a- par la Surveillance du Portefeuille.

Dimension: px
Commencer à balayer dès la page:

Download "a- par la Surveillance du Portefeuille."

Transcription

1 TARIFICATION DU RISQUE INDIVIDUEL D'ACCIDENTS D'AUTOMOBILES PAR LA PRIME MODELEE SUR LE RISQUE PIERRE J. DELAPORTE Paris, France Le principe de l'assurance contre les accidents d'automobiles est la formation d'une mutualit6 oh les assur6s mettent en commun leurs risques. Si les risques des assur6s ne sont pas tous ~gaux entre eux, il est normal de demander A chacun des assur6s une prime proportionneue au risque qu'il fait supporter ~ la mutualit& La tarification a pour objet l'estimation du risque propre A chaque assurd, afin de r6partir 6quitablement la charge totale de la mutualit& On groupe habituellement les v6hicules ayant en commun plusieurs caractdristiques du risque telles que m~me module de voiture, m~me usage, m~me lieu de garage habituel. Nous d6signerons un tel groupement par classe de tarif. ESTIMATION DU RISQUE MOYEN : TARIFICATION A LA PRIME MOYENNE On observe les accidents relatifs aux v~hicules appartenant ~ une m~me classe de tarif. Le quotient du cofit de ces accidents au nombre de voitures-ann& donne la prime moyenne pure empirique. Cette prime moyenne subit alors quelques corrections pour tenir compte de la survenance au hasard des gros sinistres et du fair que la prime indiquer dans le tarif estime le risque moyen futur et non pas le risque pass& Cette prime moyenne sera demand& ~ toutes les voitures ayant les caract6ristiques d6finies par la classe de tarif; elle suppose que tous les risques de cette classe sont 6gaux, c'est-adire que les seuls param&res de tarification retenus sont exhaustifs pour caract~riser le risque que l'assur~ fera supporter A la mutualit& Cependant, les compagnies d'assurances qui utilisent des tarifications k la prime moyenne ont l'habitude de g6rer les polices de leur portefeuille en niant cette 6galit6 des risques: a- par la Surveillance du Portefeuille. Les assureurs ont l'habitude d'examiner soit les rapports du

2 252 RISQUE INDIVIDUEL D'ACCIDENTS D'AUTOMOBILES cofit des sinistres aux primes, soit les nombres de sinistres d~clarrs sur chaque police, pour drtecter, puis rrsilier ou majorer la prime future des polices qui ont fait supporter dans le passe les plus lourdes charges A la mutualitc b- par des rdductions de primes aux bons assurds. Souvent les compagnies acceptent de rrduire le montant de la prime demandre aux assurrs qui ont drclar6 peu de sinistres ou bien consentent contractuellement une bonification de prime s'il n'a pas ~t6 drclar6 d'accident. Dans les deux cas ci-dessus l'assureur admet: I ) que les risques individuels appartenant ~ une m~me classe de tarif ne sont pas 6gaux entre eux; 2 ) que les risques qui ont 6t~ plus lourds ou plus 16gets dans le pass6 le resteront aussi dans l'avenir. OBSERVATION DES NOMBRES DE SINISTRES DI~CLARI~S LES ANNEES SUCCESSIVES SUR UN MEME VEHICULE Dans une mrme classe de tarif examinons les nombres de sinistres drclar~s pour des voitures assurres pendant deux ann~es cons~cutives. Classons ces voitures selon leur nombre d'accidents de la premi&re annie is' et observons leur fr~quence pendant la deuxi&me annie ~s'. Ier EXEMPLE: Accidents aux tiers de petites voitures utilis~es pour les affaires, ayant leur garage habituel tt Paris, observ~es du I.I.I958 au Ensemble 1958 Nombre d'accidents o i Frrquence observre xs' o i o,59o 1959 Fr~quenceobservregs' 0,395 o,717 o,962 x,168 1,278 x,643 0, Fr~quence estimre E [IS/1Sq o,4i 7 0,682 0,947 1,212 x,477 1,742 0,590 La frrquence estim~e EE slxs'] est obtenue au moyen de la formule (3) ci-apr~s. 2e EXEMPLE: Accidents aux tiers de voitures Simca 7 CV, usage promenade, garage habituel Paris

3 Fr6quence RISQUE INDIVIDUEL D'ACCIDENTS D'AUTOMOBILES 253 Ensemble ~958 Nombre d'accidents o I Fr6quence observ6e is' o I ,326 I959Fr6quence observ6e as' o,223 o,4o4 o,477 0,833 3,ooo 3,ooo o, E [~s/ls" ] 0,236 0,459 0,682 0,905 I,i28 1,351 0,326 3e EXEMPLE: Tous accidents d6clar6s pendant les 4 ann6es sur des voitures sortant d'usine, d'apr6s P. Depoid (voir [I] 1, p. 117). Les fr6quences estim6es sont ici de la diminution progressive de la fr~quence due ~t ce que les voitures 6taient toutes neuves ~t l'origine et ~t l'61imination des v6hicules les plus I ee ann6e Nombre d'accidents o I /> Fr6quence observ6e o i 2,50 o,671 2e ann6e observ6e o,47 0,72 I,O6 o, o,469 o,71o I,O e ann6e observ6e 0,39 o,6o o,9o o,517 estim6e 0,384 o,582 0, e Fr6quence observ6e 0,33 0,45 o,58 o,386 estim6e 0,287 o,434 o, On observe ainsi que le classement des voitures selon les nombres croissants d'accidents qu'elles ont eus la donne des croissantes d'accidents les suivantes. MODULE REPRI~SENTANT LA SURVENANCE DES ACCIDENTS VOITURES D'UNE Mf~ME CLASSE DU TARIF Ddsignons par: DES s, la variable al6atoire nombre de sinistres d'une voiture i pendant une dur~e unitaire (pour simplifier nous prendrons une annie), s, est donc le risque d'accident d'une voiture i. is' ~, 2s',, ~s', les nombres de sinistres de cette voiture i pendant la I ~re, la 2e... la l ~me ann6e 6tudide. F (s) la fonction de r6partition des variables s~ des voitures de la classe du tarif. P (js'ds,) la probabilit6 pour qu'une voiture de risque s, air j s', accidents au cours de la/' ~me ann6e. Nous avons (voir [3], P. 122) que l'ensemble des r~sultats statistiques pouvait ~tre repr6sent6 par un mod&le oh 1) Les nombres entre crochets renvoient ~ la bibliographie ~ la fin de l'article.

4 254 RISQUE INDIVIDUEL D'ACCIDENTS D'AUTOMOBILES la probabilitd, qu'une voiture prise au hasard dans la classe ait s' accidents la premiere annde, est +~ P (s') = J" P (s'ls). df(s) (I) so oh so est le risque minimum d'une voiture. On a montrd (voir [4], P. 88 A 90) que la probabilitd P (~s~]s,) dtait donnde par la loi de Poisson js'~ S~ P (:',[h) = e-', s' w J t- (2) La fonction de rdpartition F(s) peut prdsenter diverses formes analytiques selon la client61e du mod61e de v~hicule, la sdlection des risques faite par la compagnie d'assurances ~ la souscription et par la surveillance du portefeuille. On a donnd une mdthode gdn~rale de d~termination de cette forme analytique par les Types de K. Pearson (voir [3], formules I, 2 et 6). Ce mod61e permet une reprdsentation statistiquement satisfaisante: x o) des nombres de sinistres observds sur l'ensemble des vdhicules d'une classe (voir [3], P. z27 et zz8; [4], tableau z); 2 ) des nombres de sinistres d'une annde pour chaque voiture, connaissant les nombres de sinistres des ann6es antdrieures. En effet, si l'on suppose le risque s t de chaque voiture stable au cours du temps 1) le hombre probable des sinistres de 2e annde est l'esp6- rance matmmatique de slide par le nombre d'accidents observd la 1 ~re annde #~ f s. P (:'1 s). df (s) " (3) I P (:'Is). (s) $0 1) On a montr6 ([6] application des formules N 0 6 et 7) que, d'apr~s les observations des nombres de sinistres de 2 ann6es cons6cutives, les modifications au cours du temps du risque des voitures d'une classe 6talent statistiquement n6gligeables.

5 RISQUE INDIVIDUEL D'ACCIDENTS D'AUTOMOBILES 255 Ces espdrances mathdmatiques li6es sont indiqu6es comme,,fr6quence estimde" dans chacun des 3 exemples ci-dessus. L'action de la SurveiUance du PortefeuiUe qui r6silie les polices ayant des nombres de sinistres dlev6s a pour effet de diminuer progressivement les frdquences moyennes observdes dans les statistiques des compagnies d'assurances. On a montrd (voir [6], formules 2 et 5) que, d'apr6s les statistiques des voitures assurdes par l'urbaine et la Seine 1), la distribution des risques individuels ale plus souvent pour forme la probabilit6 dl6mentaire: a b df (s) = ~(b)" e'acs--s ~" (s - So) ~-x. as (4) off F(b) est l'intdgrale eulerienne compl6te de seconde esp~ce et so (risque minimum), a et b sont des param6tres propres A la classe du tarif. On a indiqu6 une mdthode gdndrale d'estimation de ces param~tres par le maximum de vraisemblance ([6] formule 5). Les courbes de distribution des risques ([6] fig. Iet 2) donn6es pour divers mod61es de vdhicules montrent que, pour un m~me lieu de garage et un m~me usage, les risques individuels varient tr6s fortement et que leur aire commune est tr~s importante: 66 //o en Province (zone Normale) et 78 ~o A Paris, alors que les puissances SAE de ces voitures varient de 12 A 75 CV. Les risques individuels petits et moyens sont A peu pr6s les m~mes pour tous les types de vdhicules qui se difffrencient surtout par les plus gros risques individuels dont les frdquences sont beaucoup plus 61ev6es pour les voitures de fortes puissances. Ceci explique que le risque moyen soit diff6renci6 selon les types de v6hicules, alors que les risques individuels ont des distributions peu diff~renci6es. Les diff6rences entre les risques proviennent pour la plus grande part de la clientele qui choisit le vdhicule et non pas des diff6rences qui existent entre les divers modules de v6hicules. Ceci explique de 16g~res diff6rences entre les risques moyens des diverses classes de tarif, alors que la diff6renciation est surtout tr&s forte entre les risques individuels A l'int6rieur d'une classe. C'est dire que le risque mis en mutualit6 varie beaucoup plus avec l'assur6 qu'avec les caract6ristiques 1) Nous remercions vivement M.A. Pla, M.J. Mouillard et Melle G. Chardon de l'aide qu'ils nous ont apport6e pour cette 6tude.

