CHAPITRE I GÉOMÉTRIE ANALYTIQUE DANS LE PLAN EXERCICES

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "CHAPITRE I GÉOMÉTRIE ANALYTIQUE DANS LE PLAN EXERCICES"

Transcription

1 CHAPITRE I GÉOÉTRIE ANALYTIQUE DANS LE PLAN EXERCICES 1) Le plan étant muni d un repère ( O, i, j ) 4 u 6 et v Calculez les coordonnées de : 1 2,4 a) AB d) u + v b) 2 CA c) BC, on donne A( 5; 7,3), ( 9;0) e) u v f) 3u + 2v 2) Le plan étant muni d un repère ( O, i, j ) D( x; 5) et E ( 3; y) 1 B, C ; 3 2, g) 3BA 7CB h) 3 AC CB 4BA 4 +, on donne A( 11; 2), B( 4,5;1), ( 17;13) Déterminez les réels x et y pour que: a) 2AD 6EB = 0 c) DB + 2BC = 3CE DE b) 5CD + AB = AC 8EA d) EA 11BD = BE + 4EA C, 3) Soit ABCD un parallélogramme de centre O et I, J, K, L les milieux des quatre côtés : a) Déterminez les coordonnées des points O, A, B, C, D, I, J, K et L O, OI, OJ i) dans le repère ( ) ii) dans le repère ( C, OI, OJ ) iii) dans le repère ( B, BA, BC) b) Déterminez les coordonnées des vecteurs AB, BC, IJ, LC, BD et JA O, OI, OJ repère ( ) dans le - 1 -

2 4) Soit ABCDEF est un hexagone régulier de centre O : : Déterminez les coordonnées des vecteurs suivants dans le repère ( O, OA, OB) 5) Dans un repère ( O, OI, OJ ) AF, FE, ED, DC, CB, BA, BF, BE, FD, DB on donne les points ( 1,4 ) A, B ( 3,7) et ( 2, 5) Calculez les coordonnées du point K défini par AK + 2BK 4KC = 0 : O, OI, OJ a) dans le repère ( ) b) dans le repère ( A, AB, AC ) C 6) Soient ( ABC ) un triangle quelconque et G son centre de gravité Calculez les coordonnées de G dans le repère ( A, AB, AC ) 7) Dans un RON on donne A( 3;2), B ( 1;5 ), C ( 4;1) et ( ;0) a) Analysez la nature du triangle ( ABC ) D x b) Déterminez x pour que le triangle ( ABD) soit isocèle en D 8) Le plan étant muni d un repère ( O, i, j ) 5 u 6, v 3 et w O, u, v est un repère du plan a) Analysez si ( ) b) ême question pour ( O, u, w) c) ême question pour ( A, u, w) d) ême question pour ( B, u,2w), on donne A( 24; x ), B( 31; 16), ( 3;77 ) e) Pour quelle(s) valeur(s) de x les vecteurs AB et AC sont-ils colinéaires? C, - 2 -

3 9) Le plan étant muni d un repère ( O, i, j ) 3 e B Chapitre I Géométrie analytique Exercices, on donne A( 2; 1), B( 3;5) et ( 7; 4) a) Trouvez les coordonnées de A, B, C et O dans le repère ( A, i, j ) b) ontrez que ( B, 2 j, 3i ) C est un repère du plan, puis trouvez les coordonnées de A, B, C et O dans ce repère C, i j, 2i + 3 j c) ontrez que ( ) est un repère du plan, puis trouvez les coordonnées de A, B, C et O dans ce repère Plus généralement soit un point de coordonnées (, ) O, i, j et (, ) C, i j, 2i + 3 j : exprimez X et Y x y dans ( ) en fonction de x et y X Y dans ( ) 10) Soient A( 1;8 ), B (2;5), C(7; 16), D( 3; 4) et ( ; 9) E x a) Analysez si parmi les points A, B, C et D il y en a trois qui sont alignés b) Déterminez x pour que A, D et E soient alignés 11) Dans un RON on donne P( 5; 3), Q(3; 1), R (2;3), ( 6;1) a) ontrez par deux méthodes différentes que PQRS = # S b) ontrez par deux méthodes différentes que PQRS est un rectangle c) Analysez si les diagonales sont perpendiculaires Que peut-on en conclure? 12) On donne A ( 1;8 ), B( 5; 2) et ( 2,1) méthodes différentes que ( ABC ) est un triangle rectangle 13) Soient A ( 1;2 ), B(4; 2), C( 1; 2), ( 4;2) un losange C dans un RON du plan ontrez par deux D dans un RON ontrez que ABCD est 14) Déterminez une équation cartésienne (générale et réduite) de la droite d sachant que : a) d passe par A( 9;11) et a pour vecteur directeur b) d passe par u 5 3 B 2 ; 1 3 et a pour vecteur directeur 0 v 7 c) d passe par C ( 2;13) et a pour vecteur directeur d) d passe par E ( 3;1) et par ( 15;4) F 8 w 0-3 -

