB = σ(a)j n B = σ(a)σ(b)j n On en déduit que AB appartient à P n, et plus précisément que σ(ab) = σ(a)σ(b). P n est donc une sous-algèbre de M n (IR). Ce n est pas le cas de Q n, qui ne contient pas la matrice identité. [ Q ] 3. On sait déjà que σ est une forme linéaire sur P n. Il reste à dire que σ(i n ) = 1 (c est évident) et que pour toutes matrices A, B de P n on a σ(ab) = σ(a)σ(b) (on l a vu dans la question précédente). L application σ est donc un morphisme d algèbres de P n dans IR. [ Q ] 4. (a) En multipliant par A 1 à gauche : AJ n = σ(a)j n J n = σ(a)a 1 J n. Cette égalité implique σ(a) 0, et s écrit : A 1 J n = 1 σ(a) J n. En multipliant à droite par A 1, on trouve : J n A = σ(a)j n J n = σ(a)j n A 1 J n A 1 = 1 σ(a) J n. Ces résultats montrent que A 1 est un élément de P n et que σ(a 1 ) = 1 σ(a). [ Q ] Page 7 Jean-Michel Ferrard c EduKlub S.A.

8 (b) La réponse est négative, comme le montre l exemple de J n, qui est dans P n, vérifie σ(j n ) = n 0, mais n est pas inversible (elle est de rang 1). [ Q ] 5. Si on pose A = , alors A 2 = De même si A = , alors A2 = Pour ces deux exemples, avec d abord n = 3 puis n = 4 : La matrice A est dans Q n, avec σ(a) = 0. La matrice A 2 n est pas dans Q n car par exemple tr(a 2 ) δ(a 2 ). La matrice A 2 est évidemment dans P n, avec σ(a 2 ) = σ(a) 2 = 0. Ces exemples confirment, tout au moins pour n = 2 et n = 3, que Q n n est pas une sousalgèbre de M n (IR) (on s était borné à constater la non appartenance de I n à Q n, mais on voit maintenant par exemple que Q 2 et Q 3 ne sont pas stables pour le produit.) [ Q ] Partie III 1. (a) On évalue de deux manières différentes la somme de tous les coefficients de A. n 3σ(A) = a ij = a 11 + α + a 33 (= σ(a) car c est la diagonale principale) i,j=1 + a 31 + α + a 13 (= σ(a) car c est la diagonale secondaire) + a 21 + α + a 23 (= σ(a) car c est la deuxième ligne) + a 12 + α + a 32 (= σ(a) car c est la deuxième colonne) 3α (pour que α ne soit compté qu une fois) On en déduit 3σ(A) = 4σ(A) 3α, c est-à-dire σ(a) = 3α. [ Q ] (b) B est dans Q 3 car c est une combinaison linéaire de A et J 3, qui sont dans Q 3. Enfin σ(b) = σ(a) ασ(j 3 ) = σ(a) 3α = 0. [ Q ] (c) D après ce qui précède, le deuxième coefficient diagonal de B est nul. La définition de β et γ et le fait bien sûr que B appartienne à Q 3 (avec σ(b) = 0) donnent immédiatement : β β + γ γ B = β γ 0 β + γ γ β γ β [ Q ], A = β + α β + γ + α γ + α β γ + α α β + γ + α γ + α β γ + α β + α Page 8 Jean-Michel Ferrard c EduKlub S.A.

9 (d) La vérification est immédiate : pour tous scalaires α, β, γ, la matrice A ci-dessus est un élément de Q 3, et elle est telle que σ(a) = 3α. Cette expression de A s écrit A = αj + βk + γl, avec : J = , K = , L = La famille J, K, L est donc génératrice de Q 3. Elle est libre, car αj + βk + γl = 0 A = 0 α = β = γ = 0. Elle constitue donc une base de Q 3 et on retrouve ainsi dim Q 3 = 3. [ Q ] 2. (a) Si les coefficients de A sont des entiers naturels, c est le cas en particulier pour α = a 22. β = a 11 a 22 et γ = a 31 a 22 sont donc des entiers relatifs. Réciproquement, si α, β, γ sont dans ZZ, alors A est à coefficients dans ZZ. Ceci dit, la matrice A est à coefficients dans IN : a 22 0 c est-à-dire α 0. a 11 = β + α 0 et a 33 = β + α 0, c est-à-dire β α. a 31 = γ + α 0 et a 13 = γ + α 0, c est-à-dire γ α. a 21 = β γ + α 0 et a 23 = β + γ + α 0, c est-à-dire β + γ α. a 12 = β + γ + α 0 et a 32 = β γ + α 0, c est-à-dire β γ α. La condition α 0 est visiblement impliquée par toutes les autres. Quant aux conditions β α et γ α, elle se déduisent des deux dernières. En effet, en utilisant des demi-sommes d inégalités : α β + γ α α β γ α Conclusion : } α β α et α γ + β α α γ β α } α γ α Une matrice A de Q 3 (définie par son expression { vue en (1c)) est à coefficients β + γ α dans IN α, β, γ sont des entiers relatifs tels que β γ α A est à coefficients dans IN les{ inégalités définissant les cinq conditions initiales β + γ < α sont strictes, ce qui équivaut à : β γ < α [ Q ] (b) L inégalité β + γ α, qui se développe en β α γ β + α exprime que le point Ω(β, γ) est situé au-dessus (au sens large) de la droite d équation γ = β α et en-dessous de la droite d équation γ = β + α. Page 9 Jean-Michel Ferrard c EduKlub S.A.