6 256 RISQUE INDIVIDUEL D'ACCIDENTS D'AUTOMOBILES g~n~rales de la classe. La prime qu'il est 6quitable de demander chaque assure doit donc vafier avec les caract6ristiques g6n6rales de la classe mais surtout avec les caract6ristiques individuelles du risque. ESTIMATION PROGRESSIVE DU RISQUE INDIVIDUEL La tarification des risques devrait se faire d'apr~s la valeur s, du risque de l'assur6 i. Ceci n'est pas possible puisque le risque s, est n~cessairement inconnu, mais, cependant, il peut ~tre estim6. L'assureur devra donc, ~ chaque instant, prendre pour base de la prime du risque s, la meiueure estimation qu'il peut en faire. Ceci entraine pour l'assureur une suite d'estimations successives faites pour chaque risque i au d~but de chaque ann6e d'assurance. Soit F (s) la fonction de r6partition des risques individuels d'une classe du tariff La somme des probabilit6s des risques individue]s est J" df(s) = I. *0 Apr+s une ann6e d'observation des risques, les probabilit6s d'une valeur de s~ ne sont pas les m~mes si le risque n'a eu aucun sinistre, a eu I sinistre, a eu 2 sinistres, etc. Ces probabilit6s sont donn~es par les distributions li~es suivantes, telles que la somme des aires de l'ensemble de ces distributions soit ~gale ~ I. La probabilit6 616mentaire de s, s'il n'est survenu aucun sinistre pendant la I ~re ann6e est: s'il est survenu I sinistre: s'il est survenu xs' sinistres: P (o] s). df(s) = e'*. df (s) (5) P (~ Is). df(s) = s. e'". df(s) (6) P (ls'[s). af(s) = S (~s 3. es.,tf(s) (7) is + ] D'une mani6re analogue on 6crira les probabilit6s 616mentaires de s, sachant que le nombre total de sinistres d6clar6s pendant les 2 premi6res ann4es sur la voiture iest 2s,: ~P (xs'~[s). P(,s',ls).dF(s) -- s#'+**" e -e* df(s) (S) fis', +,s',)!" "

7 RISQUE INDIVIDUEL D'ACCIDENTS D'AUTOMOBILES 257 D'une mani~re g6n6rale la probabilit6 61~mentaire de s, sachant que le nombre total de Sinistres d6clar6s pendant les k premi&res anndes sur la voiture iest ks,: P P... P =. e "k*. df(s) (9) (ls'~ ~s'~)! EXEMPLE 3 -- Assurance de responsabilit~ civile des voitures de la classe de tarif: voitures Renault--modUle Dauphine, usage: Affaires, lieu de garage habituel Paris, en I958-I959. L'~tude des sinistres d~clar~s donne une probabilit~ ~l~mentaire de la forme (4) dont les param~tres, estim~s par la m6thode du maximum de vraisemblance, sont a = 3,862 b = 1,6oo et so = o. Sur la figure No. I, on a represent& en pointill6: la courbe de densit~ de probabilit~ des risques s~ en trait continu: les courbes de densit~ de probabilit~ des risques s~ sachant qu'il a 6t~ d~clar~ o sinistre, ou I sinistre, ou 2 sinistres, pendant la I ~re ann6e. en tirets: les courbes de densit6 de probabilit6 des risques s, sachant qu'il a 6t6 d6clar6 o sinistre, ou I sinistre, ou 2 sinistres, pendant l'ensemble des 2 premieres ann6es. On volt imm6diatement que les courbes de densit6 de probabilit6 sont tr~s diff6rentes les unes des autres d~s que l'on connait les sinistres de la I ~re ann6e, a fortiori lorsqu'on connait les sinistres des 2 premieres ann6es. EXEMPLE 4 -- Assurance de responsabilit6 civile et de dommages la voiture pour la classe de tarif: voiture Peugeot, module 4o3, usage: commerce, lieu de garage habituel: villes de moyenne importance (zones 3-4) en Les diverses courbes des densit6s de probabilit6 indiqu6es ci-dessus sont repr6sent6es sur la figure No. 2. On peut proposer deux mdthodes d'estimation progressive du risque individuel d'accident d'apr~s les distributions li6es indiqu~es dans les formules (5) ~ (9). x7

8 258 RISgUE INDIVIDUEL D'ACCIDENTS D'AUTOMOBILES Densit6 de probabilit6 des risques s, ~ l'origine et densit6s de probabilit6 li~es par les sinistres de la premiere ann6e ou des 2 premieres ann6es z,8 1,6 1,4 1,2 l,o l o ",!1! \~ \ ",.!l \ \ \ t \ \ ": 0,8 O,6,[ t si- \ ~XxX \ " ". I 0'4 i " ~ TM " ' O,2 I r 0,5 i i,5 si Fig. i 0,8.... I I S ~ "%,%,,.6 //-'"'~ ~.~ "'.,. 0,4 -rt~ /[ -- X \.,, " \ ~ %.%., o,2 I / i o o,5 t 1,5 s~ Fig. 2 I o) Estimation du risque individual par le risque le plus probable, c'est-a-dire par la dominante des distributions li6es. Cette hi6rarchisation des gravitds des risques est celle que d6sirerait l'assur~.

9 RISQUE INDIVIDUEL D'ACCIDENTS D'AUTOMOBILES 259 L'4tude qui en a 4t4 faite [5] a montr~ qu'eue fournit une solution int4ressante pour l'estimation progressive d'un risque, mais qu'eue ne peut servir de base ~ une tarification de l'assurance automobile sans une modification importante des habitudes actuelles. 2 o) Estimation du risque individuel par le risque probable. Sous le nom de,,prime modelde sur le risque" on a drift 4tudi4 [4] l'efficacit4 de cette m6thode de tarification de l'assurance automobile. Dans cette m4thode, on estime chaque ann4e le risque individuel par son esprrance math4matique li4e par l'information d4j~t connue. A la souscription de la police, l'estimation de la prime de premiere ann4e, appel4e encore prime initiale, se fait d'apr~s l'esp4rance math4matique de la classe de tarif, c'est-~-dire par +~ E [is't] = j" s.df(s) (IO) #0 La prime de 2e ann4e s'obtient au d4but de la 2e ann4e d'apr~s l'esp4rance math4matique de la fr4quence s,, sachant que la voiture i appartient ~t la classe de tarif et qu'il a 6t4 d4clar4 zs', sinistres pendant la I ~re ann4e. Cette esp4rance math4matique li4e est donn4e par la formule (3). L'estimation des primes des ann4es suivantes se fait d'une manitre analogue. En grn4ral, l'estimation de la prime de la (k + I) ~me ann4e d'assurance se fait d'apr~s l'esp4rance math4matique du risque s, li4e par les nombres is',, ~s',... ks', de sinistres d4clar4s pendants les k premieres ann4es d'assurance. +m $ s.p(xs'ts).p(=s'l + is,i, S~,2 st,...k S,]-~- - - ]" P(xs' I s). P(=s' [ s)... P(~s' I s). df(s) +~ y --,n # e s,*',+" +.*'+ 1. e-,,. df(s) +to j. s,s',+... +~',.e-*s.df(s) "0 En d4signant par c le cofit moyen des sinistres de la classe de tarif et par g le taux de frais g4n4raux (y compris commissions et

10 260 RISQUE INDIVIDUEL D'ACCIDENTS D'AUTOMOBILES chargement de sdcuritd), la prime commerciale modelde sur le risque de la voiture i pour la (k + I) ~me annie est donnde par / +1 I-It = c'e[/ +l s'llls't' 2s'i... ks't] (12) I--g La tarification par prime modelde sur le risque a les principales propridtds suivantes [5]: Propridtd I Chaque annde, la somme des primes per~ues est dgale ~ la somme des colts des sinistres et des frais gdndraux. Propridtd 2 La prime modelde sur le risque, demandde ~ un vdhieule i, pour l'annde k + I, est toujours dgale ~ son espdrance mathdmatique i nnd ivid uelle. I1 en rdsulte que: a) le ddpart d'un risque i quelconque ne l~se pas l'dquilibre du portefeuille de la compagnie puisque chacun et l'ensemble des risques restants sont encore tariffs ~ leur espdrance mathdmatique; b) l'assureur qui, par concurrence, propose au risque i une prime infdrieure A la prime modelde sur le risque travaille en-dessous de l'espdrance mathdmatique du risque. L'espdrance math6matique de son gain est donc ndgative et, en rdpdtant de nombreuses fois cette opdration, il subira ndcessairement une perte importante. Propridtd 3 Si le risque est stable au cours du temps quand la durde d'assurance k croit, la prime modelde k+l l-ii sur le risque i tend asymptotiquement vers celle de la vraie valeur s t initialement inconnue et cette asymptote est inddpendante de la distribution initiale F(s) des risques de la classe du tariff Autrement dit, la prime asymptotique d'un risque iest inddpendante des erreurs de la classification initiale de ce risque, c'est-g-dire inddpendante du tarif initial. Sur les figures 3 et 4 on a indiqud, pour les exemples 3 et 4 cidessus respectivement, quelques courbes d'esp~rance mathdmatique du cheminement. Pour cela on a pris pour dchelle des ordonndes

11 RISQUE INDIVIDUEL D'ACCIDENTS D'AUTOMOBILES 261 la valeur du risque, sur le graphique de gauche: valeur vraie du risque individuel, sur le graphique de droite : esp6rance math6matique lide de s, utilis6e pour la prime model6e sur le risque, et pour 6chelle des abscisses; graph!que de gauche: la densitd de probabilit6 des risques individuels s~ ; graphique de droite: les ann~es successives t d'estimation de chaque risque individuel i. Distribution des risques individuels et esp6rances math6matiques du cheminement de l'estimation du risque individuel chaque ann6e s, I E [s',j, s',, ~s',,...},~ I / J st=2, / F L c ~ ' j I S* = I, 5 / ' t $1~O,5 St ~ O,Z = O,I, 1,6 1,4 1,2 I,O o,s o,6 o, 4 0,2 (i I 2 5 IO Densit6 de probabilit6 Fig. 3 x 5 20 Ann6es Le graphique de gauche fait apparaitre la fr~quence avec laquelle chacune des gravit6s de risque individuel s t existe dans le portefeuille de la compagnie d'assurances. Sur le graphique de droite, on a indiqu6 en trait continu, pour quelques valeurs du risque individuel st = o,i; 0,2; 0,5; I,O; 1,5; 2,0, les courbes donnant les esp6rances math~matiques des risques (correspondant ~ la prime model6e qu'aurait ~ payer la I ~re ann6e, la 2e annie, etc. chacun de ces risques).