4 15) Dans un RON on donne A( 5;3) et n 2 7 a) Déterminez une équation cartésienne de la droite d passant par A et de vecteur normal n b) Déterminez un vecteur directeur de d 16) Soient A( 2; 3), B( 1;4 ) et ( 7;0) a) Vérifiez que ( ABC ) est un triangle C dans un repère quelconque b) Calculez le centre de gravité G de ce triangle c) Déterminez les équations des trois médianes de ce triangle et vérifiez que G appartient à chacune de ces droites 17) Soient ( 6; 1) A et d 7x 2y 3 = 0 dans un RON a) Déterminez l équation de la droite a telle que A a et a ( Ox) b) Déterminez l équation de la droite b telle que A b et b d c) Déterminez l équation de la droite c telle que A c d) Déterminez l équation de la droite e telle que A e et ( ) c Ox et e ( Oy) e) Déterminez l équation de la droite f telle que A f et f d 18) Soient d 7x 9y + 11 = 0 et d ' ax + 4y 1 = 0 dans un RON a) Pour quelles valeurs de a a-t-on d d '? b) Pour quelles valeurs de a a-t-on d d '? 19) On donne quatre droites par leurs équations cartésiennes : d1 x y + 2 = 0 d2 2x + 3y + 6 = 0 d3 2x + 7 = 0 d4 5y + 15 = 0 a) Pour chacune de ces droites déterminez une équation réduite puis représentez-les b) Vérifiez si les points 7 1 A ; 2 3, B ( 1;3 ) et ( 0;0) O appartiennent à ces droites 20) Parmi les droites suivantes, quelles sont celles qui sont parallèles? perpendiculaires? (toutes les équations sont données dans un RON) y d1 4 = d2 6x = 5 4y d3 x = 7 y 2 d4 4x 6y = 0 d5 y = 9 + x d6 + = d7 4x + 3 = 5 d8 2x 3y 1 d9 5x 7y = 5 x y + 2 = ( ) x y - 4 -

5 21) Dans un RON on donne le point ( 4;7) A et la droite d 3x 5y + 8 = 0 Déterminez l équation réduite des droites d 1 et d 2 passant par A tel que d1 22) Soient 1 3; 2, ( 2;0) votre résultat sur une figure P et d 2x 2y ) Trouvez les points A, B et C sachant que : d et d2 + + = Déterminez ( P) d ( AB) 2x y = 0 ( AC) x + y = 3 ( BC) 3x 2y = 4 24) Soient A( 9; 1), B ( 0;8) et ( 4; 3) C a) Vérifiez que A, B et C ne sont pas alignés b) Déterminez une équation cartésienne de la droite d telle que C d c) Déterminez une équation cartésienne de la droite d telle que B d d) Déterminez D d d d Vérifiez et d ( AB) et d ' ( AC ) e) Quelle est la nature du quadrilatère ABDC? Déduisez-en une méthode (beaucoup!) plus simple pour obtenir D 25) Soient A ( 2;1), B (5;3), C(3; 1) dans un RON a) Déterminez les équations des trois médiatrices du triangle ( ABC ) b) ontrez que les trois médiatrices se coupent en un point Ω c) ontrez que Ω A = Ω B = Ω C Comment appelle-t-on le point Ω? d) Déterminez les équations des trois hauteurs du triangle ( ABC ) e) ontrez que les trois hauteurs se coupent en un point H Comment appelle-t-on ce point H? f) Déterminez le centre de gravité du triangle ( ABC ) g) ontrez qu il existe une droite qui passe par Ω, H et G Cette droite est appelée droite d Euler (mathématicien suisse du 18 e siècle) Précisez les positions de ces trois points 26) Dans un RON, déterminez une équation de la diagonale et de chacun des côtés non donnés du rectangle dont une diagonale a pour équation cartésienne 3x + 7y 10 = 0 et dont deux côtés ont respectivement pour équations 5x + 2y 7 = 0 et 5x + 2y =

6 27) Dans un RON, déterminez une équation cartésienne de chacun des côtés d un triangle dont on donne le sommet ( 4; 5) 5x + 3y 4 = 0 A et deux hauteurs d équations 3x + 8y + 13 = 0 et 28) Soient deux droites d 8x 6y + 7 = 0, d 12y 5x 1 0 De quelle droite le point A est-il le plus éloigné? 29) Soient A ( 2;2), B( 3;1) et ( 5; 4) ( ABC ) + = et ( 2;3) A dans un RON C dans un RON Calculez l aire du triangle 30) Dans un RON on donne les deux droites a) ontrez que d d y 2 d = x + 1 et d 3y 4x + 14 = b) Calculez Pd où P est un point quelconque de d Que constatez-vous? 31) Soient A ( 1;0,5 ), B( 4;3) et ( 2; 1) C dans un RON (figure!) a) Déterminez les équations des droites ( AB ), ( AC ) et ( BC ) b) ontrez que l ensemble des points (appelé aussi le lieu des points) P qui sont équidistants de ( AB ) et ( AC ) est la réunion de deux droites perpendiculaires sécantes en A On sait que l une de ces deux droites est la bissectrice b A de l angle BAC Laquelle? c) Déterminez de même les bissectrices b B de l angle CBA et b C de l angle ACB d) ontrez que les trois bissectrices sont concourantes en un point D équidistant des trois côtés du triangle ( ABC ) 32) Donnez une équation cartésienne du cercle a) de centre Ω( 4; 3) et de rayon 2 b) de centre Ω( 0; 1) et passant par ( 12; 6) 1 3 c) de centre Ω ; 2 4 et de rayon 2 2 R d) de diamètre [ AB ] avec A( 5;4) et ( 7; 8) B - 6 -

7 33) Déterminez les lieux suivants : / x 2 6x y 2 14y 63 0} L = + = = P x; y / x + y 3x + 6y = 0 4 ( ) / 49x 2 42x 49y 2 9 0} P = = / x 2 8x y 2 18y 135 0} O = + + = I = P x; y / x + 7x + y y + 51 = 0 2 ( ) / 4x 2 4x 4y 2 8y 31 0} J = + + = / 36x 2 48x 36y 2 180y 205 0} K = = { P( x; y) / ( 2x 1)( 5 6x) ( 3y 1)( 4y 7) 0} E = = 34) Reprenons les données de l exercice 31 a) Etablissez l équation du cercle de centre D qui est tangent aux trois côtés du triangle ( ABC ), appelé cercle inscrit du triangle b) Calculez l aire et le périmètre de ce cercle 35) Donnez une équation cartésienne du cercle passant par les points A, B ( 0;1) et ( 1;0 ) a) (1;2) b) ( 1;3) C A, B( 4; 2) et ( 2; 5) 36) Soient A( 2; 3), ( 8;1) C B, C (6;6) et D( 4; 2) dans un RON Quelle est la nature du quadrilatère ABCD? Déterminez son cercle circonscrit 37) Soit C le cercle d équation 2 2 C x + 10x + y 2y + 22 = 0 dans un RON a) Déterminez le centre et le rayon de C b) Trouvez deux points A et B de C qui n ont ni la même abscisse, ni la même ordonnée c) Déterminez les équations des tangentes t et A t B au cercle aux points A et B respectivement d) Déterminez le point d intersection I de t A et t B e) Quelle est la nature du triangle ( IAB)? - 7 -

