Suites numériques Raisonnement par récurrence

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Suites numériques Raisonnement par récurrence"

Transcription

1 Chapitre Suites numériques Raisonnement par récurrence I. Suites numériques : rappels et coméments 1. Modes de génération d une suite Soit n 0 un entier naturel. Une suite numérique u une fonction qui à tout entier n n 0 associe un nombre réel u(n) que l on note u n et qui se lit «u indice n». Notations : Une suite u se note (u n ) n n0 ou (u n ). On écrit u n N R n u n = u n n est appelé l indice ou le rang du terme u n et u n est appelé terme général de la suite. Il existe deux façons de définir une suite : a) Suite définie par une formule exicite : suite fonctionnelle Tout terme de la suite est défini en fonction de l entier n : u n = f(n) b) Suite définie par une relation de récurrence : suite récurrente Tout terme de la suite est défini en fonction d un ou des précédents : u n+1 = f(u n ) ou u n+1 = f(u n, u n 1 ) et par la donnée du ou des premiers termes.. Représentation graphique d une suite Une suite peut être représentée soit sur un axe, soit dans le an. Une suite fonctionnelle est représentée uniquement par les points de coordonnées (n; u n ). Une suite récurrente est représentée par un «chemin», en utilisant la courbe représentative de f et la droite d équation y = x. 3. Comportement global d une suite a) Sens de variation d une suite Soit n 0 un entier naturel. Soit (u n ) n n0 une suite de réels. On dit que la suite (u n ) n n0 est croissante n n 0, u n+1 u n. On dit que la suite (u n ) n n0 est décroissante n n 0, u n+1 u n. On dit que la suite (u n ) n n0 est constante n n 0, u n+1 = u n. Remarque : Une suite croissante ou décroissante est dite monotone. Mais, attention, une suite peut être ni croissante, ni décroissante. Exeme : u n = ( 1) n, n N.

2 Comment étudier les variations d une suite? Cas général : on étudie le signe de la différence u n+1 u n. Cas particuliers : Cas de suites à termes positifs ( u n > 0, n N) : on compare u n+1 à 1. u n Cas de suites fonctionnelles : (u n ) possède le même sens de variation que celui de la fonction f associée sur [0; + [. (la réciproque est fausse) Exemes : Etudier le sens de variation des suites suivantes : (1) u n = n +, n N () u n = 1 3n, n N (3) u n = n + 1, n N n b) Suites majorées, minorées, bornées Soit u n une suite de réels et m et M deux réels. On dit que la suite u n est majorée par M n N, u n M. M est appelé le majorant de la suite u n On dit que la suite u n est minorée par m n N, u n m. m est appelé le minorant de la suite u n On dit que la suite u n est bornée u n est majorée et minorée. Remarques : Toute suite croissante est minorée par son premier terme. Toute suite décroissante est majorée par son premier terme. Toute suite à termes positifs est minorée par 0. Exemes : On considère les suites u n, v n et w n définies par : u n = 4 cos n, n N ; v n = 4 1 n 5, n N ; wn = n+1 3n 1 (1) Démontrer que les suites u n et v n sont bornées. () Démontrer que la suite w n est majorée par 3., n Suites particulières a) Suites arithmétiques Définition Une suite (u n ) est dite arithmétique il existe un réel r tel que n N, u n+1 = u n + r. Expression de u n en fonction de n Une suite (u n ) est dite arithmétique de raison r n N, p N : u n = u p + n p r. En particulier : n N, u n = u 0 + nr et n 1, u n = u 1 + n 1 r

3 r > 0 r < 0 Représentation graphique entiers de 1 à n n 1: S = n = n(n+1) termes d une suite arithmétique S = u 0 + u 1 + u + + u n = (n + 1) (u 0 + u n ) S = (Nombre de termes) (premierterme + dernier terme) b) Suites géométriques Définition Une suite (u n ) est dite géométrique il existe un réel q tel que n N, u n+1 = q u n. Expression de u n en fonction de n Une suite (u n ) est dite géométrique de raison q n N, p N : u n = u p q n p. En particulier : n N, u n = u 0 q n et n 1, u n = u 1 q n 1 q > 1 0 < q < 1 Représentation graphique (q > 0) puissances successives d un nombre réel q 1, n 1: S = 1 + q + q + q q n = 1 qn+1 1 q termes d une suite géométrique S = u 0 + u 1 + u + + u n = u 0 1 qn+1 1 q, q 1 de termes 1 qnombre S = (Premier terme), q 1 1 q