12 262 RISQUE INDIVIDUEL D'ACCIDENTS D'AUTOMOBILES On voit imm~diatement sur les figures 3 et 4 que, d6s les premi6res armies, la diffdrenciation entre les risques individuels est tr6s forte et qu'h partir de la 8e ou de la xoe annde, la courbe d'espdrance rnathdmatique du cheminement est voisine de la valeur vraie du risque, qui est son asymptote. Distribution des risques individuels et espdrances mathdmatiques du cheminement de l'estimation du risque individuel chaque annde s, I E [s',h s',,,s',,...] /// I'5 r / - \ ~=o, 5.~ = o,z o,8 o,6 o,4 o,= o x 2 5 to x5 2o Densit6 de probabilit6 A~n~ Fig. 4 Propridtd 4 Pour chaque dasse de risques, la tarification par la prime moddde a une efficacitd maximum. En effet, d~signons par ex, l'estimation du risque individuel i prise par le tarif d'assurances pour l'ann6e k. La variance des sinistres par rapport au tarif est: ~ = f (es't -- ex~) ~. P(ls', l st). P(zs', l st)... P(e--1 s'l l st). df(s) = m e = E [ts'l S I ls'i... k_l$'l] -- 2t~k ~. E [/ s' I I 1s'l... k--is'i] + ~.~ (I3)

13 RISQUE INDIVIDUEL D'ACCIDENTS D'AUTOMOBILES 263 cette variance est minimum pour: ~kx- 2E ks'~lls~... k-1 ~ +2kh= donc pour kx~ = E [ks'tlls't... ~_ls',] (14) La variance est donc minimum lorsque le tarif prend pour estimation du risque l'espfrance mathdmatique du risque lide par les ant~cddents, c'est-a-dire pour la tarification par la prime model6e sur le risque. I1 rdsulte de ceci que toutes les autres mdthodes de tarification des risques d'une classe sont moins efficaces que la Prime Modelde, en particulier la prime du risque moyen, les bonifications pour petits nombres de sinistres, etc. Efficacitd de la prime moyenne par rapport ~i la prime modelde pour la k ~rne annde d'assurance, pour une classe du tarif Ddsignons par kv la variance des sinistres de la k ~me ann6e par rapport ~ l'esp6rance math6matique li6e par les sinistres des k-i ann6es ant6rieures +~,v = f E Eks'tl ', k_l 'l} '. 80 lmt~o tdt=o 7~Jtr-- 0 _P (1s'ls)... P (ks'ls).de(s) (15) alors oov est la variance due ~ la survenance au hasard des sinistres d'une annde si l'on connait exactement chacun des risques individuels s t ; iv est la variance de premiere ann6e qui est la m~me si l'on utilise la prime moyenne ou la prime model6e. Donc, ~ l'intdrieur d'une classe de tarif, l'efficacit6 de la tarification A la prime moyenne par rapport A la tarification ~ la prime model6e est,v -- ~ov (16) ~e -- iv -- o~v La figure 5 reprdsente la variation de cette efficacit6 pour le troisi6me exemple (Renault, Dauphine) et pour le 4e exemple (Peugeot 403). Ces courbes montrent que l'efficacitd de la tarification

14 264 RISQUE INDIVIDUEL D'ACC!DENTS D'AUTOMOBILES par la prime moyenne devient mauvaise d~s les premieres anndes et qu'elle est d'autant plus mauvaise que le risque moyen est plus 61evr. Dans tousles cas, l'efficacit6 tend asymptotiquement vers z6ro quand la dur~e d'observation augrnente. Efficacild globale de la prime moyenne par rapport ~ la prime modelde pour l' ensemble des k premieres anndes d'assuranee L'efficacit6 des tarifications peut aussi ~tre examinre pour Yensemble des primes per~ues de la premi&re A la k ~me annre. Ceci correspond b. l'efficacit6 que r~alise une compagnie d'assurance qui applique ces m~thodes de tarification aux polices de son portefeuille; c'est aussi la mani~re dont un assur6 a cotis6 A la mutualit6 pendant l'ensemble des k premi+res annres d'assurance, selon le mode de tarification qui lui est appliquc Pour obtenir cette efficacit6 globale, drsignons par: Z une somme ]E 6tendue de ts' = o A~s'= + oo ~" t19 l'esprrance mathrmatique lire correspondant ~t la prime modelde sur le risque # = E [~s'l is', ~s',... j_ls'] +~ k v'= I ZZ...Z{i % trot s t s'+...+ks'-(x k19)} ~. k P (I s'ls)... P (ks' Js).dF(s) = Z ~V (17) #-I la variance des sinistres autour de la prime model~e (ce r~sultat tr&s simple provient de l'utilisation des esprrances mathrmatiques lires successives). ++0 k v'= I XX...~(i s'+~s'+...+ks'-ks) ~. +o #s tin, if. P (is'is)... P (~s'[ s). df(s) (I8) la variance des sinistres autour du risque moyen. L'efficacit6 globale est alors ke' k Z tv -- k. ~ov _ ~V'-- ~ov',., kv" -- ~V' -- ~V" -- k. oov (19)

15 RISQUE INDIVIDUEL D'ACCIDENTS D'AUTOMOBILES 265 Efficacit6 de la tarification h la prime moyenne par rapport h la tarification par prime model6e ~e I,o Efficacit6 de l'ann~e k o,8 0,6 \\ o,4 \F O,2 i j Dauphine Peugeot 4o3 IO Ann6es k Fig. 5 k e "2 x,o i Efficacit6 pour l'ensemble des k premieres ann6es "~o66- / Daup~ne 0,4 0,2 0 I i I 3 5 io I5 20 Ann~es k Fig. 6 Les courbes d'efficacit~ globale, de la tarification tt la prime moyenne par rapport tt la tarification par la prime model~e, sont donn6es sur la figure No 6 pour les exemples 3 et 4- Dans chaque cas, l'efficacit~ globale de la prime moyenne tend vers z~ro quand le nombre d'ann~es d'assurance crolt. Pour 5 et pour Io ans d'assurance respectivement, on a une efficacit~ de la prime moyenne par rapport tl la prime model~e, de I4,O % et 5,3 % pour la Dauphine, de II,2 % et 3,8 % pour la Peugeot 4o3.

16 266 RISQUE INDIVIDUEL D'ACCIDENTS D'AUTOMOBILES PR]~SENTATION D'UN TARIF A PRIME MODEL]~E SUR LE RISQUE Quelques am~nagements de ces principes grnrraux devront ~tre faits pour la prrsentation commerciale d'un tarif A prime modelre sur le risque: I o) on simplifiera la prrsentation en exprimant dans la police le seul montant de la prime initiale llfi~ et un tableau des coefficients multiplicateurs K de la prime initiale permettant d'exprimer la prime de l'annre l + I en fonction de la prime initiale et du nombre total de sinistres d~clar~s pendant les l premieres annres. Ce multiplicateur K est une fonction K(S'II ) du nombre total de sinistres observes en l anndes S' = ls', + 2s', ts',, mais il est indrpendant de la r6partition de ces s' sinistres entre chacune des I annres. K = r t i E [Z+l s ~[ i s ~, 2s ~... :',] (20) E hs'd Voici A titre d'exemple ces multiplicateurs de correction pour l'assurance de responsabilit~ civile d'une voiture 5 CV Renault, module Dauphine, usage Affaires, ayant Paris pour lieu de garage habituel: (exemple No. 3 ci-dessus) BARt~ME I Nombre de sinistres avec r~glement Nombre d'annres &observation I o I ,794 1,29I 1,787 2,284 2,780 3,277 3,773 4,270 0,659 1,o71 1,482 1,894 2,306 2,718 3,I29 3,541 3,953 4,365 0,563 o,915 1,266 1,618 1,97 o 2,322 2,673 3,o25 3,377 3,729 4,o8o o,491 0,798 I,IO5 1,412 1,719 2,026 2,333 2,64 2,947 3,254 3,561 0,436 0,708 o,981 1,253 1,525 1,798 2,070 2,342 2,615 2,887 3,I6O 0,392 0,636 o,881 1,126 1,371 1,615 1,86o 2, IO 5 2,35 o 2,595 2,839 o,356 o,578 0,800 1,o22 1,244 1,467 1,689 1,911 2,I33 2,355 2,578 0,326 o,529 o,733 o,936 I,I4O 1,343 1,546 1,749 1,953 2,156 2,36o 2 ) on arrondira les valeurs des coefficients K ~t des multiples de 5 ~o afin de diminuer le nombre de valeurs distinctes que peut prendre la prime.