8 38) Soient A( 4;1) et ( 2;7) 3 e B Chapitre I Géométrie analytique Exercices B dans un RON Déterminez les lieux suivants : a) = { / le triangle ( AB ) est rectangle en } L Comment appelle-t-on ce lieu? b) = { / A = B} S Quel est ce lieu? Prouvez-le! 39) Soit un triangle ( ABC ) quelconque, A = mil [ BC], B = mil [ AC] C mil [ AB] son centre de gravité a) ontrez que = et G BC AC + AB = 2AA + (théorème des médianes) 2 b) Donnez sans démonstration des formules analogues pour les autres médianes BC + AC + AB c) Déduisez-en que GA + GB + GC = 3 40) ontrez que pour tout #( ABCD ) on a : deux methods différentes: a) En vous plaçant dans un repère approprié AB + BC + CD + DA = AC + BD par b) En utilisant le théorème des médianes établi dans l exercice précédent 41) Soient A et B deux points fixes tel que AB = 6 Déterminez le lieu L des points tel que A = 2 B 42) Soient A ( 2;5) et ( 4;7) B dans un RON Déterminez le lieu L des points tel que: 5 A + B = AB ) Une perche rigide [ AB ] de 10 m de long est posée contre un mur vertical En supposant que son extrémité A glisse le long du mur et son extrémité B le long du sol, quel est le lieu L du milieu de la perche? (figure!) 44) Soient a et b deux droites perpendiculaires sécantes en O et un point quelconque du plan On note A et B les projections orthogonales de sur a et b respectivement (figure!) Déterminez le lieu L des points tels que OA + OB = 3-8 -

Exercices de géométrie analytique

Exercices de géométrie analytique Exercice 1 Exercices de géométrie analytique (1) Déterminer les coordonnées des vecteurs représentés dans la base ( i, j ) () Déterminer les coordonnées des vecteurs représentés dans la base ( j, i ) ()

Plus en détail

Géométrie analytique plane

Géométrie analytique plane Exercice 1 EXERCICES SUR LE CHAPITRE 8 Géométrie analytique plane Soit ( O, i ) un repère d une droite d (1) Placer sur cette droite les points I ( 1), A ( 3) et B( 2) (2) Déterminer l abscisse du point

Plus en détail

NOM : PRODUIT SCALAIRE 1ère S

NOM : PRODUIT SCALAIRE 1ère S Exercice 1 R D Q C Soit un carré ABCD. On construit un rectangle AP QR tel que : P et R sont sur les côtés [AB] et [AD] du carré ; AP = DR. Le problème a pour objet de montrer que les droites (CQ) et (P

Plus en détail

ISEFC Juin 2007 Département de Mathématiques MA115. Série d exercices: Géométrie élémentaire du Plan

ISEFC Juin 2007 Département de Mathématiques MA115. Série d exercices: Géométrie élémentaire du Plan ISEFC Juin 2007 Département de Mathématiques MA115 Série d exercices: Géométrie élémentaire du Plan Exercice 1: Soient (ABC) et (ABD) deux triangles tels que C et D soient de part et d autre de la droite

Plus en détail

Produit scalaire dans le plan

Produit scalaire dans le plan ème année Maths Produit scalaire dans le plan Octobre 009 A LAATAOUI Exercice n 1 La figure ci-dessous représente un rectangle ABCD tel que : AB = 5 et BC = ; un triangle ABF équilatéral et un triangle

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 La figure ci-dessous représente un rectangle ABCD tel que : AB = 5 et BC = ; un triangle ABF équilatéral et un triangle BCE rectangle et isocèle en C. Le point

Plus en détail

Chapitre : VECTEURS SESSION ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure.

Chapitre : VECTEURS SESSION ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure. SESSION 2006 Chapitre : VECTEURS 1 ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure. D. Le FUR 1/ 21 2 ABCD est un parallélogramme de centre

Plus en détail

I Rappels sur les symétries :

I Rappels sur les symétries : I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ AB ]. On appelle médiatrice du segment [ AB ] la droite perpendiculaire en I à ( AB ). Propriétés : La médiatrice de [ AB ]

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

Chapitre 1. Géométrie

Chapitre 1. Géométrie Chapitre 1 Géométrie 1.1. On donne les points a = (1, ), b = (4, 4) et c = (4, 3) du plan. Déterminer a. les composantes des vecteurs ab et ba ; b. les coordonnées du milieu du segment ab ; c. les coordonnées

Plus en détail

Configurations du plan et trigonométrie

Configurations du plan et trigonométrie Configurations du plan et trigonométrie A) Le triangle rectangle. 1. Le théorème de Pythagore et sa réciproque. Si ABC est un triangle rectangle en A, alors Théorème réciproque : Si ABC est un triangle

Plus en détail

LES DROITES DU TRIANGLE

LES DROITES DU TRIANGLE LES DROITES DU TRIANGLE DÉMONSTRATION DE LA PROPRIÉTÉ DES HAUTEURS D UN TRIANGLE... 2 DÉMONSTRATION DE LA PROPRIÉTÉ DES MÉDIANES D UN TRIANGLE... 3 DÉMONSTRATION DE LA PROPRIÉTÉ DES BISSECTRICES D UN TRIANGLE...