4 II. Raisonnement par récurrence Objectif : On doit prouver qu une propriété P(n) est vraie n n 0, avec n et n 0 entiers naturels, n 0 étant fixé. Cette propriété P(n) à démontrer peut être une égalité, une inégalité, une propriété exprimée par une phrase, etc. Un exeme pour exiquer : On considère la propriété P(n) : «n N, 8 n 1 est un multie de 7». P(0) est vraie : = 1 1 = 0 = 7 0 ; P(1) est vraie : = 8 1 = 7 = 7 1 ; On peut continuer et vérifier que P, P(3), etc. sont vraies. Mais P(n) est-elle vraie pour tout entier n? Pour le vérifier, il faudrait procéder à une infinité de vérifications, ce qui est impossible. Pour démontrer la propriété P(n) on utilise un raisonnement appelé raisonnement par récurrence. Principe de raisonnement par récurrence : Propriété : Principe de récurrence (ou axiome de récurrence) Pour démontrer par récurrence qu une propriété P(n), dépendant d un entier n, est vraie n n 0, on procède en trois étapes : Initialisation : on vérifie que P(n 0 ) est vraie. Hérédité : on démontre que pour un entier n n 0, si P(n) est vraie alors P(n + 1) est vraie. Conclusion : n n 0, P(n) est vraie. On peut illustrer le principe de récurrence à l aide d un escalier. Si on peut accéder à une marche n 0 de l escalier (initialisation) et si on sait passer d une marche à une autre (hérédité) alors on peut accéder à toute marche au-dessus de n 0. Remarque : La condition d hérédité est une imication : on suppose que P n est vraie pour un entiern n 0 (c est l hypothèse de récurrence, notée HR) et on montre qu alors P(n + 1) est vraie aussi. Rédaction d une récurrence : Initialisation : P(0) est vraie. Hérédité : On suppose que pour un entier n 0, P(n) est vraie, c est-à-dire que pour un entier n 0, 8 n 1 est un multie de 7 est vraie (HR) et on démontre que P(n + 1) est vraie, c est-à-dire que 8 n+1 1 est un multie de 7 est vraie. Puisque 8 n 1 est un multie de 7 alors il existe k N tel que 8 n 1 = 7k. (HR) Or 8 n+1 1 = 8 8 n 1 = 8 7k = 56k + 7 = 7(8k + 1) avec 8k + 1 N On en déduit que 8 n+1 1 est un multie de 7 donc que P(n + 1) est vraie. Conclusion : Donc, par récurrence, n N, 8 n 1 est un multie de 7. Importance de l initialisation : Bien que l initialisation soit souvent sime à vérifier, elle n en demeure pas moins indispensable. En effet, une propriété peut être héréditaire sans pour autant être vraie. Exeme : «n est divisible par 3» est héréditaire mais elle n est vraie pour aucun entier n.

5 Apications : n n n + 1 (n + 1) (1) Démontrer que, n 1, k² = 6. k=1 () Soit la suite u n définie par u 0 = 0 et n N, u n+1 = u n + 1. Démontrer que pour tout entier naturel n, u n = n 1. (3) On considère la suite u n définie par u 0 = 1 et n N, u n+1 = u n +. a) Etudier les variations de la fonction f définie sur [ 1; ] par f x = x +. b) Démontrer que n N, 1 u n u n+1. c) Quelles propriétés cela traduit-il relativement à la suite u n? Objectif : Je dois : Savoir mener un raisonnement par récurrence.

SUITES NUMERIQUES. Une suite est un ensemble infini où chaque élément se voit attribuer un numéro

SUITES NUMERIQUES. Une suite est un ensemble infini où chaque élément se voit attribuer un numéro SUITES NUMERIQUES I. Présentation des suites numériques Une suite est un ensemble infini où chaque élément se voit attribuer un numéro Définition d'une suite. Une suite (u n ) est une fonction définie

Plus en détail

Suites numériques. Christophe ROSSIGNOL. Année scolaire 2007/2008

Suites numériques. Christophe ROSSIGNOL. Année scolaire 2007/2008 Suites numériques Christophe ROSSIGNOL Année scolaire 007/008 Table des matières 1 Notion de suite numérique 1.1 Définition................................................. 1. Modes de génération d une

Plus en détail

Cours de Terminale S / Suites. E. Dostal

Cours de Terminale S / Suites. E. Dostal Cours de Terminale S / Suites E. Dostal juillet 204 Table des matières Suites 2. Notion de Suites......................................... 2.2 Suites arithmétiques et suites géométriques..........................

Plus en détail

Relations d ordre, relations d équivalence

Relations d ordre, relations d équivalence Université de Provence Mathématiques générales 2 Relations d ordre, relations d équivalence 1 Relations d ordre Exercice 1. Dans la droite réelle, déterminer les minorants, les bornes inférieures et les

Plus en détail

Chapitre 4. Quelques types de raisonnement

Chapitre 4. Quelques types de raisonnement Chapitre 4 Quelques types de raisonnement 1. Aide à la rédaction d un raisonnement 1.1. Analyse du problème La première chose est de distinguer les hypothèses (= propositions vraies) de la question (=proposition

Plus en détail

LEÇON N 52 : 52.1 Suites monotones

LEÇON N 52 : 52.1 Suites monotones LEÇON N 52 : Suites monotones, suites adjacentes. Approximation d un nombre réel, développement décimal. L exposé pourra être illustré par un ou des exemples faisant appel à l utilisation d une calculatrice.

Plus en détail

Baccalauréat S Nouvelle-Calédonie 14/11/2013 Corrigé

Baccalauréat S Nouvelle-Calédonie 14/11/2013 Corrigé Baccalauréat S Nouvelle-Calédonie //0 Corrigé. P. M. E. P. EXERCICE Commun à tous les candidats Soit f la fonction dérivable, définie sur l intervalle ]0 ; + [ par f (x)=e x + x.. Étude d une fonction

Plus en détail

Chapitre 6 : Tests d hypothèses

Chapitre 6 : Tests d hypothèses U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Chapitre 6 : Tests d hypothèses Les statistiques peuvent être une aide à la décision permettant de choisir entre deux hypothèses. Par exemple,

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Note liminaire Programme selon les sections : - notion de suite, représentation graphique, suites arithmétiques, suites géométriques : toutes sections - somme de termes, limite de suites arithmétique et

Plus en détail

Raisonnement par récurrence

Raisonnement par récurrence CHAPITRE 2 Raisonnement par récurrence On veut démontrer une propriété qu ont tous les entiers naturels n, par exemple : «la somme de tous les entiers de 0 à n est égale à n(n 1)/2». Comme on considère

Plus en détail

Exercices supplémentaires : Etude de fonctions

Exercices supplémentaires : Etude de fonctions Exercices supplémentaires : Etude de fonctions Partie A : Dérivabilité Etudier la dérivabilité de la fonction : 1 en 1. On considère la fonction définie sur 1; par 1 1 Etudier la dérivabilité de en 1.