10 De même l inégalité β γ α se développe en β α γ β + α et elle exprime que le point Ω(β, γ) est situé au-dessus de la droite d équation γ = β α et en-dessous de la droite d équation γ = β + α. Ces quatre droites délimitent précisément le domaine carré K α évoqué par l énoncé. Les conditions β + γ α et β γ α équivalent donc à l appartenance du point Ω(β, γ) à ce domaine (bords compris). En passant aux inégalités strictes, les conditions β + γ < α et β γ < α équivalent à l appartenance de Ω(β, γ) à l intérieur de ce domaine. [ Q ] (c) Sur chaque coté de K α, il y a α + 1 points à coordonnées entières. Par exemple, sur le coté (β 0, γ 0) ( premier quadrant ) ces points sont : (0, α), (1, α 1),..., (k, α k),..., (α, 0) La frontière de K α contient donc 4(α + 1) 4 = 4α points à coordonnées entières ( 4 pour ne pas compter deux fois un même sommet.) Un point Ω(β, γ) à coordonnées entières appartient à K α il appartient à l un des bords successifs des carrés K m, avec 0 m α (il n y a en effet aucun point entier entre deux bords consécutifs). Puisque K 0 ne contient que le point (0, 0), le nombre de points à coordonnées entières α de K α est donc : 1 + (4α) = 1 + 2α(α + 1) = 2α 2 + 2α + 1. m=1 Pour trouver le nombre de points à coordonnées entières qui sont intérieurs à K α, il faut enlever les 4α points du bord, ce qui donne 2α 2 2α + 1 points distincts. [ Q ] (d) Résumons les résultats des questions précédentes : On sait que l expression générale d une matrice A de Q n est donnée dans (1c). On sait également qu une telle matrice est à coefficients dans IN (resp. dans IN ) α, β, γ sont des entiers relatifs vérifiant les conditions β + γ α et β γ α (resp. les conditions β + γ < α et β γ < α). On sait enfin qu à α fixé, ce système d inégalités possède 2α 2 + 2α + 1 (resp. 2α 2 2α + 1) solutions distinctes. On en déduit effectivement qu à α fixé, il y a : 2α 2 + 2α + 1 matrices A de Q n qui sont à coefficients dans IN. 2α 2 2α + 1 matrices A de Q n qui sont à coefficients dans IN. [ Q ] 3. (a) Un carré magique A d ordre 3 est un cas particulier de matrice de Q 3 donc de P 3. L exemple donné dans le préambule du problème montre qu il en existe. Comme pour toute matrice de P 3, la somme de tous les coefficients de A est égale à 3σ(A). En même temps (et puisque A est un carré magique) cette somme vaut = 45. Page 10 Jean-Michel Ferrard c EduKlub S.A.

11 On en déduit que σ(a) est égal à 15. Mais on sait d autre part que σ(a) est égal à 3a 22 (la raison en est que A est dans Q 3.) On en déduit effectivement que le coefficient a 22 est nécessairement égal à 5. [ Q ] (b) Chacune des sept opérations suivantes admet le coefficient central a 22 comme point invariant et conserve l ensemble des carrés magiques d ordre 3 : La symétrie par rapport à la deuxième colonne, ou à la deuxième ligne. La symétrie par rapport à la première ou la seconde diagonale. La rotation d un quart de tour, dans un sens ou dans l autre. La symétrie par rapport au coefficient central. Si le coefficient 1 (qui figure nécessairement dans un carré magique) n est pas en position (1, 1) ou (2, 1), et sachant qu il ne peut pas être en position (2, 2), l une des transformations précédentes permet de nous y ramener (on peut même se contenter d une des deux rotations, éventuellement répétée.) On peut donc supposer a 11 = 1 ou a 21 = 1, et on obtiendra tous les carrés magiques en appliquant les sept transformations ci-dessus à ceux de ces carrés qui sont formés avec l une des deux hypothèses. [ Q ] (c) Supposons par exemple a 11 = 1. Alors il vient nécessairement a 33 = 15 a 11 a 22 = 9. On en déduit a 13 = 15 a 23 a 33 = 6 a 23 < 6 et même a 13 < 5. Il vient alors a 12 = 15 a 11 a 13 = 14 a 13 > 9 ce qui est impossible. La condition a 11 = 1 ne conduit donc à aucune solution. On est donc conduit à supposer a 21 = 1. On en déduit a 23 = 15 a 21 a 22 = 9. Ainsi a 13 + a 33 = 6. Chacun de ces deux coefficients doit être strictement inférieur à 6, et même à 5 : leurs seules valeurs possibles sont 2, 3 ou 4. La valeur 3 est impossible (car sinon a 13 = a 33 = 3). Il reste donc les éventualités (a 13 = 2, a 33 = 4) et (a 13 = 4, a 33 = 2). La première donne A = et la seconde donne A = Les deux carrés ci-dessus sont symétriques par rapport à la deuxième ligne. Finalement, on obtient tous les carrés magiques en conservant le premier de ces carrés ou en lui appliquant les 7 transformations évoquées précédemment. Voici donc les 8 carrés magiques d ordre 3 : 6 7 2, 8 3 4, 2 7 6, Page 11 Jean-Michel Ferrard c EduKlub S.A.

12 , , , [ Q ] 4. Calcul du déterminant de A On applique l opération L 1 L 1 + L 2 + L 3 avant de factoriser 15 dans L 1. On retranche ensuite C 1 à C 2 et à C 3, avant de développer par rapport à L 1 : det A = = = = = 15( 24) = 360 Calcul du déterminant de B On retranche C 4 à C 1 et C 3 à C 2. Les deux premières colonnes sont alors proportionnelles, ce qui prouve que le déterminant de B est nul. det B = = = 0 (car C 1 = 3C 2 ) Calcul du déterminant de C Là c est plus compliqué et la méthode ci-dessous n est peut-être pas la plus simple... On applique l opération L 1 L 1 + L 2 + L 3 + L 4 + L 5 avant de factoriser 65 dans L 1 : det C = = On retranche ensuite la colonne C 2 à toutes les autres, avant de développer par rapport à l unique coefficient non nul de la première ligne : det C = = On retranche maintenant L 3 à L 2, puis 5C 3 à C 4. On peut alors développer par rapport à l unique coefficient non nul de L 2 : det C = = = Page 12 Jean-Michel Ferrard c EduKlub S.A.

13 On retranche C 2 à C 1 et à C 3, puis on factorise 5 dans C 1 et dans C 3 : det C = = On ajoute maintenant 7L 1 à L 2 avant de développer par rapport à C 2 : det C = = On termine avec C 2 C 2 + C 1 qui conduit à un déterminant triangulaire. det C = = = [ Q ] Page 13 Jean-Michel Ferrard c EduKlub S.A.