17 RISQUE INDIVIDUEL D'ACCIDENTS D'AUTOMOBILES o) on maintiendra, autant qu'il est possible, le coefficient K k une valeur infdrieure ou dgale A i et on supposera que pour les valeurs K > 0, 0 dtant une limite donnde qui ddpend des tarifications des assureurs concurrents, les assurds quitteront la compagnie. Les valeurs de K infdrieures A I dans le barame I devront alors ~tre majordes de teue sorte que l'espdrance mathdmatique de l'ensemble des nouvelles valeurs K' des coefficients K, multiplide chacune par A (K') probabilitd d'encaissement de la prime, soit au plus dgale A l'espdrance mathdmatique des risques conservds. Si s' ddsigne le hombre de sinistres ddclards en l anndes et G(s'l/) la probabilitd d'observer s' sinistres en l anndes, les K' doivent remplir chaque annde la condition: # --O K'.G(s'I/).A(K') >~ Z g.c(s'l l).h(k') (21) Le bar,me 2 a dtd dtabli sous cette condition (2I) avec A(K') = I si K' < 1,3 et A(K') = o si K' >/1,3. D'autre part on a limitd supdrieurement ~t 2 les valeurs de K' ~ faire figurer sur la police, afin d'dviter d'alarmer inutflement rassurd. 1'--0 BAR'ME 2 Nombre de sinistres ~vec r~glement Nombre d'anndes d'observation 3,~ 5 o I ,90 I 1, ,80 I 1,3o 1,80 2 o,75 0,6 0,95 0,85 1,2 I 1,5 1,4 2 1, ,55 0,8 I I)2 1,5 1,8 2 o,45 0,7 0,9 I 1,3 1,6 1,8 2 L'espdrance mathdmatique du cheminement de la prime relative ~t ce bar,me 2 a dtd indiqude en traits pojntill6s sur la figure No. 3 pour les valeurs du risque individuel s~ = o,i; 0,2; o,5 et I. On voit immddiatement sur ce graphique rimportance de la perte de discrimination, entre les risques, que l'on accepte pour des motifs commerciaux.

18 268 RISQUE INDIVIDUEL D'ACCIDENTS D'AUTOMOBILES 4 o) on a analyse le fonctionnement d'un march6 en regime de libre concurrence off une ou plusieurs compagnies W pratiquent la tarification A prime model~e sur le risque et les autres la tarification ~t prime moyenne (voir [5], 2e cas). On a observ6 que les compagnies W pourraient dprouver des difficultds pour r~aliser des contrats nouveaux, si leur prix de revient de 1 ~re annde est sup6rieur A la prime demandre par la plupart des autres assureurs. Les compagnies W devront alors utiliser en premiere annie une prime inf~rieure A leur prix de revient, mais adopter une strat~gie de modification de la prime des anndes suivantes qui r~ponde A la double condition: -- l'insuffisance des primes de premib,re annie doit 6tre amortie au cours des n premib,res annres, en tenant compte d'une cadence de disparition des bons risques; -- les primes su#rieures ou ~gales ~ 0 lois la prime de premib,re annie ne seront pas recouvrdes. Voici, sur l'exemple pr~cddent, le barb,me des coefficients K" des primes model~es que pourrait adopter une compagnie W dont le prix de revient de premiere annie serait sup~rieur de 15 % ~ la prime qu'elle devrait adopter comme prime initiale, afin d'etre bien placre d&s la premiere annre vis-a-vis de la concurrence. On a adrnis 0 = 1, 3, n = 4, cadence de disparition des bons risques = IO % par an et on a limit6 le barb.me ~t K" = 1, 5 puisque la concurrence est tr~s vive. BAREME 3 Nombre de sinistres avec r~glement I Nombre d'annres d'observation o,95,45 1, ~-- o, 0,9" ,20 I I,OO 1,50 1,40 1,50 0,80 0,95 1,25 1,40 1,50 0,70 0,85 I,IO 1,4o 1,5o 0,60 0,75 I~O0 1,25 1,50 L'usage de ce barb,me permet de compenser en 4 ans une insuffisance de 15 % de la prime de premib,re annie, mais entraine pour

19 RISQUE INDIVIDUEL D'ACCIDENTS D'AUTOMOBILES 269 la compagnie W un investissement en r6serves techniques de 15 % du chiffre d'affaires la premi&re ann6e, 12,8 ~/o la deuxi~me et 5,6 % la troisi~me ann6e. 5 o) Le coefficient K' acquis par un assur6 peut normalement ~tre conserv6 lorsqu'il change de voiture, car ce coefficient caract6rise beaucoup plus l'assur6 que le v6hicule. Notons que le risque d'un assur6 peut se modifier au cours du temps en am61ioration comme en aggravation. On pourra alors limiter l'application des bar&mes aux 6, 8 ou IO derni~res ann6es d'observation du risque. 6 o) La prime model6e sur le risque fait automatiquement la surveillance du portefeuille car elle stabilise les bons risques et, en p6nalisant les risques lourds, incite ces derniers A quitter l'assureur W. On aura donc avantage, lors de la souscription d'une nouvelle police, ~ demander dans la proposition d'assurance quels ont 6t6 les sinistres des derni~res ann6es pr6c6dentes pour 6tablir la police avec une prime initiale normale, mais en tenant compte d~s la premiere ann6e d'un coefficient K' relatif aux ant6c~dents. 7 ) La formation, pour une compagnie, d'un tarif ~ prime modelde sur le risque ndcessite pour chaque classe de tarif: a) la connaissance statistique du cofit total des sinistres par voiture-annde pour la premiere annie d'assurance, afin d'estimer la prime initiale qui d6pend de la politiqu~ de recherche et d'acceptation des nouveaux risques; b) la connaissance statistique de la distribution des nombres de voitures ayant eu o, I, 2,... sinistres avec r~glement, afin de d6terminer la forme analytique de la fonction F(s) de r6partition des risques et d'en estimer les param~tres. La fonction F(s) permet alors de calculer les bar~mes des multiplicateurs de correction de la prime initiale, dans la forme du bar,me 2. Certaines r6gularitds statistiques (voir E6]) qui apparaissent dans les fonctions F(s) permettent de former seulement une famille de bar&mes 2 correspondant ~ des fr6quences probables croissant en progression g6om6trique. c) la connaissance de la prime moyenne pratiqu6e par les compagnies concurrentes, afin de savoir si la compagnie W doit r6duire sa prime initiale et former alors le bar&me correspondant du type du bar,me 3.

20 270 RISQUE INDIVIDUEL D'ACCIDENTS D'AUTOMOBILES On voit que cette m~thode de tarification utilise le cofit total par voiture-ann6e et une correction progressive d'apr6s la fr6quence observ~e des sinistres sur la voiture consid~r~e; eue ~vite d'introduire le cofit moyen des sinistres dont l'usage est dangereux par la d6claration toujours incertaine des petits sinistres. On pourrait, afin d'~viter l'effet de certaines irr~gularit6s dans la d6claration de ces sinistres, ne les consid~rer qu'~ partir d'un cofit minimum tel que 50 Francs (US $ io.oo). Ceci permettrait de corriger le fait que certains assures ne d~clareront pas leurs petits sjnistres pour b~n~ficier d'une prime moindre dans l'avenir. Les bar6mes de coefficients multiplicateurs devraient alors ~tre modifies en consequence. Pratiquement, le tarif d'assurance se pr~sente sous la forme d'une ~num~ration de mod61es de v~hicules, avec la description d'origine du risque et les garanties accord6es. Pour chaque cas on indique le montant de la prime initiale et le num~ro du bar, me ~ utiliser. Ce bar,me, qui sera reproduit sur la police, doit ~tre pris dans la suite des bar6mes qui couvrent l'~ventail des fr6quences moyennes observ~es. Pour un tarif d'assurance des voitures ~,~ roues (sauf camions et autocars), 14 bar6mes normaux et 14 bar6mes major, s ont suffi pour tous les cas. CONCLUSION L'analyse statistique des accidents d6clar~s pour chaque v6hicule a mis en Evidence que dans des classes d'assur~s, qu'on croit homog6nes parce que tous ont ~ la fois les m~mes caract6ristiques ext~rieures du risque, il existe de tr6s fortes differences entre les risques individuels des assures. On a alors cherch6 un mod61e capable de donner une repr6sentation statistiquement satisfaisante de la survenance des accidents. Le principe d'~quit~ n6cessaire au bon fonctionnement des assurances veut qu'il soit demands ~ chaque assure une prime proporfionneue au risque qu'il pr~sente ~ la rnutualit~. L'association du mod61e avec ce principe d'~quit~ conduit ~ deux solutions dont une d'efficacit~ maximum est celle que nous avons d~sign~e par Prime modelde sur le risque. C'est une m~thode de tarification du risque individuel par les esp6rances math6matiques successives du risque li6es par les sinistres d~ja d6clar~s.

SUR L'EFFICACITE DES CRITERES DE TARIFICATION DE L'ASSURANCE CONTRE LES ACCIDENTS D'AUTOMOBILES

SUR L'EFFICACITE DES CRITERES DE TARIFICATION DE L'ASSURANCE CONTRE LES ACCIDENTS D'AUTOMOBILES SUR L'EFFICACITE DES CRITERES DE TARIFICATION DE L'ASSURANCE CONTRE LES ACCIDENTS D'AUTOMOBILES PIERRE DELAPORTE Paris (France) Les accidents d'automobiles surviennent lorsqu'il se produit un ensemble

Plus en détail

i. La Survena.nce des accidents

i. La Survena.nce des accidents SUJET B LES MATH~MATIQUES DE L'ASSURANCE AUTOMOBILE Introduction de la discussion (rdsumd) P. J. DELAPORTE Plusieurs communications sont prdsentdes au Colloque sur les Mathdmatiques de l'assurance Automobile.