Plus en détail

Suites numériques Généralités Exercices corrigés

Suites numériques Généralités Exercices corrigés Suites numériques Généralités Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : définition d une suite, notion de rang et termes d une suite Exercice 2 : calcul avec les termes d une suite

Plus en détail

I Exercices. 1 Définition de suites. 2 Sens de variation d une suite

I Exercices. 1 Définition de suites. 2 Sens de variation d une suite I Exercices 1 Définition de suites Pour toutes les suites (u n ) définies ci-dessous, on demande de calculer u 1, u, u 3 et u 6 1 u n = 7n n + { u0 = u n+1 = u n + 3 3 u n est le n ième nombre premier

Plus en détail

Suites : Résumé de cours et méthodes

Suites : Résumé de cours et méthodes Suites : Résumé de cours et méthodes Généralités ne suite numérique est une liste de nombres, rangés et numérotés : à l entier 0 correspond le nombre noté 0 à l entier correspond le nombre noté à l entier

Plus en détail

Cours 1 : Points fixes de fonctions monotones

Cours 1 : Points fixes de fonctions monotones Université Bordeaux 1 INF569 Master d informatique Logique et Langages (2 - partie 2) Cours 1 : Points fixes de fonctions monotones Anne Dicky 7 novembre 2009 Table des matières 1 Exemples de points fixes

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

Chapitre 9: Introduction aux tests statistiques

Chapitre 9: Introduction aux tests statistiques Chapitre 9: Introduction aux tests statistiques 1. Approche 2. Formalisme général d un test statistique 3. P-value 4. Intervalle de confiance 5. Test bilatéral et test unilatéral 1 1. Approche Procédé

Plus en détail

Suites géométriques CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Déterminer la limite d une suite géométrique de raison strictement positive.

Suites géométriques CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Déterminer la limite d une suite géométrique de raison strictement positive. Chapitre 01 Suites géométriques CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Suites géométriques. Reconnaître et exploiter une suite géométrique dans une situation donnée. Connaître la formule donnant 1 +

Plus en détail

Mathématiques appliquées à la gestion - TESTS PARAMÉTRIQUES ET NON PARAMÉTRIQUES

Mathématiques appliquées à la gestion - TESTS PARAMÉTRIQUES ET NON PARAMÉTRIQUES IMBS3 - ISCID-CO, site de Dunkerque, 2015/2016 Mathématiques appliquées à la gestion - TESTS PARAMÉTRIQUES ET NON PARAMÉTRIQUES Fiche de Mathématiques 2 - Notions générales sur les tests. 1 Notions générales

Plus en détail

Exercices fondamentaux

Exercices fondamentaux Université de Nantes Département de Mathématiques DEUG MIAS - Module M2 Algèbre Année 2002/2003 Liste d exercices n 1 Exercices fondamentaux Espaces vectoriels, sous-espaces vectoriels 1. Montrer que l

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Fiche BAC 01 Terminale S Raisonnement par récurrence Suites numériques Exercice n 1. [RÉSOLU] On considère la suite définie par : { u = 1 0 u n+1 = u n +2,n 0 1 ) A la calculatrice ou avec un tableur :

Plus en détail

Suites : Rappels, récurrence et limites

Suites : Rappels, récurrence et limites Suites : Rappels, récurrence et limites Christophe ROSSIGNOL Année scolaire 015/01 Table des matières 1 Généralités sur les suites 1.1 Modes de génération d une suite....................................

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques Chapitre 7 Généralités sur les fonctions numériques Étude d une fonction réelle d une variable réelle On munit le plan d un repère orthonormé O; i, j.. Fonction réelle d une variable réelle Définition

Plus en détail

QCM chapitre 4 (cf. p. 116 du manuel) Pour bien commencer

QCM chapitre 4 (cf. p. 116 du manuel) Pour bien commencer QCM chapitre 4 (cf. p. 116 du manuel) Pour bien commencer Pour chaque question, il y a une ou plusieurs bonnes réponses. Tableaux de variations et tableaux de signes Les exercices 1 et se réfèrent au graphique

Plus en détail

4. En déduire l existence d une asymptote oblique pour (C f ) en +. 3 x 2 + 2x 3, et on note (C f) sa courbe

4. En déduire l existence d une asymptote oblique pour (C f ) en +. 3 x 2 + 2x 3, et on note (C f) sa courbe de la ère S à la TS. Exercice n : On donne la fonction f définie sur R par : = x 4 + x +. On appelle Γ la courbe représentative de f dans un repère orthonormé (O; ı, j).. Étudier la parité de f.. Déterminer

Plus en détail

Chapitre 2 : Etude de fonctions

Chapitre 2 : Etude de fonctions Chapitre : Etude de fonctions I. Fonctions carrées, racine carrée et inverse Propriété : La fonction carrée est définie sur. Elle est décroissante sur ; 0 et croissante sur 0; Démonstration : Sur ; 0 :