Plus en détail

Cours configurations du plan

Cours configurations du plan I Polygones a) Polygones particuliers triangles Propriété : La somme des angles d un triangle est égale à 180. Définition : Un triangle isocèle a deux côtés de même longueur. Propriétés caractéristiques

Plus en détail

Exercices sur les vecteurs

Exercices sur les vecteurs Exercices sur les vecteurs Exercice 1 : Associativité de la somme de trois vecteurs. On donne trois vecteurs u, v et w. Sur les deux figures suivantes tracer la somme u + v + w de deux manières : u + v

Plus en détail

Première S 2 mai 2011

Première S 2 mai 2011 Première S mai 011 Exercices 11 1 Homothétie 1 Mathématiques Soit ABC un triangle, ( Γ ) son cercle circonscrit et O le centre de ( Γ ) Soit H le milieu de [BC] et D le point de ( Γ ) diamétralement opposé

Plus en détail

I) Droites du triangle

I) Droites du triangle SEMAINE 2 I) Droites du triangle 1) Les médiatrices ; cercle circonscrit a) Rappels de vocabulaire Deux droites sont parallèles ou sécantes. Elles sont sécantes si elles se coupent. Le point où elles se

Plus en détail

Droites, cercles et quadrilatères

Droites, cercles et quadrilatères Droites, cercles et quadrilatères «Des outils pour les démonstrations» I Droites et segments 1) Droites Propriété 1 : Par deux points distincts A et B, il passe une seule droite ; on peut la noter (AB).

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

1S DS 4 Durée : 2h. ( 5,5 points ) Exercice 1

1S DS 4 Durée : 2h. ( 5,5 points ) Exercice 1 1S DS Durée : h Exercice 1 (, points ) Dans un repère orthonormé (annexe exercice 1), on donne la droite (d) d équation x 3y + 6 = 0, le point A(1; 7) et le vecteur v (; 3). 1. Pour tracer (d) on peut

Plus en détail

Chapitre 1 : Équations de la droite dans le plan

Chapitre 1 : Équations de la droite dans le plan EQUATIONS DE LA DROITE DANS LE PLAN 1 Chapitre 1 : Équations de la droite dans le plan 1.1 Introduction Exercice d introduction : On considère l équation vectorielle: x = 3 3 + k. y 2 2 Représenter, dans

Plus en détail

On dit que M est l origine du vecteur et N son extrémité.

On dit que M est l origine du vecteur et N son extrémité. ❶ - Vecteurs I-- Définition d un vecteur Définition : Lorsqu on choisit deux points distincts M et N dans cet ordre, on définit : - une direction : celle des droites parallèles à (MN) ; - un sens : de

Plus en détail

Parallélogrammes Particuliers

Parallélogrammes Particuliers Parallélogrammes Particuliers I) Définitions et propriétés Les parallélogrammes particuliers étudiés sont les rectangles, les carrés et les losanges. 1) Le rectangle a) Définition : Un rectangle est un

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel Sommaire 1 Vecteurs Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel 2 Vecteurs colinéaires Définition Conséquences 3 Base du

Plus en détail

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE.

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE. Seconde chap Géométrie plane /6 GEOMETRIE PLNE. I. Repère et coordonnées. oordonnées. Si O, I et J sont trois points non alignés du plan, alors (O I J) est un repère du plan d origine O. Si (OI) et (OJ)

Plus en détail

Propriété Les 3 hauteurs d un triangle sont concourantes. Le point de concours s appelle l orthocentre du triangle.

Propriété Les 3 hauteurs d un triangle sont concourantes. Le point de concours s appelle l orthocentre du triangle. Géométrie Espace 2 nde 1 Géométrie dans l espace I. Rappels de collège A. Formumaire 1. Hauteurs Une hauteur est une droite passant par un sommet et perpendiculaire au côté opposé. Il y a donc 3 hauteurs

Plus en détail

Configurations fondamentales - Seconde

Configurations fondamentales - Seconde Configurations fondamentales - Seconde Exercices de géométrie plane avec GéoPlan : puzzle, triangle, point fixe. Sommaire 1. Puzzle et triangle isocèle 2. Puzzle et carrés 3. Propriété de Thalès 4. Utiliser

Plus en détail

Exercices Trigonométrie

Exercices Trigonométrie I Le cercle trigonométrique Savoir-faire 1 : Associer nombres réels et points du cercle trigonométrique Exercice 1 Tracer le cercle trigonométrique, puis placer les points A, B, C et D, images par enroulement

Plus en détail

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD]

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD] COMMENT DEMONTRER Pour démontrer qu'un point est le milieu d'un segment On sait que I appartient au segment [AB] et IA = IB Propriété :Si un point appartient à un segment et est équidistant des extrémités

Plus en détail

Comment démontrer que deux droites sont parallèles

Comment démontrer que deux droites sont parallèles F1 Comment démontrer que deux droites sont parallèles P : Si deux droites sont parallèles, alors toute parallèle à l une est parallèle à l autre. P : Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

CONTRÔLE N 2. Exercice 2 : (sur la copie double)

CONTRÔLE N 2. Exercice 2 : (sur la copie double) NOM : Prénom : Classe : 2nde CONTRÔLE N 2 Consignes : - l utilisation de la calculatrice est autorisée - sauf mention contraire, toutes les réponses devront être soigneusement justifiées. Le tableau suivant

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 : Sur les expressions du produit scalaire Pour les sept figures suivantes, calculer AB AC. Exercice : Sur les expressions du produit scalaire Sur la figure

Plus en détail

Angles : Définitions utiles. Angles : Propriétés utiles. Triangle : Droite des milieux. Triangle : Généralités

Angles : Définitions utiles. Angles : Propriétés utiles. Triangle : Droite des milieux. Triangle : Généralités Angles : Définitions utiles Angles : Propriétés utiles D1: Deux angles qui ont un sommet commun et un côté commun sont dits adjacents. Sur la figure ci contre, l angle en rouge et l angle en vert ont en

Plus en détail

Exercices Géométrie plane

Exercices Géométrie plane I Notions élémentaires et compléments sur les vecteurs Savoir-faire 1 : Démontrer avec des vecteurs Exercice 1 ABCD et BDFE sont deux parallélogrammes. Le point K est défini par BK = CB. 1. Justifier les

Plus en détail

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES?