Problèmes de Mathématiques Matrices et carrés magiques

Problèmes de Mathématiques Matrices et carrés magiques Dans tout le problème, n est un entier supérieur ou égal à 2. On désigne par M n (IR) l algèbre des matrices carrées d ordre n à coefficients réels. Pour tout A de M n (IR), on note a ij le coefficient

Plus en détail

Commutant d une matrice

Commutant d une matrice Énoncé On désigne par n un entier naturel supérieur ou égal à 2, et par M n (IK) l algèbre sur IK des matrices carrées d ordre n à coefficients dans IK, avec IK = IR ou lc. La matrice identité de M n (IK)

Plus en détail

Opérations élémentaires et déterminants

Opérations élémentaires et déterminants 10 Opérations élémentaires et déterminants On note toujours K le corps de réels ou des complexes On se donne un entier n 1 et M n (K désigne l espace vectoriel des matrices carrées d ordre n à coefficients

Plus en détail

Énoncés des exercices

Énoncés des exercices Énoncés Énoncés des exercices Exercice 1 [ Indication ] [ Correction ] Donner une base de M 2 (R) qui soit formée de matrices inversibles Exercice 2 [ Indication ] [ Correction ] 1 a 0 0 0 1 a 0 Calculer

Plus en détail

Matrices stochastiques

Matrices stochastiques Énoncé On note E n le sous-ensemble de M n (IR) formé des matrices M = (m i ) telles que : Pour tous indices i et de {1,..., n}, m i 0. Pour tout indice i de {1,..., n}, m i = 1. =1 1. Montrer que l ensemble

Plus en détail

3 = , A 4 =

3 = , A 4 = Énoncé Soit A une matrice de M n (IK). Une décomposition LU de A est une égalité A = LU, où L est une matrice triangulaire inférieure (L pour Low ) à diagonale unité (tous les coefficients diagonaux valent

Plus en détail

Extrait gratuit de document, le document original comporte 13 pages.

Extrait gratuit de document, le document original comporte 13 pages. Notations Dans ce problème, E est un espace euclidien de dimension n 1. On note (x y) le produit scalaire de deux vecteurs quelconques x, y de E. On note [x] ε la matrice-colonne des coordonnées d un vecteur

Plus en détail

Exercices du chapitre 3 avec corrigé succinct

Exercices du chapitre 3 avec corrigé succinct Exercices du chapitre 3 avec corrigé succinct Exercice III.1 Ch3-Exercice1 Calculer les déterminants suivants : a b c d, 3a 3b c d, 4 2 3 0 3 4 0 0 5, 4 2 3 0 1 2 4 1 2, 4 3 2 0 2 1 4 2 1, 1 2 2 3 1 1

Plus en détail

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR.

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR. Exercices avec corrigé succinct du chapitre 1 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qui apparaissent dans ce texte sont bien définis dans la version

Plus en détail

1. Familles de vecteurs

1. Familles de vecteurs Compléments d algèbre linéaire 1-1 Sommaire 1 Familles de vecteurs 1 11 Famille libre 1 1 Famille génératrice 1 13 Base 14 Propriétés Sous-espaces vectoriels 1 Somme de sous-espaces vectoriels Base adaptée

Plus en détail

Préparation à l'agrégation Interne Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME 1

Préparation à l'agrégation Interne Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME 1 Préparation à l'agrégation Interne 2005-2006 F. Dupré Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME On notera N n l'ensemble des entiers compris entre et n, n désignant un

Plus en détail

M = b d. a b ou M =. b a

M = b d. a b ou M =. b a Ce texte est extrait du cours optionnel de géométrie de l année universitaire 1999/2000. B.Ingrao Étude du groupe orthogonal dans le cas du plan. Dans ce qui suit, l espace est de dimension 2 ; en conséquence

Plus en détail

Matrices symétriques réelles. Exercice 2 Le produit de deux matrices symétriques réelles est-il symétrique? R n = ker (u) Im (u)

Matrices symétriques réelles. Exercice 2 Le produit de deux matrices symétriques réelles est-il symétrique? R n = ker (u) Im (u) Matrices symétriques réelles 1 Préliminaires On se place dans (R n, ) euclidien, le produit scalaire canonique étant défini par : (x, y) R n R n, x y = t x y = x k y k On note : M n (R) l algèbres des

Plus en détail

Eléments de calcul matriciel

Eléments de calcul matriciel Eléments de calcul matriciel Définition et propriétés des matrices Définition Une matrice (l x c) (lire l croix c) est un ensemble de l fois c nombres, réels ou complexes, regroupés sous la forme d un

Plus en détail

Cours de Mathématiques Calcul matriciel, systèmes linéaires. I Matrices à coefficients dans K... 3

Cours de Mathématiques Calcul matriciel, systèmes linéaires. I Matrices à coefficients dans K... 3 Table des matières I Matrices à coefficients dans K............................ 3 I.1 Généralités.................................. 3 I.2 Matrices particulières............................. 3 I.3 Matrices

Plus en détail

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations 4 Définitions et notations CHAPITRE 4 Matrices 4 Définitions et notations On désigne par K un des deux ensembles R ou C et par n et p deux entiers strictement positifs 4 Matrices Définition On appelle

Plus en détail

N1MA3W01 Algèbre 2 - Examen final En janvier, 3h - 35 points

N1MA3W01 Algèbre 2 - Examen final En janvier, 3h - 35 points N1MA3W01 Algèbre 2 - Examen final En janvier, 3h - 35 points Exercice 0 (sur 6 points) 1. Calculer les valeurs et vecteurs propres des matrices 1 2 0 0 0 0 A = 2 1 0 et B = 1 0 0. 0 0 3 6000 80008 4 2.

Plus en détail

À propos des transvections

À propos des transvections À propos des transvections Antoine Ducros Préparation à l agrégation de mathématiques 1 Les transvections : aspect matriciel On fixe pour toute la suite du texte un corps commutatif k. (1.1) Définition.

Plus en détail

MT23-Algèbre linéaire

MT23-Algèbre linéaire MT23-Algèbre linéaire Chapitre 5 : Espaces euclidiens ÉQUIPE DE MATHÉMATIQUES APPLIQUÉES UTC juillet 2014 suivant Chapitre 5 Espaces Euclidiens et applications 5.1 Produit scalaire, norme, espace euclidien....................