Plus en détail

2 PGCD, PPCM, petit théorème de Fermat

2 PGCD, PPCM, petit théorème de Fermat Université de Paris-Sud, année 2012/2013 Filière Math/Info-L2 Maths 209 Feuille d exercices de soutien 1 Congruences et arithmétique sur Z Exercice 1. a) Soit n un nombre entier. Combien de valeurs peut

Plus en détail

FONCTION LOGARITHME NEPERIEN : f(x) = ln(x)

FONCTION LOGARITHME NEPERIEN : f(x) = ln(x) FONCTION LOGARITHME NEPERIEN : f() = ln() I) DEFINITION. a) Définition 1 et notations : ( de la fonction logarithme ) La fonction logarithme népérien notée «ln», associe à tout nombre réel positif strict

Plus en détail

Chapitre 5 : Application - Forces Centrales

Chapitre 5 : Application - Forces Centrales Cours de Mécanique du Point matériel Chapitre 5: Application - Forces Centrales SMPC Chapitre 5 : Application - Forces Centrales I Force Centrale I.)- Définition Un point matériel est soumis à une force

Plus en détail

L'aire du domaine limité par la courbe, l'axe des abscisses et les droites d'équations 4 et 16 est d'environ 0,95 unités d'aire.

L'aire du domaine limité par la courbe, l'axe des abscisses et les droites d'équations 4 et 16 est d'environ 0,95 unités d'aire. T ES/L DEVOIR SURVEILLE 6 24 MAI 2013 Durée : 3h Calculatrice autorisée NOM : Prénom : «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Raisonnement. 1 Différents types de raisonnements. 1.1 Par disjonction des cas. 1.2 Par élimination des cas. 1.3 Par contraposée

Raisonnement. 1 Différents types de raisonnements. 1.1 Par disjonction des cas. 1.2 Par élimination des cas. 1.3 Par contraposée Raisonnement Le raisonnement mathématique le plus courant est l implication "directe", aussi appelé "raisonnement déductif". On suppose une propriété P vraie et on en déduit une propriété Q vraie, ce qu

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1. Cours de Mathématiques 1

Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1. Cours de Mathématiques 1 Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1 Cours de Mathématiques 1 Table des matières 1 Un peu de formalisme mathématique 7 1.1 Rudiments de logique........................................

Plus en détail

Organisation et gestion de données, fonctions :

Organisation et gestion de données, fonctions : Organisation et gestion de données, fonctions : «Un des objectifs est de faire émerger progressivement sur des exemples la notion de «fonction en tant que processus faisant correspondre un nombre à un

Plus en détail

Calcul des limites de Suites numériques

Calcul des limites de Suites numériques Fiche BAC 02 Calcul des ites de Suites numériques Exercice n 1 Calculer les ites des suites suivantes lorsqu'elles existent. Justifier votre réponse. Pour tout entier n : 1 ) u n =n 2 n+5 2 ) v n = 2n2

Plus en détail

Raisonnement par récurrence

Raisonnement par récurrence Raisonnement par récurrence V. Bansaye Niveau : Approfondir la Terminale S Diculté : Plutôt facile, un peu technique pour le second. Durée : 20 min pour le premier, une bonne demi heure pour le second.

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de et v n Déterminer si possible, ( +

Plus en détail

Université de Brest UFR Droit, Economie, Gestion, AES. Cours de mathématiques S2 Licence AES 2015-2016

Université de Brest UFR Droit, Economie, Gestion, AES. Cours de mathématiques S2 Licence AES 2015-2016 Université de Brest UFR Droit, Economie, Gestion, AES Cours de mathématiques S2 Licence AES 2015-2016 Chapitre 4 - Quelques notions de mathématiques financières 1 Ce chapitre vise à présenter quelques

Plus en détail

Terminale ES Chapitre III Suites numériques.

Terminale ES Chapitre III Suites numériques. Terminale ES Chapitre III Suites numériques. I- Généralités. 1) Vocabulaire. Voici une liste de nombres : 1 3 6 10 15 21 (termes) On peut les numéroter : n 0 n 1 n 2 n 3 n 4 n 5 (rangs) Ainsi, le terme

Plus en détail

Croissance d une fonction

Croissance d une fonction Croissance d une fonction Première définition de la croissance Définition: une fonction croissante est une fonction dont la représentation graphique monte. Définition: une fonction décroissante est une

Plus en détail

Corrigé du baccalauréat STMG Antilles Guyane 18 juin 2014

Corrigé du baccalauréat STMG Antilles Guyane 18 juin 2014 Durée : 3 heures Corrigé du baccalauréat STMG Antilles Guyane 18 juin 2014 EXERCICE 1 5 points Partie A Cette partie est un questionnaire à choix multiples (QCM). Une agence de voyage, propose un itinéraire

Plus en détail

L espace de probabilités (Ω,A,P )

L espace de probabilités (Ω,A,P ) L espace de probabilités (Ω,A,P ) 1 Introduction Le calcul des probabilités est la science qui modélise les phénomènes aléatoires. Une modélisation implique donc certainement une simplification des phénomènes,

Plus en détail

Ch 4 Fonctions 1 ère S

Ch 4 Fonctions 1 ère S Ch 4 Fonctions 1 ère S I. Fonctions, sens de variation...1 II. Fonctions de référence... A. Fonctions racine carrée...3 B. Fonctions inverse...3 C. Comparaison des fonctions constante, racine carrée, carré