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles On sait que

Plus en détail

S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes. Un quadrilatère qui a deux côtés parallèles est un parallélogramme

S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes. Un quadrilatère qui a deux côtés parallèles est un parallélogramme CRPE Mise en route 1. Trouver l intrus. Justifier. 2. Voici des polygones convexes S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes 1 2 3 4 5 6 7 8 Lesquels sont : des quadrilatères?

Plus en détail

BC = 3 4 AB ( BA 8

BC = 3 4 AB ( BA 8 1 e S - programme 011 mathématiques ch8 cahier élève Page 1 sur 6 Ch8 : Produit scalaire Exercice n A page 5 : Calcul vectoriel Reproduire la figure et compléter le texte On considère le triangle ABC donné

Plus en détail

Chapitre 2 : Distance point-droite et bissectrices

Chapitre 2 : Distance point-droite et bissectrices DISTANCE POINT-DROITE ET BISSECTRICES 17 Chapitre 2 : Distance point-droite et bissectrices 2.1 L équation normale d une droite Introduction : L équation normale d une droite nous permettra de calculer

Plus en détail

THEOREMES DE GEOMETRIE

THEOREMES DE GEOMETRIE THEOREMES DE GEOMETRIE DROITES REMARQUABLES D'UN TRIANGLE Hauteurs : On appelle hauteur d'un triangle une droite qui passe par un sommet du triangle et qui est perpendiculaire au coté opposé à ce sommet.

Plus en détail

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD].

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD]. GÉOMÉTRIE PLANE Langage géométrique : notations et vocabulaire. [ ] = segment [AB] = segment d extrémités A et B. AB = longueur du segment AB (ou parfois la distance de A à B). ( ) = droite (AB) = droite

Plus en détail

Repérage dans le plan (début)

Repérage dans le plan (début) Repérage dans le plan (début) I/ Repère Def: un repère du plan est la donnée de trois points non alignés O, I et J. Def: si les axes ( OI ) et ( OJ ) sont perpendiculaires et si les distances OI et OJ

Plus en détail

P R O D U I T S C A L A I R E.

P R O D U I T S C A L A I R E. ère S 00/005 Produit scalaire J TAUZIEDE P R O D U I T S C A L A I R E I- DEFINITION ET PREMIERES PROPRIETES ) Produit scalaire de deux vecteurs colinéaires Définition Soit u et v deux vecteurs colinéaires

Plus en détail

ANNEXES. I. Documents cinquième. a. Fiche modèle à rendre avec la figure. Données. Je sais que D après la propriété J en conclus que

ANNEXES. I. Documents cinquième. a. Fiche modèle à rendre avec la figure. Données. Je sais que D après la propriété J en conclus que ANNEXES I. Documents cinquième a. Fiche modèle à rendre avec la figure Noms : Données Je sais que D après la propriété J en conclus que Travail en groupe Exercice Groupe 1 Construire un triangle ABC rectangle

Plus en détail

FACULTE POLYTECHNIQUE DE MONS EPREUVE D ADMISSION DE JUILLET 2014 GEOMETRIE PLANE SERIE E

FACULTE POLYTECHNIQUE DE MONS EPREUVE D ADMISSION DE JUILLET 2014 GEOMETRIE PLANE SERIE E nom, prénom: FACULTE POLYTECHNIQUE DE MONS EPREUVE D ADMISSION DE JUILLET 2014 GEOMETRIE PLANE SERIE E Dans un système d axes OXY orthonormé, soient la circonférence C 1 centrée à l origine et de rayon

Plus en détail

3 ème BREVET : théorème de Thalès

3 ème BREVET : théorème de Thalès Exercice 1 1 Tracer en triangle ABC rectangle en A tel que : AB = 5 cm et AC = 3 cm. Placer le point D sur [AB] tel que BD = 4 cm. Tracer la perpendiculaire à (AB) passant par D, elle coupe [BC] en E.

Plus en détail

Mathématiques. Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème.

Mathématiques. Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème. Mathématiques Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème. Il pourra aussi servir plus tard au lycée pour des révisions.. A1 p1 Les nombres A2 p2

Plus en détail

Exercice 1 (5,5 points)

Exercice 1 (5,5 points) Devoir commun de mathématiques Durée : heures SUJET A Exercice 1 (5,5 points) QCM questions 1 à 6 (réponse exacte +0,75 point, pas de réponse 0 point, réponse fausse 0,5 point) Sachant que une et une seule

Plus en détail

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer...

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer... 3 Pr démontrer... Fiches de géométrie Niveau 3ème...que deux droites sont parallèles... Fiche...que deux droites sont perpendiculaires... Fiche 2...que deux longueurs sont égales... Fiche 3...que deux

Plus en détail

Justifier. 2) Comment déceler des transformations dans une figure? 7-8

Justifier. 2) Comment déceler des transformations dans une figure? 7-8 Justifier 1) Comment justifier que page a) un quadrilatère est un parallélogramme, 2 b) un quadrilatère est un rectangle, 3 c) un quadrilatère est un losange, 4 d) un quadrilatère est un carré, 4 e) un

Plus en détail

Exercices sur le barycentre

Exercices sur le barycentre Exercices sur le barycentre Exercice 1 : ABCD est un quadrilatère quelconque, I le milieu de [AD] et J celui de [BC]. 1) Ecrire IJ comme la somme de AB et de deux autres vecteurs que l on précisera. 2)

Plus en détail

LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST...

LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST... THEME : LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST... SOMMAIRE : PARALLELOGRAMME? RECTANGLE? LOSANGE? CARRE? PARALLELOGRAMME? Vous disposez principalement de deux méthodes, une concernant

Plus en détail

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan Produit scalaire de deux vecteurs de l espace 1 Rappels sur le produit scalaire de deux vecteurs du plan 1.1 Définition Soit u et v deux vecteurs du plan. Si u = 0 ou v = 0, alors u v = 0 (Attention! On

Plus en détail

Annales sur la géométrie dans l espace

Annales sur la géométrie dans l espace Annales sur la géométrie dans l espace Exercice I : France juin 200 Soient a un réel strictement positif et OABC un tétraèdre tel que : OAB, OAC et OBC sont des triangles rectangles en O, OA = OB = OC

Plus en détail

5. Géométrie analytique de l'espace

5. Géométrie analytique de l'espace 43 5. Géométrie analytique de l'espace 5.1. Droites Équations paramétriques Il n'existe pas d'équation cartésienne d'une droite dans l'espace.. Le point A est appelé le point d'ancrage. N'importe quel

Plus en détail

Chapitre 4 : Triangles.

Chapitre 4 : Triangles. Chapitre 4 : Triangles. I Somme des angles d un triangle. 1 Propriété. La somme des mesures des angles d un triangle est égale à 180. Dans le triangle JKL, on a + + = 180. 2 Triangles particuliers. Triangle

Plus en détail

Configurations du plan en seconde Parallélogrammes Rectangles

Configurations du plan en seconde Parallélogrammes Rectangles Configurations du plan en seconde Parallélogrammes Rectangles Exercices avec GéoPlan : parallélogrammes, problèmes d'alignement. Sommaire Théorème de Varignon 1. Thalès et parallélogramme 2. Projections

Plus en détail

5. Exercices et corrigés

5. Exercices et corrigés 5. Exercices et corrigés Rappels et questions-tests p.166 1) ABC est un triangle. Placez les points D et E tels que : BD = AC et AE = BA. Quelle est la nature du quadrilatère ADCE? ) ABC est un triangle.

Plus en détail

DROITES, PLANS ET VECTEURS DE L ESPACE.

DROITES, PLANS ET VECTEURS DE L ESPACE. DROITES, PLANS ET VECTEURS DE L ESPACE. I- Droites et plans de l espace : Rappels des règles de base Par deux points distincts de l espace, passe une unique droite. Par trois points non alignés passe un

Plus en détail

Repérage dans le plan

Repérage dans le plan Repérage dans le plan I Les repères a) Définition Définition : Un repère du plan est défini par la donnée de trois points distincts non alignés O, I et J. Le repère est alors noté (O ; I ; J). Le point

Plus en détail

b) Déterminer les valeurs de m pour lesquelles la distance de A à P m est égale à

b) Déterminer les valeurs de m pour lesquelles la distance de A à P m est égale à 4 éme Année *** Maths Série d exercices Prof : Dhahbi. A *, Por : 97441893 Géométrie dans l espace Dans tous les exercices, 1'espace est rapporté à un repère orthonormé ( 0, i, j, k ). EXER CICE N 1 :

Plus en détail

Fiche 1 Calcul vectoriel dans R 2 et R 3

Fiche 1 Calcul vectoriel dans R 2 et R 3 Université Paris, IUT de Saint-Denis Année universitaire 0-0 Licence Pro MDQ Géométrie Fiche Calcul vectoriel dans R et R Dans les exercices suivants, on suppose le plan muni d un repère orthonormal (O,,

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

Le point. 2. Axiome d'euclide (III ème IV ème siècle av J.C.) 3. Parties d'une droite. RAPPELS DE GÉOMÉTRIE

Le point. 2. Axiome d'euclide (III ème IV ème siècle av J.C.) 3. Parties d'une droite. RAPPELS DE GÉOMÉTRIE 1. Le point. C'est l élément élémentaire de la géométrie. Une infinité de points constitue une droite. Sur le dessin, la droite (D) passe par une infinité de points : on dit que ces points sont alignés.

Plus en détail

Chapitre 4: Géométrie analytique dans l'espace

Chapitre 4: Géométrie analytique dans l'espace GEOMETRIE ANALYTIQUE DANS L'ESPACE 35 Chapitre 4: Géométrie analytique dans l'espace Prérequis: Géom. vectorielle dans V 3, géom. analytique dans le plan Requis pour: Algèbre linéaire, examen de maturité.

Plus en détail

S11C. Autour de la GEOMETRIE PLANE Corrigé Vocabulaire et constructions de base

S11C. Autour de la GEOMETRIE PLANE Corrigé Vocabulaire et constructions de base CRPE S11C. Autour de la GEOMETRIE PLANE Corrigé Vocabulaire et constructions de base Mise en route at hs.c om 1. (AB) représente la droite (en noir) qui passe par A et B, [AB] représente le segment (en

Plus en détail

CHAPITRE 6 : PRODUIT SCALAIRE

CHAPITRE 6 : PRODUIT SCALAIRE CHPITRE 6 : PRODUIT SCLIRE I. Produit scalaire de deux vecteurs dans le plan 1. Généralités Définition : Soit u et v deux vecteurs du plan non nuls, et, B, C trois points du plan tels que Le produit scalaire

Plus en détail

6 ème COURS : droites perpendiculaires et droites parallèles.