Plus en détail

Formes bilinéaires et quadratiques

Formes bilinéaires et quadratiques Formes bilinéaires et quadratiques 0 Prolégomènes Caractéristique d un corps Si K, +, est un corps commutatif, alors l application ϕ : n n K, où K est l élément neutre de K pour le produit, est un morphisme

Plus en détail

Polynômes de Legendre sur [0,1], quadratures de Gauss

Polynômes de Legendre sur [0,1], quadratures de Gauss Polynômes de Legendre sur [,1], quadratures de Gauss Énoncé Polynômes de Legendre sur [,1], quadratures de Gauss On définit les suites de polynômes (U n ) et (P n ) de la manière suivante : U = 1 n 1,

Plus en détail

MT23-Algèbre linéaire

MT23-Algèbre linéaire MT23-Algèbre linéaire Chapitre 1 : Espaces vectoriels ÉQUIPE DE MATHÉMATIQUES APPLIQUÉES UTC juillet 2014 suivant Chapitre 1 Espaces vectoriels 1.1 Espaces vectoriels, généralités..........................

Plus en détail

Exercices corrigés. Exercice 6 Considérons les vecteurs de R 4 suivants : 1 e 1 = 1 1, e 2 = 1. , e 4 = 2, e 3 = 1 1

Exercices corrigés. Exercice 6 Considérons les vecteurs de R 4 suivants : 1 e 1 = 1 1, e 2 = 1. , e 4 = 2, e 3 = 1 1 Eercices corrigés Algèbre linéaire Enoncés Eercice On rappelle que (E, +, est un K-espace vectoriel si (I (E, + est un groupe commutatif ; (II-, y E, α K, α ( + y = α + α y ; (II- E, α, β K, (α + β = α

Plus en détail

ÉCOLE NORMALE SUPÉRIEURE. (Durée : 6 heures) L utilisation des calculatrices n est pas autorisée pour cette épreuve.

ÉCOLE NORMALE SUPÉRIEURE. (Durée : 6 heures) L utilisation des calculatrices n est pas autorisée pour cette épreuve. ÉCOLE NORMALE SUPÉRIEURE CONCOURS D ADMISSION 2011 FILIÈRE MP COMPOSITION DE MATHÉMATIQUES D (U) (Durée : 6 heures) L utilisation des calculatrices n est pas autorisée pour cette épreuve. Dans tout le

Plus en détail

SESSION 2014 Proposition de corrigé MP CONCOURS COMMUNS POLYTECHNIQUES EPREUVE SPECIFIQUE - FILIERE MP MATHEMATIQUES 2

SESSION 2014 Proposition de corrigé MP CONCOURS COMMUNS POLYTECHNIQUES EPREUVE SPECIFIQUE - FILIERE MP MATHEMATIQUES 2 SESSION 204 Proposition de corrigé MP CONCOURS COMMUNS POLYTECHNIQUES I. EXERCICE I I.. I..a A = n N 3 0 3 4 0 4 EPREUVE SPECIFIQUE - FILIERE MP MATHEMATIQUES 2 et (u, v, w ) = (, 0, ) u n+ = u n + 3v

Plus en détail

Déterminants. Chapitre 23. Objectifs. Plan

Déterminants. Chapitre 23. Objectifs. Plan Chapitre 23 Déterminants Objectifs Étudier le groupe des permutations de [[1n]] Définir les notions : de cycles, de transpositions, de décomposition en produit de cylces, de signature Définir les notions

Plus en détail

Commentaires préliminaires. Partie I: cas de la dimension 1.

Commentaires préliminaires. Partie I: cas de la dimension 1. Préparation au CAPES externe -, Correction succincte du problème sur le laplacien discret Commentaires préliminaires Ce document n est pas à proprement parler une correction, mais plutôt une série d indications

Plus en détail

Chapitre 2. Introduction aux matrices

Chapitre 2. Introduction aux matrices L1 2012-2013 Université Paris 13 Algèbre linéaire Chapitre 2 Introduction aux matrices Référence: Liret-Martinais [2], chapitre 4 Nous avons déjà rencontré des tableaux de nombres, ou matrices Nous allons

Plus en détail

AH - FONCTIONS AFFINES PAR INTERVALLES

AH - FONCTIONS AFFINES PAR INTERVALLES AH - FONCTIONS AFFINES PAR INTERVALLES Définition On appelle fonction affine par intervalles une fonction f définie et continue sur R pour laquelle il existe une subdivision a 1 < a 2 < < a n telle que

Plus en détail

CAPES Les deux problèmes de géométrie.

CAPES Les deux problèmes de géométrie. Ecrit CAPES 014. Les deux problèmes de géométrie. 1. Epreuve 1, problème 1 : le sujet Cette épreuve s intéresse aux applications bijectives du plan qui transforment une droite en une droite. Cette propriété

Plus en détail

ENSI 98 - Filière MP - MATHÉMATIQUES 2. Thème : Pseudo-inverse d une matrice - Méthode des moindres carrés discrets

ENSI 98 - Filière MP - MATHÉMATIQUES 2. Thème : Pseudo-inverse d une matrice - Méthode des moindres carrés discrets ENSI 98 - Filière MP - MATHÉMATIQUES 2 Thème : Pseudo-inverse d une matrice - Méthode des moindres carrés discrets PARTIE I - CONSTRUCTION D UNE MATRICE INVERSE A GAUCHE On suppose dans cette partie que

Plus en détail

MT23-Algèbre linéaire

MT23-Algèbre linéaire MT23-Algèbre linéaire Chapitre 4 : Valeurs propres - Vecteurs propres ÉQUIPE DE MATHÉMATIQUES APPLIQUÉES UTC juillet 2014 suivant Chapitre 4 Valeurs propres - Vecteurs propres 4.1 Vecteurs propres - Valeurs

Plus en détail

Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof. A. Abdulle. Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc :

Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof. A. Abdulle. Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc : Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof A Abdulle EPFL Série 7 Corrigé Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc : a b c 3 1 0 4 1 2 1 1 2 2 1 1 2 1

Plus en détail

Chapitre 3 : Matrices

Chapitre 3 : Matrices Chapitre 3 : Matrices Sommaire I Notion de matrice et vocabulaire II Opérations de base sur les matrices 3 1 Addition de matrices et multiplication d un réel par une matrice 3 Multiplication matricielle

Plus en détail

Espaces euclidiens, orthogonalité, longueur. Moindres carrés.