Plus en détail

RAPPORT INTRODUCTIF CONTROLE DES OP]~RATIONS D'ASSURANCE DANS LES BRANCHES NON-VIE

RAPPORT INTRODUCTIF CONTROLE DES OP]~RATIONS D'ASSURANCE DANS LES BRANCHES NON-VIE RAPPORT INTRODUCTIF CONTROLE DES OP]~RATIONS D'ASSURANCE DANS LES BRANCHES NON-VIE F. BICHSEL Berne Les 5 contributions suivantes ont ~td pr6sent6es sur le th~me no 3: par R. E. Beard: 2 contributions

Plus en détail

RECHERCHES SUR LES GROS SINISTRES EN R. C. AUTOMOBILE FRANCE I948-I955 P. DEPOID/E. DUCHEZ

RECHERCHES SUR LES GROS SINISTRES EN R. C. AUTOMOBILE FRANCE I948-I955 P. DEPOID/E. DUCHEZ RECHERCHES SUR LES GROS SINISTRES EN R. C. AUTOMOBILE FRANCE I948-I955 P. DEPOID/E. DUCHEZ Paris, France LES SOURCES D'INFORMATION I1 a 6t6 cr66 en France, en I948, dans le cadre de l'association G6n6rale

Plus en détail

A PROPOS DE LA DISTRIBUTION DES CAS DE MALADIE ENTRE LES ASSURES ET PAR RAPPORT A LA DUREE

A PROPOS DE LA DISTRIBUTION DES CAS DE MALADIE ENTRE LES ASSURES ET PAR RAPPORT A LA DUREE A PROPOS DE LA DSTRBUTON DES CAS DE MALADE ENTRE LES ASSURES ET PAR RAPPORT A LA DUREE par MARO ALBERTO COPPN Rome (talie) 1. 1 est un fair bien connu que la technique des assurances, qu'eues soient privies

Plus en détail

EVALUATION DE PROVISIONS POUR SINISTRES A PAYER EN PERIODE DE STAGFLATION

EVALUATION DE PROVISIONS POUR SINISTRES A PAYER EN PERIODE DE STAGFLATION EVALUATION DE PROVISIONS POUR SINISTRES A PAYER EN PERIODE DE STAGFLATION BERNARD DUBOIS DE ~'IONTREYNAUD et DIDIER STRUBE France En mati~re d'assurance de la Responsabilit6 Civile Automobile, chacun connait

Plus en détail

LA SOIF DU BONUS. JEAN LEMAIRE Bruxelles

LA SOIF DU BONUS. JEAN LEMAIRE Bruxelles LA SOIF DU BONUS JEAN LEMAIRE Bruxelles R~su~ L'introduction d'un syst~me bonus-malus ind@pendant du montant des sinistres en assurance automobile incite les assur@s ~ prendre eux-msmes en charge les frais

Plus en détail

i~tude SUR LA SURVENANCE DES SINISTRES EN ASSURANCE AUTOMOBILE M. BRICHLER

i~tude SUR LA SURVENANCE DES SINISTRES EN ASSURANCE AUTOMOBILE M. BRICHLER i~tude SUR LA SURVENANCE DES SNSTRES EN ASSURANCE AUTOMOBLE M. BRCHLER. DSTRBUTON DES ASSUR~S SELON LE NOMBRE DES SiNSTRES DANS UNE P~ROD].~ DE TEMPS )~TERMN~E On sait que la loi de Poisson simple reprdsente

Plus en détail

"-2 X~+t-- X~ + ~" = g(x~) u

-2 X~+t-- X~ + ~ = g(x~) u DISTRIBUTIONS DES SINISTRES INCENDIE SELON LEUR COOT GIOVANNA?IL2R RARA It:din Ii. INTRODUCTION On peut penser que la dimension des sinistres est la rdsultante d'un tr~s grand hombre de causes ind@endantes

Plus en détail

BONUS OU MALUS? 1) MAX GURTLER Bale, Swisse I. INTRODUCTION

BONUS OU MALUS? 1) MAX GURTLER Bale, Swisse I. INTRODUCTION I. Gdndralitds BONUS OU MALUS? 1) MAX GURTLER Bale, Swisse I. INTRODUCTION I1 est peu de probl~mes, dans l'industrie de l'assurance, dont la solution occasionne autant de difficult6s que celui consistant

Plus en détail

QUELQUES OBSERVATIONS STATISTIQUES SUR LA VARIABLE,,NOMBRE DE SINISTRES" EN ASSURANCE AUTOMOBILE. P. THYRION J3ruxelles

QUELQUES OBSERVATIONS STATISTIQUES SUR LA VARIABLE,,NOMBRE DE SINISTRES EN ASSURANCE AUTOMOBILE. P. THYRION J3ruxelles QUELQUES OBSERVATONS STATSTQUES SUR LA VARABLE,,NOMBRE DE SNSTRES" EN ASSURANCE AUTOMOBLE P. THYRON Jruxelles R~su.~1~ Cette note ne risque pas de pr@ter le fllc ~ une critique souvent adresse ASTN, l'excs

Plus en détail

ASSURANCE AUTOMOBILE -- STATISTIQUE. ALEXANDRE CANNET Paris (France)

ASSURANCE AUTOMOBILE -- STATISTIQUE. ALEXANDRE CANNET Paris (France) ASSURANCE AUTOMOBLE -- STATSTQUE ET TARFS ALEXANDRE CANNET Paris (France) Commentaires sur les constatations expdrimentales d'une Compagnie Frangaise en mati~re d' A ssurance Responsabilitd C ivile Automobile

Plus en détail

NOTE SUR LA GESTION AUTOMATIQUE DE LA Rt~SERVE POUR SINISTRES EN ASSURANCE AUTOMOBILE*) par. J~AN i~t:t. Paris

NOTE SUR LA GESTION AUTOMATIQUE DE LA Rt~SERVE POUR SINISTRES EN ASSURANCE AUTOMOBILE*) par. J~AN i~t:t. Paris NOTE SUR LA GESTION AUTOMATIQUE DE LA Rt~SERVE POUR SINISTRES EN ASSURANCE AUTOMOBILE*) par J~AN i~t:t Paris TENDANCES NOUVELLES EN AUTOMATISME... La tendance la plus significative qui se d~gage.. consiste

Plus en détail

Optimiser les performances du mouvement de monte de l Axe Z.

Optimiser les performances du mouvement de monte de l Axe Z. Page/0 - BUT DE LA MANIPULATION : Optimiser les performances du mouvement de monte de l Axe Z. - LES PLANS D EXPERIENCE -LA METHODE DU DOCTEUR TAGUCHI. La mthodologie Taguchi de mise en oeuvre des plans

Plus en détail

APER~U DU CHAMP D'APPLICATION DE LA THI~ORIE DU RISQUE DANS L'ASSURANCE DE CHOSES EN AUTRICHE

APER~U DU CHAMP D'APPLICATION DE LA THI~ORIE DU RISQUE DANS L'ASSURANCE DE CHOSES EN AUTRICHE APER~U DU CHAMP D'APPLICATION DE LA THI~ORIE DU RISQUE DANS L'ASSURANCE DE CHOSES EN AUTRICHE L. NEUMANN Vienne I. INTRODUCTION Nous donnerons ci-apr~s un aper~u de quelques domaines d'application de la

Plus en détail

Equilibre technique d'un exercice de souscription

Equilibre technique d'un exercice de souscription ASSURANCE AUTOMOBILES ET REVENUS FINANCIERS*) par JEAN SOUSSELIER, Paris La question est controvers~e de savoir si l'on doit tenir compte du revenu des placements -- et 6ventuellement des b6n6fices sur

Plus en détail

Le budget de 1998. Bâtir le Canada pour le XXI e siècle. Allégements fiscaux pour les Canadiens

Le budget de 1998. Bâtir le Canada pour le XXI e siècle. Allégements fiscaux pour les Canadiens Le budget de 1998 Bâtir le Canada pour le XXI e siècle Allégements fiscaux pour les Canadiens février 1998 En ce qui concerne maintenant la fiscalit, je tiens rappeler tout d abord notre objectif. Notre

Plus en détail

QUELQUES REFLEXIONS SUR LA REFORME DU TARIF FRAN~AIS D'ASSURANCE AUTOMOBILE ANDRE THEPAUT Paris (France)

QUELQUES REFLEXIONS SUR LA REFORME DU TARIF FRAN~AIS D'ASSURANCE AUTOMOBILE ANDRE THEPAUT Paris (France) QUELQUES REFLEXIONS SUR LA REFORME DU TARIF FRAN~AIS D'ASSURANCE AUTOMOBILE ANDRE THEPAUT Paris (France) Tr~s nombreux sont les assureurs fran~ais qui paraissent admettre aujourd'hui la n~cessit~ de r6former

Plus en détail

Prévention et gestion des risques naturels et environnementaux

Prévention et gestion des risques naturels et environnementaux Prévention et gestion des risques naturels et environnementaux Risque et assurance : quelques éléments théoriques Ecole des Ponts - Le 6 Avril 01 Jacques Pelletan 1 Théorie du risque et pérennité de l

Plus en détail

ED. FRANCKX Bruxelles AVERTISSEMENT

ED. FRANCKX Bruxelles AVERTISSEMENT MI~THODES & MOYENS POUR CALCULER LA VALEUR NUMI~RIQUE DES OPI~RATIONS ACTUARIELLES GI~Ni~RALIS/~ES A la mdmoire de B. Monic qui nous incita ~i rdsoudre,,rdellement' les probl}mes non-life ESSAI DE SYNTHESE

Plus en détail

A l'intention des collègues dont les élèves vont tester le sujet "prospectif" de bac ES.