6 ème COURS : droites perpendiculaires et droites parallèles. 1 Droites sécantes Définition : deux droites sécantes sont deux droites qui ont un seul point commun. Ce point commun est appelé point d intersection des deux droites. Les deux droites (d1) et (d2) se

Plus en détail

TRANSLATION et VECTEURS : Composition de deux symétries centrales. 3ème_Chap.5_Translation et Vecteurs

TRANSLATION et VECTEURS : Composition de deux symétries centrales. 3ème_Chap.5_Translation et Vecteurs TRANSLATION et VECTEURS : Composition de deux symétries centrales 1 Activité «avant de démarrer» p200 LIEN ENTRE TRANSLATION ET VECTEUR 2 I VECTEURS 1. Définition Un vecteur est défini par une direction,

Plus en détail

PARALLELES ET PERPENDICULAIRES

PARALLELES ET PERPENDICULAIRES PARALLELES ET PERPENDICULAIRES Je sais définir et construire deux droites perpendiculaires Je sais définir et construire deux droites parallèles Je comprends les propriétés permettant de démontrer que

Plus en détail

Géométrie dans l' espace

Géométrie dans l' espace Exercice 1 Le repère ( A, AB, AD,AF ) formé sur le cube ABCDEFGH est orthonormé direct Calculer les produits vectoriels suivants AB AD, AB AC, AC BD et AC FH Dans tous les exercices qui suivent, l espace

Plus en détail

1. Tracer un triangle ABC et placer le point M milieu de [AB]. Soit le point N symétrique

1. Tracer un triangle ABC et placer le point M milieu de [AB]. Soit le point N symétrique 4 ème D DS4 triangles : milieux, parallèles sujet 1 2009-2010 Agrandissement - réduction NOM : Prénom : Note : 20 Objectif Acquis En cours Non Acquis d acquisition Connaître et utiliser les théorèmes relatifs

Plus en détail

THEME : DROITES REMARQUABLES DANS UN TRIANGLE - EXERCICES CORRIGES SERIE 2. Solution : Un dessin vaut mieux qu un long discours. COMMANDEMENT N o 1 :

THEME : DROITES REMARQUABLES DANS UN TRIANGLE - EXERCICES CORRIGES SERIE 2. Solution : Un dessin vaut mieux qu un long discours. COMMANDEMENT N o 1 : THEME : DROITES REMARQUABLES DANS UN TRIANGLE - EXERCICES CORRIGES SERIE 2 Exercice 11 : ABCD est un parallélogramme de centre O. Soient I est le milieu de [AD] et J celui de [AB]. Soit D 1 la droite passant

Plus en détail

CALCUL VECTORIEL COMPOSANTES D UN VECTEUR - EXERCICES

CALCUL VECTORIEL COMPOSANTES D UN VECTEUR - EXERCICES THEME : CALCUL VECTORIEL COMPOSANTES D UN VECTEUR - EXERCICES Exercice 1 : Dans le plan muni d'un repère ( O, I, J ), placer les points : A( - 2 ; 2 ) ; B( 3 ; 5 ) ; C( - 3 ; - 1 ) ; D( 4 ; - 2 ) et E(

Plus en détail

DROITES REMARQUABLES DANS UN TRIANGLE - EXERCICES CORRIGES SERIE 3

DROITES REMARQUABLES DANS UN TRIANGLE - EXERCICES CORRIGES SERIE 3 THEME : DROITES REMARQUABLES DANS UN TRIANGLE - EXERCICES CORRIGES SERIE 3 Exercice 14 : O est le centre du cercle circonscrit au triangle ABC. Soient A',B' et C' les milieux des côtés respectifs [BC],

Plus en détail

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite 6 ème - 5 ème Géométrie de base Notation : On note un point à l aide d une croix pour indiquer le lieu et d une lettre MAJUSCULE à côté pour indiquer son nom Attention : Une MÊME lettre ne peut désigner

Plus en détail

Utiliser les propriétés des symétries axiale ou centrale.

Utiliser les propriétés des symétries axiale ou centrale. Chapitre 4 Éléments de Géométrie Ce que dit le programme CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Coordonnées d un point du plan Abscisse et ordonnée d un point dans le plan rapporté à un repère orthonormé.

Plus en détail

Géométrie de l espace

Géométrie de l espace [http://mp.cpgedupuydelome.fr] édité le 4 septembre 06 Enoncés Géométrie de l espace Notions communes Exercice [ 087 ] [Correction] À quelle(s) condition(s) simple(s) l intersection de trois plans de l

Plus en détail

I Définition. Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D.

I Définition. Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D. QUADRILATERES I Définition Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D. Quatre côtés : les segments [AB], [BC], [CD] et

Plus en détail

2 nde Savoirs minimaux Enoncés Droites

2 nde Savoirs minimaux Enoncés Droites 2 nde Savoirs minimaux Enoncés Droites Le plan est muni d un repère O, I, J Exercice 9 p 186 Les points A 3 ; 2, B 0 ; 5, C 12 ; 47 et D 1 ; 3 appartiennent-ils à la droite d équation y 3x 11? Exercices

Plus en détail

Vérifier la validité de l observation en déplaçant un des 4 sommets du quadrilatère.

Vérifier la validité de l observation en déplaçant un des 4 sommets du quadrilatère. 50 - Aires 3 Cabri Enoncé : ABCD est un quadrilatère quelconque, I le point d intersection de ses diagonales. Calculer le produit des aires des deux triangles grisés et le produit des aires des deux autres

Plus en détail

3 et 4 Géométrie analytique 2D - Exercices

3 et 4 Géométrie analytique 2D - Exercices 1/10 Edition 2007/2008 Géométrie métrique 3 et 4 Géométrie analytique 2D - Exercices Liens hypertextes Cours de géométrie analytique 2D: http://www.deleze.name/marcel/sec2/cours/geomanalytique2d/ga2d-cours.pdf