Plus en détail

Probabilités conditionnelles Exercices

Probabilités conditionnelles Exercices Probabilités conditionnelles Exercices 1 Exercice Lors d une enquête portant sur les 2000 salariés d une entreprise, on a obtenu les informations suivantes : 30 % des salariés ont 40 ans ou plus ; 40 %

Plus en détail

Chapitre 3 Étude de fonctions. Table des matières. Chapitre 3 Étude de fonctions TABLE DES MATIÈRES page -1

Chapitre 3 Étude de fonctions. Table des matières. Chapitre 3 Étude de fonctions TABLE DES MATIÈRES page -1 Chapitre 3 Étude de fonctions TABLE DES MATIÈRES page -1 Chapitre 3 Étude de fonctions Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Suites : Calcul et comportement asymptotique.

Suites : Calcul et comportement asymptotique. 4 Chapitre 3 Suites : Calcul et comportement asymptotique. 3. Méthodes de définition. Comment définir une suite (u n ) n N de réels? Par l expression de son terme général, Par une formule de récurrence

Plus en détail

ROC (Restitution organisée des connaissances)

ROC (Restitution organisée des connaissances) TS 2015/2016 Les Suites ROC (Restitution organisée des connaissances) ROC N 1:Théorèmes de comparaison Théorèmes de comparaison Soit trois suites, et. L désigne un nombre réel. Si à partir d un certain

Plus en détail

TP CPGE T.P. numéro 2 : système du premier ordre : réponse fréquentielle.

TP CPGE T.P. numéro 2 : système du premier ordre : réponse fréquentielle. T.P. numéro 2 : système du premier ordre : réponse fréquentielle. Buts du TP : le but du TP n 2 est l étude générale des systèmes du premier ordre alimentés par un signal sinusoïdal (réponse fréquentielle).

Plus en détail

Mathématiques approfondies (parcours MID) Semestre 2. 1. Ensembles et applications

Mathématiques approfondies (parcours MID) Semestre 2. 1. Ensembles et applications Université Paris XII Licence Économie-Gestion Mathématiques approfondies (parcours MID) Semestre 2 1. Ensembles et applications Exercice 1 On considère l ensemble F des fruits, l ensemble R des fruits

Plus en détail

LA DÉRIVÉE SECONDE. Même si la dérivée première donne beaucoup d'information à propos d'une fonction, elle ne la caractérise pas complètement.

LA DÉRIVÉE SECONDE. Même si la dérivée première donne beaucoup d'information à propos d'une fonction, elle ne la caractérise pas complètement. LA DÉRIVÉE SECONDE Sommaire 1. Courbure Concavité et convexité... 2 2. Détermination de la nature d'un point stationnaire à l'aide de la dérivée seconde... 6 3. Optima absolus... 8 La rubrique précédente

Plus en détail

Arithmétique. n(n + 1) 2. k = k=0. q k = 1 qn+1 1 q. n(n + 1)(2n + 1) 6. k 2 =

Arithmétique. n(n + 1) 2. k = k=0. q k = 1 qn+1 1 q. n(n + 1)(2n + 1) 6. k 2 = Université de Provence Mathématiques générales 1 Récurrence Arithmétique Exercice 1. Prouver l identité suivante: n k = k=0 n(n + 1) valable pour tout entier naturel n. Exercice. Prouver l identité suivante:

Plus en détail

Fonctions exponentielles de base q et logarithme décimal

Fonctions exponentielles de base q et logarithme décimal Fonctions eponentielles de base q et logarithme décimal I) Fonctions eponentielles de base q : 1) Définition : q étant un nombre strictement positif différent de 1 Toute fonction qui à tout nombre réel

Plus en détail

LE TRANSFORMATEUR MONOPHASE

LE TRANSFORMATEUR MONOPHASE LE TRASFORMATER MOOPHASE I. PRESETATIO n transformateur est constitué d un circuit magnétique ( composé de feuilles en acier accolées ) sur lequel sont disposés deux bobinages en cuivre : le primaire et

Plus en détail

Chapitre 1. Logique et ensembles. 1.1 Rudiments de logique. Logique, tables de vérité. Quantificateurs

Chapitre 1. Logique et ensembles. 1.1 Rudiments de logique. Logique, tables de vérité. Quantificateurs Document créé le 29 octobre 2015 Lien vers les solutions des exercices Lien vers le cours de ce chapitre Chapitre 1 Logique et ensembles 1.1 Rudiments de logique Logique, tables de vérité Exercice 1.1.1

Plus en détail

Petit guide du stage de 3 ème. à usage des parents. Pourquoi un stage?

Petit guide du stage de 3 ème. à usage des parents. Pourquoi un stage? 1 Petit guide du stage de 3 ème à usage des parents Pourquoi un stage? Sensibiliser les élèves au monde du travail : Aimer le monde du travail. Souvent, nos enfants n ont qu une idée très partielle de

Plus en détail

fonctions homographiques

fonctions homographiques fonctions homographiques Table des matières 1 aspect numérique et algébrique 3 1.1 activités.................................................. 3 1.1.1 activité 1 : différentes écritures.................................

Plus en détail

Les équations du premier degré

Les équations du premier degré TABLE DES MATIÈRES 1 Les équations du premier degré Paul Milan LMA Seconde le 10 septembre 2010 Table des matières 1 Définition 1 2 Résolution d une équation du premier degré 2 2.1 Règles de base................................