A l'intention des collègues dont les élèves vont tester le sujet prospectif de bac ES. A l'intention des collègues dont les élèves vont tester le sujet "prospectif" de bac ES. Le sujet proposé s'inscrit dans le cadre du texte d'orientation ci-joint. L'exercice I est du type "compréhension

Plus en détail

1.3. Les principes de base en assurance invalidité

1.3. Les principes de base en assurance invalidité Chapitre 1 Mise en contexte de l assurance invalidité 17 1.3. Les principes de base en assurance invalidité Afin d'être en mesure de bien comprendre les notions relatives à l'assurance invalidité, il convient

Plus en détail

CONTRIBUTION A L'ETUDE DU BONUS POUR NON SINISTRE EN ASSURANCE AUTOMOBILE. Belgique

CONTRIBUTION A L'ETUDE DU BONUS POUR NON SINISTRE EN ASSURANCE AUTOMOBILE. Belgique CONTRIBUTION A L'ETUDE DU BONUS POUR NON SINISTRE EN ASSURANCE AUTOMOBILE P. THYRION Belgique I. INTRODUCTION I. La s61ection des risques est un des premiers principes fondamentaux que la th6orie de l'assurance

Plus en détail

2. Formalisation ... Or les variables sont indépendantes. Donc si

2. Formalisation ... Or les variables sont indépendantes. Donc si L'estimation 1. Concrètement... Dernièrement un quotidien affichait en première page : en 30 ans les françaises ont grandi de... je ne sais plus exactement, disons 7,1 cm. C'est peut-être un peu moins

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (2) Variables aléatoires & Lois de probabilité R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

Version provisoire de la circulaire relative aux orientations sur le sous-module «risque de catastrophe en santé»

Version provisoire de la circulaire relative aux orientations sur le sous-module «risque de catastrophe en santé» boulevard de Berlaimont 14 BE-1000 Bruxelles tél. +32 2 221 38 12 fax + 32 2 221 31 04 numéro d entreprise: 0203.201.340 RPM Bruxelles www.bnb.be Circulaire Bruxelles, le jj mm 2015 Référence: NBB_2015_xx

Plus en détail

DICTIONNAIP,.E AUTOMATIQUE ET DICTIONNAIRE-MACHINE: UNE HYPOTI-~SE

DICTIONNAIP,.E AUTOMATIQUE ET DICTIONNAIRE-MACHINE: UNE HYPOTI-~SE GIACOMO FERRARI DICTIONNAIP,.E AUTOMATIQUE ET DICTIONNAIRE-MACHINE: UNE HYPOTI-~SE 1. Pendant quatre ans le groupe de recherche linguistique du CNUCE a produit un dictionnaire automatique de la langue

Plus en détail

Exposé assurance : prime de risque

Exposé assurance : prime de risque Exposé assurance : prime de risque Introduction L'assurance est un mécanisme financier permettant de répondre aux exigences de protection des patrimoines contre les risques de perte de toute nature. Elle

Plus en détail

Le taux d'actualisation en assurance

Le taux d'actualisation en assurance The Geneva Papers on Risk and Insurance, 13 (No 48, July 88), 265-272 Le taux d'actualisation en assurance par Pierre Devolder* Introduction Le taux d'actualisation joue un role determinant dans Ia vie

Plus en détail

LA THI~ORIE DU COMPORTEMENT ET LA CREDIBILITY THEORY AMt~R1CAINE. E. FRANCKX Bruxelles

LA THI~ORIE DU COMPORTEMENT ET LA CREDIBILITY THEORY AMt~R1CAINE. E. FRANCKX Bruxelles LA THI~ORIE DU COMPORTEMENT ET LA CREDIBILITY THEORY AMt~R1CAINE E. FRANCKX Bruxelles AVANT PROPOS La thdorie amdricaine de la cr6dibilitd est considdrde par nos coll~gues am6ricains comme une pi~ce-maltresse

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

SUR LA Dt~TERMINATION DE LA RI~SERVE POUR SINISTRES EN SUSPENS DANS L'ASSURANCE AUTOMOBILE

SUR LA Dt~TERMINATION DE LA RI~SERVE POUR SINISTRES EN SUSPENS DANS L'ASSURANCE AUTOMOBILE SUR LA Dt~TERMINATION DE LA RI~SERVE POUR SINISTRES EN SUSPENS DANS L'ASSURANCE AUTOMOBILE LUIGI ~{OLINARO Rome I) Parmi les diffdrentes questions qui se posent dans l'~tude de l'assurance automobile,

Plus en détail

B.O.I. N 71 DU 6 OCTOBRE 2011 [BOI 7I-1-11]

B.O.I. N 71 DU 6 OCTOBRE 2011 [BOI 7I-1-11] B.O.I. N 71 DU 6 OCTOBRE 2011 [BOI 7I-1-11] Références du document 7I-1-11 Date du document 06/10/11 BULLETIN OFFICIEL DES IMPÔTS 7 I-1-11 N 71 DU 6 OCTOBRE 2011 INSTRUCTION DU 27 SEPTEMBRE 2011 COUR DE

Plus en détail

GI.~RARD CROSET France

GI.~RARD CROSET France - - la - - les RISQUE ET RENTABILITE GI.~RARD CROSET France 1. M. Karl Borch a prdsentd, darts plusieurs de ses communications g i'astin 1), un module de comportemcnt de l'assureur, qu'il qualifie lui-m&ne

Plus en détail

NOTE DE SERVICE DE TRAVAIL ET POUR LES BESOINS DU SERVICE. DISPOSITIONS A PRENDRE EN MATIERE D'ASSURANCE

NOTE DE SERVICE DE TRAVAIL ET POUR LES BESOINS DU SERVICE. DISPOSITIONS A PRENDRE EN MATIERE D'ASSURANCE Réf. : DH/620 Date : 30/12/98 Article n B Manuel de gestion du personnel HORS STATUT TRANSPORT - IK - MISSIONS NOTE DE SERVICE OBJET : UTILISATION DE VOITURES PERSONNELLES POUR LES TRAJETS DOMICILE-LIEU

Plus en détail

L'assurance en agriculture

L'assurance en agriculture L'assurance en agriculture Introduction Le principe historique (et ancien) de l'assurance, est de répartir le risque d'un événement probable, sur les assurés qui sont susceptibles d'y être confrontés.

Plus en détail

EXPLOITATION DU SONDAGE AUTOMOBILE I971 EN FRANCE PAR UNE M/~THODE D'ANALYSE MULT1DIM ENSIONNELLE. Paris

EXPLOITATION DU SONDAGE AUTOMOBILE I971 EN FRANCE PAR UNE M/~THODE D'ANALYSE MULT1DIM ENSIONNELLE. Paris EXPLOTATON DU SONDAGE AUTOMOBLE 971 EN FRANCE PAR UNE M/~THODE D'ANALYSE MULT1DM ENSONNELLE L'AssOCATON Gi~NZRALE DES SOCT;T~S LES ACCDENTS Paris D'ASSURANCES CONTRE Sous la responsabilit6 de l'association

Plus en détail

Calcul d erreur (ou Propagation des incertitudes)

Calcul d erreur (ou Propagation des incertitudes) Travaux Pratiques de Physique vers. septembre 014 Calcul d erreur (ou Propagation des incertitudes) 1) Introduction Le mot "erreur" se réfère à quelque chose de juste ou de vrai. On parle d erreur sur

Plus en détail

Série TD 3. Exercice 4.1. Exercice 4.2 Cet algorithme est destiné à prédire l'avenir, et il doit être infaillible! Exercice 4.3. Exercice 4.

Série TD 3. Exercice 4.1. Exercice 4.2 Cet algorithme est destiné à prédire l'avenir, et il doit être infaillible! Exercice 4.3. Exercice 4. Série TD 3 Exercice 4.1 Formulez un algorithme équivalent à l algorithme suivant : Si Tutu > Toto + 4 OU Tata = OK Alors Tutu Tutu + 1 Tutu Tutu 1 ; Exercice 4.2 Cet algorithme est destiné à prédire l'avenir,

Plus en détail

/CIMA/PCMA/CE/SG/CIMA/2015 MODIFIANT ET COMPLETANT LE CODE DES ASSURANCES DES ETATS MEMBRES DE LA CIMA

/CIMA/PCMA/CE/SG/CIMA/2015 MODIFIANT ET COMPLETANT LE CODE DES ASSURANCES DES ETATS MEMBRES DE LA CIMA CONFERENCE I N T E R A F R I C A I N E D E S M A R C H E S D A S S U R A N C E S C O N S E I L D E S M I N I S T R E S D E S A S S U R A N C E S REGLEMENT N /CIMA/PCMA/CE/SG/CIMA/2015 MODIFIANT ET COMPLETANT

Plus en détail

«BONUS MALUS» (exercice exploitant les changements de registre) (D après Académie de Strasbourg)

«BONUS MALUS» (exercice exploitant les changements de registre) (D après Académie de Strasbourg) «BONUS MALUS» (exercice exploitant les changements de registre) (D après Académie de Strasbourg) Le propriétaire d un véhicule automobile est tenu d assurer sa voiture auprès d une compagnie d assurances.

Plus en détail

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) L attention des candidats est attirée sur le fait que la qualité de la rédaction, la clarté et la précision des raisonnements

Plus en détail

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité) BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat

Plus en détail

PROBABILITES TRAVAUX DIRIGES

PROBABILITES TRAVAUX DIRIGES Université de Caen Basse-Normandie U.F.R. de Sciences Economiques et de Gestion Année universitaire 2009-2010 LICENCE ECONOMIE ET GESTION Semestre 3 L2 PROBABILITES TRAVAUX DIRIGES (18 heures) Hélène Ferrer

Plus en détail

TCAS- Taxe sur les conventions d'assurances - Base d'imposition

TCAS- Taxe sur les conventions d'assurances - Base d'imposition Extrait du Bulletin Officiel des Finances Publiques-Impôts DIRECTION GÉNÉRALE DES FINANCES PUBLIQUES Identifiant juridique : BOI-TCAS-ASSUR-20-20120912 DGFIP TCAS- Taxe sur les conventions d'assurances

Plus en détail

CONTRAT D'ASSURANCE ET MODALITES DE RESILIATION. Article juridique publié le 16/02/2015, vu 1139 fois, Auteur : Maître HADDAD Sabine

CONTRAT D'ASSURANCE ET MODALITES DE RESILIATION. Article juridique publié le 16/02/2015, vu 1139 fois, Auteur : Maître HADDAD Sabine CONTRAT D'ASSURANCE ET MODALITES DE RESILIATION Article juridique publié le 16/02/2015, vu 1139 fois, Auteur : Maître HADDAD Sabine I Le défaut d information ou l information tardive du délai de préavis

Plus en détail

TD 3 : suites réelles : application économique et nancière

TD 3 : suites réelles : application économique et nancière Mathématiques Appliquées Cours-TD : K. Abdi, M. Huaulmé, B. de Loynes et S. Pommier Université de Rennes 1 - L1 AES - 009-010 TD 3 : suites réelles : application économique et nancière Exercice 1 Calculer

Plus en détail

PERS. 259 DIRECTION DU PERSONNEL Manuel Pratique : 441 Suite Pers. 264, 306 20 décembre 1954

PERS. 259 DIRECTION DU PERSONNEL Manuel Pratique : 441 Suite Pers. 264, 306 20 décembre 1954 ELECTRICITE DE FRANCE GAZ DE FRANCE DIRECTION DU PERSONNEL Manuel Pratique : 441 Suite Pers. 264, 306 20 décembre 1954 Objet : Régime des voitures de liaison Les circulaires Pers. 96, Pers. 122, Pers.