Plus en détail

CHAPITRE I THEOREME DE THALES

CHAPITRE I THEOREME DE THALES CHAPITRE I THEOREME DE THALES 1) Résolvez les équations suivantes : a) 3 4 x 7 b) 1 5 4 2 x c) 5 11 x 13 d) 7 2x 8 3 e) x 2 12 x 3 f) g) h) i) j) 7x 1 4 9x + 8 5 5x 2 3 4x 7 2x 1 3 5x + 2 4 1 4 x x 4 x+

Plus en détail

Exercice de géométrie

Exercice de géométrie DOMAINE : Géométrie NIVEAU : Débutants CONTENU : Exercices AUTEUR : Igor KORTCHEMSKI STAGE : Cachan 2011 (junior) Exercice de géométrie 1 Énoncés Exercice 1 Soit ABC un triangle. Montrer que l intersection

Plus en détail

Quadrilatères remarquables

Quadrilatères remarquables Les quadrilatères au collège avec GéoPlan Quadrilatère orthodiagonal, cerf-volant, pseudo-carré, quadrilatère inscriptible, antiparallélogramme. Sommaire 1. Définitions 2. Quadrilatère orthodiagonal 3.

Plus en détail

DROITES, PLANS ET VECTEURS DE L ESPACE.

DROITES, PLANS ET VECTEURS DE L ESPACE. DROITES, PLANS ET VECTEURS DE L ESPACE. : la perspective cavalière Pour représenter un objet de l espace par une figure plane, on adopte un mode de représentation appelé «perspective cavalière» qui est

Plus en détail

DROITES REMARQUABLES DANS UN TRIANGLE EXERCICES ( demonstrations )

DROITES REMARQUABLES DANS UN TRIANGLE EXERCICES ( demonstrations ) THEME : DROITES REMARQUABLES DANS UN TRIANGLE EXERCICES ( demonstrations ) Exercice 1 : Médiatrices Deux points A et B appartiennent à un cercle de centre O. Démontrer que la médiatrice de la corde [AB]

Plus en détail

Ch3 : configurations du plan - repérage d un point

Ch3 : configurations du plan - repérage d un point Ch3 : configurations du plan - repérage d un point 1. Coordonnées d un point sur un plan : repère orthonormé 1 (O,I,J et repérage d un point distance de deux points - démonstration avec le théorème de

Plus en détail

Exercices supplémentaires : Produit scalaire dans l espace

Exercices supplémentaires : Produit scalaire dans l espace Exercices supplémentaires : Produit scalaire dans l espace Dans tous les exercices, sauf quand cela est précisé, on considère un repère orthonormal de l espace ; ; ;. Partie A : Repère et vecteurs coplanaires

Plus en détail

Leçon 29. Droites remarquables du triangle

Leçon 29. Droites remarquables du triangle Tout ce qui est en bleu sera dit à l'oral ou nous sera éventuellement utile pour les questions venant du jury; le reste sera projeté. Leçon 29. Droites remarquables du triangle Introduction (à l'oral):

Plus en détail

Chapitre 10 - Notions de géométrie

Chapitre 10 - Notions de géométrie Chapitre 10 - Notions de géométrie Activité 1 Exercice 1 Exercice 2 x y a b c x // // S y // // S a // // S b // // S c S S S S // Exercice 3 MATHE 1 re année - Solutionnaire, http://maths.deboeck.com

Plus en détail

ÉLÉMENTS DE GÉOMÉTRIE PLANE

ÉLÉMENTS DE GÉOMÉTRIE PLANE ÉLÉMENTS DE GÉOMÉTRIE PLANE I. DROITE ET SEGMENT 1. Généralités Il existe une droite et une seule passant par deux points A et B distincts donnés, on la note (AB). On peut dire que la droite passe par

Plus en détail

DROITES ET PLANS DE L ESPACE PROBLEMES

DROITES ET PLANS DE L ESPACE PROBLEMES Polynésie Juin 008. Dans l espace rapporté à un repère, on considère les points A( ; ;), B(0 ; ;4), (- ;- ;), D(4 ;- ;5) et le vecteur u( ;- ;). ). a) Démontrer que les points A, B et ne sont pas alignés.

Plus en détail

Géométrie dans l'espace

Géométrie dans l'espace Géométrie dans l'espace 1. Rappels de géométrie dans l'espace 1.1. Positions relatives de droites et plans 1.1.1. Position relative de deux plans Définition : On dit que deux plans sont strictement parallèles

Plus en détail

Chapitre 1 Parabole ( ) ( )

Chapitre 1 Parabole ( ) ( ) Chapitre 1 Parabole Définition 1 (conique en général) Soit (D) une droite fixe, et F est un point n appartenant pas à (D) et e est un nombre réel positif non nul. On appelle conique de foer F, de directrice

Plus en détail

Classeur de géométrie 3 ème

Classeur de géométrie 3 ème - 1 - lasseur de géométrie 3 ème Pour démontrer que. Un point est le milieu d un segment Un point est sur un cercle Un point est l image d un autre par es distances sont égales eux angles ont la même mesure

Plus en détail

6 ème cours : Introduction à la géométrie

6 ème cours : Introduction à la géométrie 1 Point, droite, segment et demi-droite. Par un point passe une infinité de droites. Placer un point A et tracer trois droites passant par le point A. Par deux points passe une seule droite. Placer deux

Plus en détail

Produit scalaire dans l espace Types Bac

Produit scalaire dans l espace Types Bac Lycée Paul Doumer 2013/2014 TS 1 Exercices Produit scalaire dans l espace Types Bac Exercice 1 Pondichery avril 2012 Dans le repère orthonormé les plans P et P d équations : de l espace, on considère :

Plus en détail

Equations cartésiennes. Fiche(1)

Equations cartésiennes. Fiche(1) Fiche(1) Le tableau suivant indique, dans la case située ligne l et colonne c, l altitude (exprimée en centaines de mètres) au point dont l abscisse est c et l ordonnée l : par exemple, l altitude du point

Plus en détail