Plus en détail

Suites Limite de suite réelle Exercices corrigés

Suites Limite de suite réelle Exercices corrigés Suites Limite de suite réelle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : conjecture de la limite d une suite définie par une formule explicite

Plus en détail

Chaque fois qu on additionne deux entiers naturels, leur somme est un entier naturel. Par exemple, 7 N 9 N

Chaque fois qu on additionne deux entiers naturels, leur somme est un entier naturel. Par exemple, 7 N 9 N 9 Chapitre 1 Les ensembles de nombres Théorie 1.1 Les ensembles de nombres 1.1.1 L ENSEMBLE N Comme dans le manuel de 8 e, nous utiliserons les notations: N = {0;1;;;4;;...} N = {1;;;4;;...} N est appelé

Plus en détail

Théorie du point fixe

Théorie du point fixe 1. Rappel Ensemble ordonné Majorant, Minorant Borne inférieure borne supérieure Treuilli treuilli complet Fonction croissante Fonction continue 2. Théorème du point fixe Énoncé Démonstration Rappel Ensemble

Plus en détail

Sciences Po Paris 2012 Mathématiques Solutions

Sciences Po Paris 2012 Mathématiques Solutions Sciences Po Paris 202 athématiques Solutions Partie : Le modèle de althus odèle discret a Pour tout entier naturel n, on a P n+ P n = P n donc P n+ = +P n Par suite la suite P n est géométrique de raison

Plus en détail

Mathématique -5SH - 3périodes/semaine.

Mathématique -5SH - 3périodes/semaine. Exemples : I. SUITES NUMÉRIQUES 1. Voici une suite de termes numériques : 3, 17, 87, 437, 2187, ou indice 0 1 2 3 4 5 termes Exemple 3 17 87 437 2187 p n-1 n A. DÉFINITION Intuitivement, une suite est

Plus en détail

BORNE SUPERIEURE. P. Pansu 15 février 2005

BORNE SUPERIEURE. P. Pansu 15 février 2005 BORNE SUPERIEURE P. Pansu 15 février 2005 1 Motivation Grandeur et misère de Q. 1.1 Propriétés de l ordre dans Q L ordre est compatible avec les opérations d addition et de multiplication (par exemple,

Plus en détail

On verra ensuite le concept de fonction de transfert, et comment on peut s en servir pour l analyse de circuits.

On verra ensuite le concept de fonction de transfert, et comment on peut s en servir pour l analyse de circuits. Chapitre 2 Analyse de circuits La transformée de Laplace a deux caractéristiques qui la rende intéressante pour l analyse de circuits. En premier, elle permet de transformer une série d équations linéaires

Plus en détail

Coordonnées Équation de droites

Coordonnées Équation de droites Coordonnées Équation de droites Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Coordonnées dans le plan 2 1.1 Repères coordonnées d un point.................................... 2 1.2

Plus en détail

Devoir en temps libre

Devoir en temps libre Commentaires et erreurs fréquentes Deux circuits RLC Devoir en temps libre Si vous échelonnez P, la matrice obtenue n est plus P! Pour utiliser la formule de changement de base, il faut partir de la matrice

Plus en détail

Lycée Louis de Broglie

Lycée Louis de Broglie Lycée Louis de Broglie Livret de révisions de Mathématiques pour l entrée en classe de seconde Ce livret vous proposé pour vous remettre au travail avant votre entrée en seconde Il s agit d exercices divers

Plus en détail

Cours Info - 9. Preuve d algorithme (initiation) D.Malka MPSI 2015-2016. D.Malka Cours Info - 9 MPSI 2015-2016 1 / 16

Cours Info - 9. Preuve d algorithme (initiation) D.Malka MPSI 2015-2016. D.Malka Cours Info - 9 MPSI 2015-2016 1 / 16 Cours Info - 9 Preuve d algorithme (initiation) D.Malka MPSI 2015-2016 D.Malka Cours Info - 9 MPSI 2015-2016 1 / 16 Sommaire Sommaire 1 Comment montrer qu un algorithme est correct? 2 Terminaison d un

Plus en détail

Dérivation, accroissement et calcul marginal

Dérivation, accroissement et calcul marginal Dérivation, accroissement et calcul marginal MATHEMATIQUES APPLIQUEES Licence 1 Administration Economique et Sociale Sébastien Pommier 2007-2008 Un exemple introductif Introduction Un exemple 1/2 Une bille

Plus en détail

Extremums d une fonction

Extremums d une fonction Extremums d une fonction I) Définitions (rappels de seconde : voir la fiche de cours correspondante) Soit une fonction définie sur un ensemble D inclus dans, et deux réels. est le maximum de sur D si et

Plus en détail

Applications linéaires

Applications linéaires Denis Pasquignon Applications linéaires Résumé du cours : 1. Généralités On appelle application linéaire de E dans F une application f : E F telle que (x 1, x 2 ) E 2 λ K, f(x 1 + λx 2 ) = f(x 1 ) + λf(x

Plus en détail

Probabilités - Exercices corrigés

Probabilités - Exercices corrigés Probabilités - Exercices corrigés Y. Morel Exercice 1 Soit X une variable aléatoire qui suit la loi uniforme sur [ 5; ]. Calculer : a P X La fonction densité de probabilité de la loi uniforme sur [ 5;

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions Généralités sur les fonctions Christophe ROSSIGNOL Année scolaire 2008/2009 Table des matières 1 Rappels et compléments 3 1.1 Fonctions affines............................................. 3 1.2 Fonctions