Plus en détail

L'indemnisation directe des dommages matériels

L'indemnisation directe des dommages matériels L'indemnisation directe des dommages matériels Contrairement à ce que l'on croit encore trop souvent l'indemnisation directe des dommages matériels n'est pas une assurance sans égard à la responsabilité

Plus en détail

DANS L'ASSURANCE SOCIALE CONTRE LES ACCIDENTS. R. LATSCHA Lucerne

DANS L'ASSURANCE SOCIALE CONTRE LES ACCIDENTS. R. LATSCHA Lucerne DSTRBUTON DU COUT D'UN SNSTRE DANS L'ASSURANCE SOCALE CONTRE LES ACCDENTS R. LATSCHA Lucerne x. On n'a gu~re entendu dire jusqu'ici que la distributin empirique du cfit d'un sinistre dans l'assurance sciale

Plus en détail

TARIFICATION EN ASSURANCE COMPLEMENTAIRE SANTE: il était une fois, un statisticien, un actuaire, un économiste de la santé

TARIFICATION EN ASSURANCE COMPLEMENTAIRE SANTE: il était une fois, un statisticien, un actuaire, un économiste de la santé TARIFICATION EN ASSURANCE COMPLEMENTAIRE SANTE: il était une fois, un statisticien, un actuaire, un économiste de la santé Plan de l intervention 1 2 3 Généralités sur le fonctionnement de l assurance

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

INSTRUCTIONS RELATIVES

INSTRUCTIONS RELATIVES INSTRUCTIONS RELATIVES AUX TABLEAUX SUR LES SINISTRES ET INDICES DE PERTE Les Tableaux sur les sinistres et indices de perte sont exigés afin de pouvoir constituer une base de données et une présentation

Plus en détail

avis d arrêt de travail

avis d arrêt de travail n 50069#0(.) notice à destination du praticien Pour prserver le secr mdical, vous remtez l à votre patient, après l'avoir complt, avec une enveloppe "M. le Mdecin Conseil" qui lui permtra d'r les vols

Plus en détail

Arrêté du ministre des finances et de la privatisation n 213-05 du 15 hija 1425 relatif aux assurances obligatoires (B.O. n 5292 du 17 fév rier 2005).

Arrêté du ministre des finances et de la privatisation n 213-05 du 15 hija 1425 relatif aux assurances obligatoires (B.O. n 5292 du 17 fév rier 2005). Arrêté du ministre des finances et de la privatisation n 213-05 du 15 hija 1425 relatif aux assurances obligatoires (B.O. n 5292 du 17 fév rier 2005). Vu la loi n 17-99 portant code des assurances prom

Plus en détail

ACT3284 Modèles en assurance IARD Examen Final - 14 décembre 2011

ACT3284 Modèles en assurance IARD Examen Final - 14 décembre 2011 #1 À partir de l'information ci-dessous : Sinistres payés cumulatifs Réserves aux dossiers 12 mois 24 mois 36 mois 12 mois 24 mois 36 mois 2008 240,000 393,600 499,200 2008 160,000 120,000 79,200 2009

Plus en détail

Les conducteurs automobiles évaluent-ils correctement leur risque de commettre un accident?

Les conducteurs automobiles évaluent-ils correctement leur risque de commettre un accident? Les conducteurs automobiles évaluent-ils correctement leur risque de commettre un accident? Nathalie LEPINE GREMAQ, Université de Toulouse1, 31042 Toulouse, France GRAPE, Université Montesquieu-Bordeaux

Plus en détail

L'APPLICATION DANS LE TEMPS DES ASSURANCES DE RESPONSABILITE CIVILE

L'APPLICATION DANS LE TEMPS DES ASSURANCES DE RESPONSABILITE CIVILE L'APPLICATION DANS LE TEMPS DES ASSURANCES DE RESPONSABILITE CIVILE 1 - L'APPLICATION DE LA GARANTIE DANS LE TEMPS (Application de la garantie dans le temps dans les assurances de responsabilité avant

Plus en détail

Evolution de la fréquence des sinistres 2002-2011 en assurance RC automobile

Evolution de la fréquence des sinistres 2002-2011 en assurance RC automobile Evolution de la fréquence des sinistres 2002-2011 en assurance RC automobile Contenu 1. Nombre de sinistres en RC tourisme et affaires... 2 Fréquence des sinistres en RC tourisme et affaires... 2 Fréquence

Plus en détail

Baccalauréat ES Amérique du Sud 16 novembre 2011

Baccalauréat ES Amérique du Sud 16 novembre 2011 Baccalauréat ES Amérique du Sud 16 novembre 2011 L utilisation d une calculatrice est autorisée. EXERCICE 1 Commun à tous les candidats 4 points Soit u une fonction définie et dérivable sur l intervalle

Plus en détail

SOMMAIRES D OUVRAGES PARUS

SOMMAIRES D OUVRAGES PARUS SOMMAIRES D OUVRAGES PARUS TITRE : MÉTHODES ACTUARIELLES DE L'ASSURANCE VIE (cours et exercices corrigés) AUTEUR : Christian HESS ÉDITEUR : ÉCONOMICA, PARIS DATE DE PARUTION : NOVEMBRE 2000 357 pages prix

Plus en détail

bonus.ch : les Suisses sont de plus en plus fidèles à leur assureur auto, au détriment de leur porte-monnaie

bonus.ch : les Suisses sont de plus en plus fidèles à leur assureur auto, au détriment de leur porte-monnaie bonus.ch : les Suisses sont de plus en plus fidèles à leur assureur auto, au détriment de leur porte-monnaie Les Suisses sont satisfaits de leur assureur auto : à l'issue de l'enquête du site comparateur

Plus en détail

Polyclinique Enquête de satisfaction

Polyclinique Enquête de satisfaction Madame, Mademoiselle, Monsieur, Polyclinique Enquête de satisfaction Afin de rpondre au mieux à vos attentes et dans le souci de nous amliorer, il serait très intressant que vous nous fassiez part de votre

Plus en détail

INFORMATIONS SUR LE PRODUIT CAMIONNETTE

INFORMATIONS SUR LE PRODUIT CAMIONNETTE INFORMATIONS SUR LE PRODUIT CAMIONNETTE Table des matières page Responsabilité Civile 2 Responsabilité civile Aperçu du degré bonus-malus 2 Responsabilité civile Entrée dans le système Bonus-Malus 3 Responsabilité

Plus en détail

ASSURANCE AUTOMOBILE ÉTUDES ACTUARIELLES ET POLITIQUE TARIFAIRE EN 2001 (x)

ASSURANCE AUTOMOBILE ÉTUDES ACTUARIELLES ET POLITIQUE TARIFAIRE EN 2001 (x) ÉTUDES ACTUARIELLES ET POLITIQUE TARIFAIRE EN 2001 (x) Gilbert THIRY Membre d'honneur de l'iaf E.S.R.A. - Paris Dans toutes les sociétés d'assurances, le rôle de l'actuaire est incontournable pour optimiser

Plus en détail

MATHEMATIQUES BTS1 2013-2014 Corrigés des devoirs

MATHEMATIQUES BTS1 2013-2014 Corrigés des devoirs MATHEMATIQUES BTS1 2013-201 Corrigés des devoirs CC 23 /09/2013 page2 CC 18/10/2013 page DV 25/11/2013 page 6 BTS Blanc 13/12/2013 page 8 CC 07/01/201 page 12 CC 0/02/201 page 1 BTS Blanc 27/02/201 page

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

TABLEAU COMPARATIF. Texte de la proposition de loi. Proposition de loi relative à la responsabilité civile médicale

TABLEAU COMPARATIF. Texte de la proposition de loi. Proposition de loi relative à la responsabilité civile médicale TABLEAU COMPARATIF Proposition de loi relative à la responsabilité civile médicale Proposition de loi relative à la responsabilité civile médicale Article premier Le titre IV du livre I er de la première

Plus en détail

Assurances Odn~rales de France, Paris

Assurances Odn~rales de France, Paris L'I~CRETEMENT DES SINISTRES "AUTOMOBILE" PAR LIONEL MOREAU Assurances Odn~rales de France, Paris SUMMARY French insurance companies usually classify their agents according to their results by branch and

Plus en détail

Énergie d interaction coulombienne mutuelle d un système de deux ellipsoïdes uniformément chargés admettant un axe de symétrie global

Énergie d interaction coulombienne mutuelle d un système de deux ellipsoïdes uniformément chargés admettant un axe de symétrie global Énergie d interaction coulombienne mutuelle d un système de deux ellipsoïdes uniformément chargés admettant un axe de symétrie global Ph. Quentin To cite this version: Ph. Quentin. Énergie d interaction

Plus en détail

Manuels de préparation aux examens suggérés pour les compétences évaluées par l'autorité des marchés financiers (AMF)

Manuels de préparation aux examens suggérés pour les compétences évaluées par l'autorité des marchés financiers (AMF) Manuels de préparation aux examens suggérés pour les compétences évaluées par l'autorité des marchés financiers (AMF) Tableaux sommaires Version 2015-05-01 Consultez les tableaux suivants afin d identifier

Plus en détail

Coûts mensuels comparatifs entre la voiture et le TER pour diverses relations autour de Marseille

Coûts mensuels comparatifs entre la voiture et le TER pour diverses relations autour de Marseille Coûts mensuels comparatifs entre la voiture et le TER pour diverses relations autour de Marseille Relations Citroën Peugeot Renault Citroën Abonnement TER C1 Ess 207 D Laguna D C5 D Solliès-Pont (83) /

Plus en détail

Gestion de projet - calcul probabiliste

Gestion de projet - calcul probabiliste Gestion de projet - calcul probabiliste GÉRARD CASANOVA - DENIS ABÉCASSIS Paternité - Pas d'utilisation Commerciale - Pas de Modification : http://creativecommons.org/licenses/by-nc-nd/2.0/fr/ Table des

Plus en détail

Gestion de projet - les chaînes critiques

Gestion de projet - les chaînes critiques Gestion de projet - les chaînes critiques GÉRARD CASANOVA - DENIS ABÉCASSIS Paternité - Pas d'utilisation Commerciale - Pas de Modification : http://creativecommons.org/licenses/by-nc-nd/2.0/fr/ Table

Plus en détail

Evolution de la fréquence des sinistres 2004-2013 en assurance RC automobile

Evolution de la fréquence des sinistres 2004-2013 en assurance RC automobile Evolution de la fréquence des sinistres 2004-2013 en assurance RC automobile Contenu 1. Nombre de sinistres en RC tourisme et affaires... 2 Fréquence des sinistres en RC tourisme et affaires... 2 Fréquence

Plus en détail

Terminale ES Corrigé de la feuille d'exercices de baccalauréat sur les probabilités. 1400 875=525. 504 étudiants en STS règlent par chèque bancaire.