Espaces euclidiens, orthogonalité, longueur. Moindres carrés. Université de Nice SL2M 2009-10 Algèbre 2 Espaces euclidiens, orthogonalité, longueur. Moindres carrés. On travaille avec le corps des réels, noté R. Pour tout entier naturel n, on considère l ensemble

Plus en détail

TD-COURS 5 REVISIONS D ALGÈBRE 2 : MATRICES

TD-COURS 5 REVISIONS D ALGÈBRE 2 : MATRICES 22-10- 2011 JFC Mat p 1 TD-COURS 5 REVISIONS D ALGÈBRE 2 : MATRICES 2011-2012 LES NOTIONS Généralités (définition, matrices particulières) Opérations sur les matrices Matrice d une application linéaire

Plus en détail

Comme pour toutes les autres questions, d autres méthodes ou options sont évidemment possibles à condition d être justifiées.

Comme pour toutes les autres questions, d autres méthodes ou options sont évidemment possibles à condition d être justifiées. 0 0 3 3 EXERCICE Soit les matrices A = et B = 2 3 0 0. Calculer le déterminant de A. En déduire le rang de cette matrice. 0 0 0 Dét(A) = dét = dét 0 0 car (propriété P ) le déterminant d une matrice ne

Plus en détail

Proposition : Tout sev F est stable par combinaison linéaire, c est-à-dire :

Proposition : Tout sev F est stable par combinaison linéaire, c est-à-dire : 61 Proposition : Tout sev F est stable par combinaison linéaire, c est-à-dire : n, ( x 1,..., x n ) F n, (λ 1,..., λ n ) n, n λ i x i F i=1 Par récurrence sur le nombre de termes dans la combinaison linéaire.

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Espaces vectoriels de dimension finie 1.1) Famille génératrice (rappel) Exemple 1 On considère par exemple l'espace vectoriel R² et les vecteurs 1,1, 1, et,3. Soit un élément quelconque de R²,,. Peut-on

Plus en détail

Corrigé de Banque PT 2015 Épreuve A

Corrigé de Banque PT 2015 Épreuve A Lycée Laetitia Bonaparte Spé PT Corrigé de Banque PT 2015 Épreuve A Problème d Algèbre linéaire Partie I 1(a Notons β (e 1, e 2, e 3, e 4 la base canonique de R 4 On a De même, [ f(e1 ] β [ f ] β [ ] e

Plus en détail

Exercices du chapitre 4 avec corrigé succinct

Exercices du chapitre 4 avec corrigé succinct Exercices du chapitre 4 avec corrigé succinct Exercice IV. Ch4-Exercice Quels sont les vecteurs propres de l application identité? Préciser les valeurs propres associées. Tous les vecteurs, sauf le vecteur

Plus en détail

i=1 x iy i On a bien i=1 x2 i > 0 quand x 0.

i=1 x iy i On a bien i=1 x2 i > 0 quand x 0. Chapitre 3 Produit scalaire, espaces vectoriels euclidiens 3.1 Produit scalaire, norme euclidienne Définition 3.1 Soit E un espace vectoriel réel. Un produit scalaire sur E est une forme bilinéaire symétrique

Plus en détail

Rappels et compléments d algèbre linéaire

Rappels et compléments d algèbre linéaire Rappels et compléments d algèbre linéaire Table des matières 1 Somme et somme directe de p sous-espaces vectoriels. 2 1.1 de la somme de plusieurs sous-espaces vectoriels de E........................ 2

Plus en détail

1. Déterminant d une matrice carrée

1. Déterminant d une matrice carrée Déterminants 2-1 Sommaire 1. Déterminant d une matrice carrée 1 1.1. Déterminant d une matrice carrée A.. 1 1.2. Interprétation en dimensions 2 et 3... 2 1.3. Propriétés élémentaires.......... 2 1.4. Déterminant

Plus en détail

Vincent Pilaud Kholles de mathématiques 8 novembre 2005 MP* - Lycée Charlemagne - Paris a 0 a 1...,a n V (a 0,...

Vincent Pilaud Kholles de mathématiques 8 novembre 2005 MP* - Lycée Charlemagne - Paris a 0 a 1...,a n V (a 0,... Vincent Pilaud Kholles de mathématiques 8 novembre 2005 MP* - Lycée Charlemagne - Paris Algèbre linéaire 1 Déterminants Exercice [Van Der Monde] 1 Soient a 0,,a n K Calculer 1 1 1 a 0 a 1,a n V (a 0,,a

Plus en détail

Matrices antisymétriques

Matrices antisymétriques [http://mp.cpgedupuydelome.fr] édité le 24 septembre 2016 Enoncés 1 Matrices antisymétriques Exercice 1 [ 02503 ] [Correction] Soit M M n (R) telle que M + t M soit nilpotente. Montrer que M est antisymétrique.