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions Généralités sur les fonctions Voir des propriétés sur la calculette et de les démontrer par des calculs : ensemble de définition solutions d'équations et d'inéquations croissance et décroissance symétries

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES DU SECOND ORDRE (EXOS)

ÉQUATIONS DIFFÉRENTIELLES DU SECOND ORDRE (EXOS) Fiche professeur second ordre () ÉQUATIONS DIFFÉRENTIELLES DU SECOND ORDRE (EXOS) TI-Nspire CAS 1. Objectifs Résoudre à la main et à l aide de la calculatrice les équations différentielles linéaires du

Plus en détail

Brevet de technicien supérieur Opticien lunetier session 2010

Brevet de technicien supérieur Opticien lunetier session 2010 Brevet de technicien supérieur Opticien lunetier session 2010 A. P. M. E. P. Exercice 1 11 points Les deux parties A et D peuvent être traitées indépendamment des parties B et C A. Ajustement affine Une

Plus en détail

FSAB 1402: Informatique 2. Récursion sur les Entiers

FSAB 1402: Informatique 2. Récursion sur les Entiers FSAB 1402: Informatique 2 Récursion sur les Entiers Peter Van Roy Département d Ingénierie Informatique, UCL pvr@info.ucl.ac.be 2007 P. Van Roy. All rights reserved. 1 Ce qu on va voir aujourd hui Résumé

Plus en détail

Méthode de la dissertation en Histoire

Méthode de la dissertation en Histoire Méthode de la dissertation en Histoire I. Lire et comprendre le sujet 1. Comprendre le libellé et le sens du sujet Avant tout autre chose, il s agit de comprendre parfaitement le sujet. Il faut déterminer

Plus en détail

Chapitre 2 Les Suites

Chapitre 2 Les Suites Chapitre 2 Les Suites A) Généralités 1) Définitions Une suite (ou suite de nombres) est un ensemble ordonné de nombres réels construit sur une règle précise et non aléatoire. On note généralement (u n

Plus en détail

Table des matières. 3 Suites de nombres réels 29. 3.2 Limites... 30

Table des matières. 3 Suites de nombres réels 29. 3.2 Limites... 30 Table des matières 1 Généralités 3 1.1 Un peu de logique................................. 3 1.1.1 Vocabulaire................................ 3 1.1.2 Opérations logiques............................ 4 1.1.3

Plus en détail

LIVRET DE MATHÉMATIQUES ENTRÉE EN SECONDE Lycée Jean-Paul II (Sartrouville) Année 2014-2015

LIVRET DE MATHÉMATIQUES ENTRÉE EN SECONDE Lycée Jean-Paul II (Sartrouville) Année 2014-2015 LIVRET DE MTHÉMTIQUES ENTRÉE EN SECONDE Lycée Jean-Paul II (Sartrouville) nnée 204-205 Pourquoi ce livret? Les vacances d été sont longues et la mise en route en septembre souvent difficile. fin de mieux

Plus en détail

Géométrie analytique ( En seconde )

Géométrie analytique ( En seconde ) Géométrie analytique ( En seconde ) Dernière mise à jour : Dimanche 31 Octobre 2010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2010-2011) Lycée Stendhal, Grenoble ( Document de : Vincent

Plus en détail

1 Notion de matrice. 2 Opérations sur les matrices. 1.1 Définitions et notations

1 Notion de matrice. 2 Opérations sur les matrices. 1.1 Définitions et notations ECS 3 2013 2014 Semaine de colle n o 16 du 13 au 17 janvier Toutes les définitions /énoncés du cours sont à connaître précisément Les démonstrations/exemples vus en classe peuvent être proposées comme

Plus en détail

Partie numérique. Réponses proposées N Proposition n 1 Proposition n 2 Proposition n 3 1

Partie numérique. Réponses proposées N Proposition n 1 Proposition n 2 Proposition n 3 1 Durée : 2 heures L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation et de la rédaction entrent pour 4 points dans l appréciation des copies. Exercice n 1 : Partie numérique

Plus en détail

Thème N 1 : RACINES CARREES (1)

Thème N 1 : RACINES CARREES (1) Thème N 1 : RACINES CARREES (1) EQUATION (1) ESPACE (1) CALCUL LITTERAL (1) A la fin du thème, tu dois savoir : Utiliser le théorème de Pythagore (rappels de 4 ). Réduire une écriture littérale (rappels

Plus en détail

Comment calculer les puissances d un nombre? Christophe.Troestler@umh.ac.be http://www.umh.ac.be/math/an/

Comment calculer les puissances d un nombre? Christophe.Troestler@umh.ac.be http://www.umh.ac.be/math/an/ Comment calculer les puissances d un nombre? Christophe.Troestler@umh.ac.be http://www.umh.ac.be/math/an/ 1. Première idée x 0 = 1 x 1 = x x 2 = x x x 3 = x 2 x = x x x x 4 = x 3 x = x x x x Donc, pour

Plus en détail

TP Cours : Diagrammes de Bode du premier ordre

TP Cours : Diagrammes de Bode du premier ordre TP Cours : Diagrammes de Bode du premier ordre Dans ce polycopié, on passe en revue les méthodes et définitions à maîtriser pour l étude des filtres du premier ordre. Toutes ont été étudiées lors des séances