Terminale ES Corrigé de la feuille d'exercices de baccalauréat sur les probabilités. 1400 875=525. 504 étudiants en STS règlent par chèque bancaire. erminale ES Corrigé de la feuille d'exercices de baccalauréat sur les probabilités. Exercice 1 : Partie I. 1) Calcul du nombre d'élèves de seconde, première ou terminale : Sur 1400 lycéens, 62,5 % sont

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

Hémomixer Etude des sollicitations du corps d épreuve

Hémomixer Etude des sollicitations du corps d épreuve Hmomixer Etude des sollicitations du corps d preuve TP 2 heures Noms : Prnoms : Classe : Date : Note : /20 Objectifs A l issue de la sance vous devez être en mesure : - de dire de quelle nature est la

Plus en détail

POLICE D ASSURANCE AUTOMOBILE DU QUÉBEC F.P.Q. N O 7 FORMULE D ASSURANCE EXCÉDENTAIRE DE LA RESPONSABILITÉ CIVILE

POLICE D ASSURANCE AUTOMOBILE DU QUÉBEC F.P.Q. N O 7 FORMULE D ASSURANCE EXCÉDENTAIRE DE LA RESPONSABILITÉ CIVILE POLICE D ASSURANCE AUTOMOBILE DU QUÉBEC F.P.Q. N O 7 FORMULE D ASSURANCE EXCÉDENTAIRE DE LA RESPONSABILITÉ CIVILE 1 er mars 2001 Aux intéressés : Vous trouverez ci-joint le texte révisé de la police d'assurance

Plus en détail

AVIS SUR DES CLAUSES RELATIVES A LA CHARGE DE LA PREUVE DANS DES ASSURANCES OMNIUM

AVIS SUR DES CLAUSES RELATIVES A LA CHARGE DE LA PREUVE DANS DES ASSURANCES OMNIUM CCA 34 COMMISSION DES CLAUSES ABUSIVES AVIS SUR DES CLAUSES RELATIVES A LA CHARGE DE LA PREUVE DANS DES ASSURANCES OMNIUM Bruxelles, le 20 novembre 2013 2 Avis sur des clauses relatives à la charge de

Plus en détail

Instructions concernant l'estimation des titres non cotés en vue de l'impôt sur la fortune Edition 1995

Instructions concernant l'estimation des titres non cotés en vue de l'impôt sur la fortune Edition 1995 Instructions concernant l'estimation des titres non cotés en vue de l'impôt sur la fortune Edition 1995 A. Généralités 1 Les Instructions ont pour objectif l'estimation uniforme en Suisse, pour l'impôt

Plus en détail

THE ASTIN BULLETIN PUBLICATION OF THE ASTIN SECTION OF THE PERMANENT COMMITTEE FOR INTERNATIONAL ACTUARIAL CONGRESSES VOL. I, PART III APRIL 1960

THE ASTIN BULLETIN PUBLICATION OF THE ASTIN SECTION OF THE PERMANENT COMMITTEE FOR INTERNATIONAL ACTUARIAL CONGRESSES VOL. I, PART III APRIL 1960 THE ASTIN BULLETIN PUBLICATION OF THE ASTIN SECTION OF THE PERMANENT COMMITTEE FOR INTERNATIONAL ACTUARIAL CONGRESSES VOL. I, PART III APRIL 1960 CONTENTS lye Editorial Notes............... 9 x Summaries.................

Plus en détail

ASSURANCE. 1. Assurances de dommages

ASSURANCE. 1. Assurances de dommages ASSURANCE ASSURANCE...1 1. Assurances de dommages...1 2. Assurances de personnes...2 3. Coassurance...2 4. Courtier d'assurances...2 5. CRM...3 6. Expertise...3 7. Indemnisation...4 8. Multirisque...4

Plus en détail

Aviso Ré. Introduction à la réassurance. Technique de réassurance. Programme. Pour progresser : modules T2 et T3

Aviso Ré. Introduction à la réassurance. Technique de réassurance. Programme. Pour progresser : modules T2 et T3 T 1 Découvrir les différents rôles joués par la et son impact sur le développement de l'assurance Comprendre l'impact de la sur la gestion des assureurs Débutants en, toutes fonctions Cadres opérationnels

Plus en détail

Assurance. Souscription. Encadrement d'un réseau salarié

Assurance. Souscription. Encadrement d'un réseau salarié Assurance Souscription Recueil, identification et formalisation des besoins des clients. Réponse aux demandes de simulations. Appréciation, mesure, évaluation de chaque risque en analysant les différentes

Plus en détail

I. Notion d'ergonomie

I. Notion d'ergonomie I. Notion d'ergonomie Ressources L'ergonomie est l'utilisation de connaissances scientifiques relatives à l'homme (psychologie, physiologie, mdecine) dans le but d'amliorer son environnement de travail.

Plus en détail

L'assureur de la construction La construction est dans notre ADN!

L'assureur de la construction La construction est dans notre ADN! L'assureur de la construction La construction est dans notre ADN! 30.03.006/00 10/15 L'ASSUREUR DE LA CONSTRUCTION La construction est dans notre ADN! Bon nombre de professionnels de la construction considèrent

Plus en détail

Exposé en droit des assurances sous le thème :

Exposé en droit des assurances sous le thème : Université Cadi Ayyad Master : Droit des Affaires Faculté des Sciences Juridiques Semestre : 3 Economiques et Sociales. UFR Marrakech Exposé en droit des assurances sous le thème : De la classification

Plus en détail

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 huitième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 Soit X une variable aléatoire continue de fonction de densité

Plus en détail

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques.

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques. Lycée Alexis de Tocqueville BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé Série S.T.M.G. Février 2015 Épreuve de mathématiques Durée 3 heures Le candidat traitera obligatoirement les quatre exercices ******

Plus en détail

WORKSHOP TARIFICATION DE L'INCENDIE DES RISQUES INDUSTRIELS FRANCAIS PAR LA METHODE DE LA CREDIBILITE

WORKSHOP TARIFICATION DE L'INCENDIE DES RISQUES INDUSTRIELS FRANCAIS PAR LA METHODE DE LA CREDIBILITE WORKSHOP TARFCATON DE L'NCENDE DES RSQUES NDUSTRELS FRANCAS PAR LA METHODE DE LA CREDBLTE ALBERT COHEN Assemblde Pdni~re des Socidtds d'assurances contre 'ncendie GLLES DUPN Groupe des Assurances Nationales

Plus en détail

MARKT/2094/01 FR Orig. EN COMMERCE ÉLECTRONIQUE ET SERVICES FINANCIERS

MARKT/2094/01 FR Orig. EN COMMERCE ÉLECTRONIQUE ET SERVICES FINANCIERS MARKT/2094/01 FR Orig. EN COMMERCE ÉLECTRONIQUE ET SERVICES FINANCIERS Finalité du document Le présent document dresse un état des lieux du dossier commerce électronique et services financiers, avec une

Plus en détail

MÉTHODE GRAPHIQUE DE CALCULS DE LA MOYENNE ET DE L'ÉCART TYPE DUNE DISTRIBUTION NORMALE TEST DE NORMALITÉ

MÉTHODE GRAPHIQUE DE CALCULS DE LA MOYENNE ET DE L'ÉCART TYPE DUNE DISTRIBUTION NORMALE TEST DE NORMALITÉ REVUE FORESTIÈRE FRANÇAISE 791 MÉTHODE GRAPHIQUE DE CALCULS DE LA MOYENNE ET DE L'ÉCART TYPE DUNE DISTRIBUTION NORMALE TEST DE NORMALITÉ r PAR R. TOMASSONE Ingénieur des Eaux et Forêts Ψ Section de la

Plus en détail

Baccalauréat ES Amérique du Nord 4 juin 2008

Baccalauréat ES Amérique du Nord 4 juin 2008 Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation

Plus en détail

L'assurance. et les garanties. financières. de la construction. Michel Zavaro. itlcc. Président de chambre à la cour d'appel d'aix-en-provence

L'assurance. et les garanties. financières. de la construction. Michel Zavaro. itlcc. Président de chambre à la cour d'appel d'aix-en-provence Michel Zavaro Président de chambre à la cour d'appel d'aix-en-provence L'assurance et les garanties financières de la construction itlcc Libraire de la Cour de cassation 27, place Dauphine - 75001 Paris

Plus en détail

NC 30 Les charges techniques dans les entreprises d assurance et / ou de réassurance

NC 30 Les charges techniques dans les entreprises d assurance et / ou de réassurance NC 30 Les charges techniques dans les entreprises d assurance et / ou de réassurance Objectif 01. L'activité d'assurance et/ou de réassurance se caractérise par l'inversion du cycle de la production et

Plus en détail