Plus en détail

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si Agrégation interne UFR MATHÉMATIQUES Matrices On note K un corps commutatif. n et p représentent deux entiers naturels non nuls. 1. Notion de matrice 1.1. Définitions Définition 1 On appelle matrice d

Plus en détail

Déterminants. Théorème 3 On suppose que F est une somme directe de n sous-espaces vectoriels F i. Alors. i=1

Déterminants. Théorème 3 On suppose que F est une somme directe de n sous-espaces vectoriels F i. Alors. i=1 Déterminants Dans tout le chapitre, K représente un corps commutatif 1 Applications et formes multilinéaires Soient E 1,, E p et F des espaces vectoriels sur K et ϕ une application de E 1 E p dans F Définition

Plus en détail

Modules sur un anneau commutatif

Modules sur un anneau commutatif Université de Nice Master 1 Mathématiques 2006-07 GAE Modules sur un anneau commutatif 1. Généralités 1.1. On considère un anneau commutatif A. Un module M sur l anneau A (ou A-module) est un groupe abélien

Plus en détail

Matrice et vocabulaire associé

Matrice et vocabulaire associé I Matrice et vocabulaire associé I1 Définitions Définition 1 Deux entiers naturels m et n étant donnés non nuls, on appelle matrice de format m, n tout tableau rectangulaire ayant m n éléments, disposés

Plus en détail

Calcul matriciel. matrices-ligne et colonne : on appelle matrice-ligne toute matrice n ayant qu une seule ligne. On peut identifier

Calcul matriciel. matrices-ligne et colonne : on appelle matrice-ligne toute matrice n ayant qu une seule ligne. On peut identifier Calcul matriciel Dans ce qui suit, K désigne R ou C. 1 Petite visite au zoo matriciel 1.1 matrices générales notion de matrice : une matrice à coefficients dans K est une liste d éléments de K disposés

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Sommaire Sommaire I Applications continûment différentiables............... 2 I.1 Applications coordonnées......................... 2 I.2 Applications partielles........................... 2 I.3 Continuité..................................

Plus en détail

pgcd, ppcm dans Z, théorème de Bézout. Applications

pgcd, ppcm dans Z, théorème de Bézout. Applications 7 pgcd, ppcm dans Z, théorème de Bézout. Applications Le théorème de division euclidienne et les sous-groupes de (Z, +) sont supposés connus. Pour tout entier relatif n, on note : nz = {n q q Z} l ensemble

Plus en détail

Exercices du chapitre XI avec corrigé succinct

Exercices du chapitre XI avec corrigé succinct Exercices du chapitre XI avec corrigé succinct Exercice XI. Soient : 3 2 6 2 A, B et C 2 4 3 3 2 4 4 2 2 x, y, y 2 et z 3. Calculer Ax et Bx, que remarque t-on par rapport à la multiplication usuelle dans

Plus en détail

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3 Chapitre 10 Calcul matriciel 1 Généralités 2 11 Définitions 2 12 Matrices carrées particulières 3 2 Opérations sur les matrices 4 21 L espace vectoriel M np (R 4 22 Produit de deux matrices 5 23 Transposée

Plus en détail

Algèbre linéaire pour GM Jeudi 01 novembre 2012 Prof. A. Abdulle

Algèbre linéaire pour GM Jeudi 01 novembre 2012 Prof. A. Abdulle Algèbre linéaire pour GM Jeudi novembre Prof A Abdulle EPFL Série 6 Corrigé Exercice a Calculer la décomposition LU de la matrice A = 9 6 6 On effectue la réduction de la matrice A jusqu à obtenir une

Plus en détail

Calcul matriciel 1. Calcul matriciel

Calcul matriciel 1. Calcul matriciel Calcul matriciel 1 le 29 Novembre 2008 UTBM MT11 Arthur LANNUZEL http ://mathutbmal.free.fr Calcul matriciel Introduction. A un système linéaire de p équations à n inconnues on associe un tableau avec

Plus en détail

Formes quadratiques. 1. Formes bilinéaires symétriques et formes quadratiques

Formes quadratiques. 1. Formes bilinéaires symétriques et formes quadratiques Agrégation interne UFR MATHÉMATIQUES Formes quadratiques On se place sur un R-espace vectoriel E de dimension finie n. 1. Formes bilinéaires symétriques et formes quadratiques 1.1. Formes bilinéaires symétriques

Plus en détail

MATHÉMATIQUES II. Rappels, notations et objectifs du problème

MATHÉMATIQUES II. Rappels, notations et objectifs du problème MATHÉMATIQUES II Rappels, notations et objectifs du problème Dans tout ce problème, n désigne un entier naturel supérieur ou égal à 2 et M n ( IC ) l ensemble des matrices carrées complexes d ordre n De

Plus en détail

PRODUIT SCALAIRE ET ORTHOGONALITÉ

PRODUIT SCALAIRE ET ORTHOGONALITÉ Chapitre 9 : ECS2 Lycée La Bruyère, Versailles Année 2015/2016 PRODUIT SCALAIRE ET ORTHOGONALITÉ 1 Formes bilinéaires 2 1.1 Définition............................................. 2 1.2 Représentation

Plus en détail

Chapitre V. Chapitre V : Bases et dimension

Chapitre V. Chapitre V : Bases et dimension Chapitre V Chapitre V : Bases et dimension Introduction On avait vu au Chapitre IV qu une base pour un espace vectoriel V est une partie à la fois libre et génératrice de V. Les bases constituent un outils

Plus en détail

I. Détermination de Rac(A) dans quelques exemples.

I. Détermination de Rac(A) dans quelques exemples. I. Détermination de Rac(A) dans quelques exemples. 1. Les sous espaces propres E λi (A) sont de dimension 1 et en somme directe. Leur somme a donc une dimension au moins égale à n. Comme elle est incluse

Plus en détail

J.F.C. F.N.P.V. p. 1 EXTREMUM. Dans ce cas le minimum de f sur D est f(a), c est le plus petit élément de f(d) et on le note : Min

J.F.C. F.N.P.V. p. 1 EXTREMUM. Dans ce cas le minimum de f sur D est f(a), c est le plus petit élément de f(d) et on le note : Min 19-3- 2010 J.F.C. F.N.P.V. p. 1 V EXTREMUM 1. Les définitions de base Il convient d avoir une parfaite connaissance des définitions qui suivent Déf. 37 f est une application d une partie D de R n dans

Plus en détail

Orientation d un espace euclidien de dimension 3. Produit mixte, produit vectoriel. Applications

Orientation d un espace euclidien de dimension 3. Produit mixte, produit vectoriel. Applications 16 Orientation d un espace euclidien de dimension 3. Produit mixte, produit vectoriel. Applications E est un espace euclidien voir le chapitre 15 pour des rappels). 16.1 Orientation d un espace euclidien

Plus en détail

Espaces euclidiens, orthogonalité, longueur. Moindres carrés.