Plus en détail

RSA - bases mathématiques

RSA - bases mathématiques RSA - bases mathématiques Jang Schiltz Centre Universitaire de Luxembourg Séminaire de Mathématiques 162A, avenue de la Faïencerie L-1511 Luxembourg Luxembourg E-mail:schiltzj@cu.lu 1 Divisibilité Définition

Plus en détail

FONCTIONS DU PREMIER ET DU DEUXIEME DEGRE

FONCTIONS DU PREMIER ET DU DEUXIEME DEGRE FONCTIONS DU PREMIER ET DU DEUXIEME ) Fonctions constantes. DEGRE Une fonction constante est une fonction de la forme : Exemples : f (x) = 3 g(x) = h(x) = 0 k(x) = 3, 6 f (x) = b où b est un nombre réel

Plus en détail

Chapitre II Notion de structure de groupe

Chapitre II Notion de structure de groupe Chapitre II Notion de structure de groupe I Définitions 1. Définition générale Définition : Un groupe est un ensemble, ( ), telle que : muni d une loi de composition interne notée - la loi soit associative

Plus en détail

L essentiel sur les suites. 3.1 Définition... 4. 1.2 Monotonie... 2. 2 Suites arithmétiques 2. 3.2 Propriétés... 4

L essentiel sur les suites. 3.1 Définition... 4. 1.2 Monotonie... 2. 2 Suites arithmétiques 2. 3.2 Propriétés... 4 Table des matières L essentiel sur les suites Généralités 2. Définition.................................................... 2.2 Monotonie.................................................... 2 2 Suites

Plus en détail

5. Il y a 8 filles et 2 garçons et il arrive un couple ( garçon, fille) par minute!

5. Il y a 8 filles et 2 garçons et il arrive un couple ( garçon, fille) par minute! FICHE METHODE sur les FONCTION INVERSE I) A quoi sert la fonction INVERSE? a) Eemples :. On partage équitablement million d euros entre personnes! Combien chacun aura t-il en fonction de? f() =. 2. Il

Plus en détail

Cours d électrocinétique EC2-Bobine et condensateur

Cours d électrocinétique EC2-Bobine et condensateur Cours d électrocinétique EC2-Bobine et condensateur Table des matières 1 Introduction 2 2 Le condensateur 2 2.1 Constitution et symbole... 2 2.2 Relation tension-intensité... 2 2.3 Condensateur et régimes...

Plus en détail

Types de raisonnement

Types de raisonnement Types de raisonnement Christian Cyrille 19 août 013 "On résoud les problèmes qu on se pose et non les problèmes qui se posent" Henri Poincaré En sciences, deux façons de raisonner : - l induction - la

Plus en détail

THEOREME DE LA CONVERGENCE MONOTONE

THEOREME DE LA CONVERGENCE MONOTONE THEOREME DE LA CONVERGENCE MONOTONE.1 Suite minorée, majorée, bornée Dénition 1 minorée par m : quel que soit n, u n m majorée par M : quel que soit n, u n M bornée = minorée + majorée Exemple de suite

Plus en détail

Initiation à l algorithmique... et à la programmation

Initiation à l algorithmique... et à la programmation IREM Clermont-Ferrand Année 2009-2010 Journée d information Malika More sur les nouveaux programmes de Seconde Initiation à l algorithmique... et à la programmation Contenu de l atelier Des algorithmes

Plus en détail

COURS DE STATISTIQUE TD - FEUILLE N 3

COURS DE STATISTIQUE TD - FEUILLE N 3 Université Paris 1 Magistère d Economie - 1ère année COURS DE STATISTIQUE TD - FEUILLE N 3 Généralités Exercice 1 Le nombre mensuel d accidents sur un parcours routier peut être considéré comme la réalisation

Plus en détail

MANAGEMENT DES EQUIPES PAR LE SPORT: «DE LA PRATIQUE A LA THEORIE»

MANAGEMENT DES EQUIPES PAR LE SPORT: «DE LA PRATIQUE A LA THEORIE» MANAGEMENT DES EQUIPES PAR LE SPORT: «DE LA PRATIQUE A LA THEORIE» Donner l envie à son équipage, communiquer avec ses salariés Un exemple concret dans une séance s d enseignement autour du foot salle

Plus en détail

copie de tout document inclaunt statistique/donnée que détient votre organisme et ou/ministère et me permttant de voir par année le nombre

copie de tout document inclaunt statistique/donnée que détient votre organisme et ou/ministère et me permttant de voir par année le nombre Par courriel Monsieur, La présente donne suite à votre demande d accès à l information reçue le 29 avril 2016, par laquelle vous souhaitez obtenir les renseignements suivants : «copie de tout document

Plus en détail

République du Bénin MINISTERE DE L ENSEIGNEMENT SECONDAIRE, DE LA FORMATION TECHNIQUE ET PROFESSIONNELLE GUIDE PEDAGOGIQUE MATHÉMATIQUE

République du Bénin MINISTERE DE L ENSEIGNEMENT SECONDAIRE, DE LA FORMATION TECHNIQUE ET PROFESSIONNELLE GUIDE PEDAGOGIQUE MATHÉMATIQUE République du Bénin MINISTERE DE L ENSEIGNEMENT SECONDAIRE, DE LA FORMATION TECHNIQUE ET PROFESSIONNELLE GUIDE PEDAGOGIQUE MATHÉMATIQUE Classes de 2 e C Version révisée DIRECTION DE L INSPECTION PEDAGOGIQUE

Plus en détail