Espaces euclidiens, orthogonalité, longueur. Moindres carrés. Université Nice Sophia-Antipolis SL2SF 2012-13 Algèbre 2 Espaces euclidiens, orthogonalité, longueur. Moindres carrés. On travaille avec le corps des réels, noté R. Pour tout entier naturel n, on considère

Plus en détail

Chapitre 4 : Méthode des moindres carrés

Chapitre 4 : Méthode des moindres carrés Chapitre 4 : Méthode des moindres carrés Table des matières 1 Introduction 2 11 Généralités 2 12 Notion de modèle et de regression linéaire multiple 2 2 Critère des moindres carrés - formulation 2 21 Critère

Plus en détail

Espaces vectoriels notes de cours Licence Sciences et Technologies, L1, M 2

Espaces vectoriels notes de cours Licence Sciences et Technologies, L1, M 2 Espaces vectoriels notes de cours Licence Sciences et Technologies, L1, M 2 H. Le Ferrand, leferran@u-bourgogne.fr February 26, 2007 Contents 1 Espaces vectoriels 2 1.1 Définition.................................................

Plus en détail

Dans tout ce qui suit, on se place dans un espace vectoriel euclidien E de dimension 2.

Dans tout ce qui suit, on se place dans un espace vectoriel euclidien E de dimension 2. Chapitre 3 Les angles 3.1 Angles orientés de vecteurs du plan 3.1.1 Groupe des rotations Dans tout ce qui suit, on se place dans un espace vectoriel euclidien E de dimension 2. Définition 3.1 On appelle

Plus en détail

Chapitre 2 : Les matrices

Chapitre 2 : Les matrices Chapitre 2 : Les matrices I. Définitions On appelle matrice à lignes et colonnes N, N à coefficients dans =R C un tableau à lignes et colonnes contenant un élément de à l intersection de chaque ligne et

Plus en détail

Notations et préliminaires

Notations et préliminaires Notations et préliminaires Tous les corps figurant dans le problème sont supposés commutatifs. N désigne l ensemble des nombres entiers naturels N désigne l ensemble des nombres entiers naturels non nuls

Plus en détail

Méthode. Montrer qu une famille est libre. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

Méthode. Montrer qu une famille est libre. Laurent Garcin MPSI Lycée Jean-Baptiste Corot ESPACES VECTORIELS DE DIMENSION FINIE 1 Familles de vecteurs 1.1 Opérations sur une famille engendrant un sous-espace vectoriel Lemme 1.1 Soient E un K-espace vectoriel, A et B deux parties de E. Alors

Plus en détail

Méthodes directes de résolution du système linéaire Ax = b

Méthodes directes de résolution du système linéaire Ax = b Chapitre 3 Méthodes directes de résolution du système linéaire Ax = b 3.1 Introduction Dans ce chapitre, on étudie quelques méthodes directes permettant de résoudre le système Ax = b (3.1) où A M n (R),

Plus en détail

Concours PT 2004 Maths PT I-B

Concours PT 2004 Maths PT I-B Concours PT 4 Maths PT I-B L usage des calculatrices est interdit Partie A ) ( ) ( ) a a Soit A = b b et B = deux éléments de S a a b b ( ) c c C = AB = avec c c c i = a ik b k, évidemment i =,, c i =

Plus en détail

Géométrie dans les espaces préhilbertiens

Géométrie dans les espaces préhilbertiens 13 Géométrie dans les espaces préhilbertiens Pour ce chapitre (E, ) est un espace préhilbertien et est la norme associée. 13.1 Mesures de l angle non orienté de deux vecteurs non nuls L inégalité de Cauchy-Schwarz

Plus en détail

DÉTERMINANTS I. Déterminant d une matrice carrée

DÉTERMINANTS I. Déterminant d une matrice carrée DÉTERMINANTS I Déterminant d une matrice carrée a Définition Proposition admise) et définition Il existe une unique application f : M n IK) IK vérifiant les trois propriétés suivantes : 1): fi n ) = 1

Plus en détail

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice.

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice. Les matrices chapitre 2 : calcul matriciel I / Définitions Soit n et p deux entiers naturels non nuls Une matrice n p (on dit aussi de format n ; p ( ) est un tableau de nombres réels à n lignes et p colonnes

Plus en détail

EPREUVE SPECIFIQUE FILIERE PC MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. Notations et objectifs

EPREUVE SPECIFIQUE FILIERE PC MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. Notations et objectifs SESSION 2010 PCM1002 EPREUVE SPECIFIQUE FILIERE PC MATHEMATIQUES 1 Durée : 4 heures Les calculatrices sont interdites N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision

Plus en détail

n a k x k = 0, k=0 n a k x k. k=0

n a k x k = 0, k=0 n a k x k. k=0 Université Claude Bernard Lyon I CAPES de Mathématiques : Oral Année 2006 2007 Fonctions polynômes On travaille sur un corps K infini, par exemple R ou C. Définition, structures (a) Définition On appelle

Plus en détail

Isométries affines et vectorielles

Isométries affines et vectorielles Chapitre 3 Isométries affines et vectorielles Objectifs de ce chapitre 1. Rappels sur les isométries vectorielles.. Groupe orthogonal en dimension et 3. Détermination d une isométrie vectorielle en dimension

Plus en détail

Résumé 02 : Matrices & Déterminants

Résumé 02 : Matrices & Déterminants http://mpbertholletwordpresscom Résumé 02 : Matrices & Déterminants Dans tout ce chapitre, K sera le corps R ou C 1 LES BASES 1 L opérateur L A Toute application linéaire de R p dans R n est l application

Plus en détail

LES MATRICES. Chapitre Premières définitions

LES MATRICES. Chapitre Premières définitions Chapitre 1 LES MATRICES 11 Premières définitions Définition Une matrice à n lignes et p colonnes et à coefficients dans R est un tableau de np éléments de R que l on représente sous la forme : a 11 a 12

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot

Laurent Garcin MPSI Lycée Jean-Baptiste Corot DÉTERMINANTS Dans tout ce chapitre, n désigne un entier naturel non nul. 1 Groupe symétrique 1.1 Permutation Définition 1.1 Permutation, groupe symétrique On appelle permutation de 1, n toute bijection

Plus en détail

J.F.C. p. 1 EM LYON x e t dt converge également.

J.F.C. p. 1 EM LYON x e t dt converge également. 28-5- 23 J.F.C. p. EM LYON 23 jean-francois.cossutta@wanadoo.fr PROBLÈME Partie I : Étude d une fonction f définie par une intégrale. Soit un réel appartenant à ], [. t e t t est continue sur [, [. t [,

Plus en détail

Chapitre 1. Dualité dans les espaces vectoriels

Chapitre 1. Dualité dans les espaces vectoriels Chapitre 1 Dualité dans les espaces vectoriels K désigne un corps commutatif. I. Espace dual d un espace vectoriel - bases duales Définition.- Soit E un espace vectoriel sur K ; on appelle dual de E et

Plus en détail

E3A 2007 MP - Maths B

E3A 2007 MP - Maths B E3A 2007 MP - Maths B Exercice 1 1. Suivant l énoncé, soit y une fonction dérivable sur J, et soit z : x x α y(x). Puisque J ne contient pas 0, z est elle aussi dérivable sur J, et on a : si J R + : x

Plus en détail

Préparation à l écrit Année Un problème de Capes blanc

Préparation à l écrit Année Un problème de Capes blanc Capes de Mathématiques Université Joseph Fourier Préparation à l écrit Année 2008-2009 Un problème de Capes blanc Préambule Dans tout le suet, n désigne un entier fixé 2. On utilise les notations et observations

Plus en détail

PROBLÈME 1 : Une équation matricielle PRÉLIMINAIRES PARTIE I

PROBLÈME 1 : Une équation matricielle PRÉLIMINAIRES PARTIE I TD - Chapitres 19 et 0 - ALGÈBRE LINÉAIRE PROBLÈME 1 : Une équation matricielle Extrait sujet «Petites Mines» 010 Le but de ce problème est d étudier différentes matrices qui commutent avec leur transposée,

Plus en détail

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (K) Dans tout ce chapitre, K désigne R ou C.

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (K) Dans tout ce chapitre, K désigne R ou C. Matrices Dans tout ce chapitre, K désigne R ou C Matrices rectangulaires Soient n, p deux nombres entiers non-nuls On appelle matrice à n lignes et p colonnes à coefficients dans K tout tableau rectangulaire

Plus en détail

Vecteurs et applications linéaires

Vecteurs et applications linéaires Vecteurs et applications linéaires (1) (1) () Vecteurs et applications linéaires 1 / 41 1 Familles de vecteurs de R n 2 Sous-espace vectoriels dans R n 3 Base d un sous-espace vectoriel (1) () Vecteurs

Plus en détail

1. Produit Scalaire sur E

1. Produit Scalaire sur E Espaces vectoriels préhilbertiens et euclidiens 4 - Sommaire. Produit Scalaire.. Forme bilinéaire symétrique.......... Forme quadratique associée......... Forme quadratique définie positive.....4. Produit

Plus en détail

Interpolation. Chapitre Introduction

Interpolation. Chapitre Introduction Chapitre 4 Interpolation Dans ce chapitre, on s intéresse au problème suivant Étant donné une fonction continue, comment peut-on l approcher par un polynôme? Plus précisément, on se donne une fonction

Plus en détail

VALEUR ABSOLUE D UN RÉEL. ln 11

VALEUR ABSOLUE D UN RÉEL. ln 11 Lycée Thiers VALEUR ABSOLUE D UN RÉEL Définition et représentation graphique La valeur absolue d un nombre réel x est notée x. Il existe plusieurs façons équivalentes de la définir : x est la distance

Plus en détail

Chapitre 4 : Applications linéaires

Chapitre 4 : Applications linéaires Chapitre 4 : Applications linéaires I. Applications Dans ce paragraphe, on s intéresse à des applications allant d un ensemble à un autre (sans aucune structure d espace vectoriel). Un ensemble est un

Plus en détail

Exercices Corrigés Matrices 1 2 A = 2 1

Exercices Corrigés Matrices 1 2 A = 2 1 Exercices Corrigés Matrices Exercice Considérons les matrices à coefficients réels : A =, B = 4 C =, D = 0, E = Si elles ont un sens, calculer les matrices AB, BA, CD, DC, AE, CE Exercice extrait partiel

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES : OPTIMISATION

FONCTIONS DE PLUSIEURS VARIABLES : OPTIMISATION Chapitre 17 : FONCTIONS DE PLUSIEURS VARIABLES : OPTIMISATION ECS2 Lycée La Bruyère, Versailles Année 2013/2014 1 Recherche d extremums locaux sur un ouvert 2 1.1 Condition nécessaire du premier ordre.............................

Plus en détail

Crochet de Lie. [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1

Crochet de Lie. [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1 Crochet de Lie Exercice 1 [ 00775 ] [Correction] Soient A, B M n (R) vérifiant AB BA = A. (a) Calculer A k B BA k pour k N. (b) À quelle

Plus en détail

Calcul matriciel : rappels et compléments

Calcul matriciel : rappels et compléments CHAPITRE 5 Calcul matriciel : rappels et compléments 5 L ensemble M n,p (K) 5 Structure d espace vectoriel Définition Soit K = R ou C On note M n,p (K) l ensemble des matrices ayant n lignes et p colonnes

Plus en détail

Mathématiques 1. Matrices positives (im)primitives

Mathématiques 1. Matrices positives (im)primitives Mathématiques 1 MP 4 heures Calculatrices autorisées Matrices positives (im)primitives 2016 Ce problème étudie diverses propriétés des matrices primitives et des matrices irréductibles, définies dans les

Plus en détail

CCP PSI un corrigé

CCP PSI un corrigé CCP26 - PSI un corrigé Cas n 2. Puissances de A(α, β ( α α. A(α, β I 2 n est pas la matrice nulle car (α, β (, et son rang est. β β (, est clairement élément du noyau qui, par théorème du rang, est de

Plus en détail

Chapitre VIII Calcul matriciel

Chapitre VIII Calcul matriciel Chapitre VIII Calcul matriciel Dans ce cours, désigne, ou un corps commutatif quelconque. I Matrices et applications Les matrices sont un outil de calcul et de représentation des applications linéaires.

Plus en détail