PRISME DROIT. II- Vue en perspective et vocabulaire: Les triangles ABC et A'B'C' sont les bases du prisme

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "PRISME DROIT. II- Vue en perspective et vocabulaire: Les triangles ABC et A'B'C' sont les bases du prisme"

Transcription

1 PRISME DROIT I- Patron: En traçant deux triangles et trois rectangles disposés de la manière ci-contre et en pliant, on obtient un prisme droit à base triangulaire II- Vue en perspective et vocabulaire: Les triangles ABC et A'B'C' sont les bases du prisme Les rectangles ABB'A', BCC'B', ACC'A' sont les faces latérales du prisme Le segment [AA'] (ou [BB'], ou [CC']) est la hauteur du prisme Attention: Si le prisme est représenté "couché" la hauteur est alors dans le sens horizontal Autre exemple: Un prisme droit à base hexagonale De manière générale: 1

2 Dans un prisme droit: - les bases sont deux polygones superposables - les faces latérales sont des rectangles perpendiculaires aux bases Remarque: Le cube et le parallélépipède rectangle sont des cas particuliers de prismes droits (prismes à base carrée ou rectangulaire) III- Aire latérale: L'aire latérale du prisme est l'aire totale de ses faces latérales. Or l'ensemble de ces faces forme un rectangle - ayant pour longueur le périmètre de la base - ayant pour largeur la hauteur du prisme Donc, on obtient la formule: Aire latérale = Périmètre de base x hauteur Exemple 1: Calculer l'aire latérale d'un prisme de hauteur 5,6 cm ayant pour base un triangle dont les côtés mesurent 1,8 cm, 2,9 cm et 3,4 cm Le périmètre de la base est: 1,8 + 2,9 + 3,4 = 8,1 cm 8,1 x 5,6 = 45,36 L'aire latérale de ce prisme est 45,36 cm 2 Exemple 2: Calculer l'aire latérale d'un prisme de hauteur 4,9 cm ayant pour base un hexagone régulier de côté 2,5 cm Le périmètre de la base est: 2,5 x 6 = 15 cm 15 x 4,9 = 73,5 L'aire latérale de ce prisme est 73,5 cm 2 2

3 IV- Volume: Le volume d'un prisme droit se calcule par la formule: Volume = Aire de base x hauteur Exemple 1: Calculer le volume d'un prisme de hauteur 7,5 cm dont la base a pour aire 25,8 cm 2 25,8 x 7,5 = 193,5 Le volume de ce prisme est 193,5 cm 3 Exemple 3: Calculer la hauteur d'un prisme ayant pour volume 327,6 cm 3 et pour aire de base 45,5 cm 2 327,6 : 45,5 = 7,2 La hauteur de ce prisme est 7,2 cm Exemple 2: Calculer l'aire de base d'un prisme de hauteur 6,4 cm et de volume 205,44 cm 3 205,44 : 6,4 = 32,1 L'aire de base de ce prisme est 32,1 cm 2 Exemple 4: Calculer le volume d'un prisme de hauteur 5,9 cm ayant pour base un triangle dont la base mesure 4,5 cm et la hauteur 3,4 cm Attention à ne pas confondre: base du prisme (le triangle) et base du triangle (4,5 cm) hauteur du prisme (5,9 cm) et hauteur du triangle (3,4 cm) L'aire de base du prisme est l'aire du triangle, donc: (4,5 x 3,4) / 2 = 7,65 cm 2 7,65 x 5,9 = 45,135 Le volume de ce prisme est 45,135 cm 3 Exemple 5: Calculer le volume d'un prisme de hauteur 3,7 cm ayant pour base un losange dont les diagonales mesurent 7,6 cm et 4,8 cm L'aire de base du prisme est : (7,6 x 4,8) / 2 = 18,24 cm 2 18,24 x 3,7 = 67,488 Le volume de ce prisme est 67,488 cm 3 Exemple 6: Calculer le volume d'un prisme de hauteur 4,6 cm ayant pour base un trapèze dont les bases mesurent 5,7 cm et 3,5 cm et la hauteur 2,3cm L'aire de base du prisme est : [(5,7 + 3,5) x 2,3] / 2 = 10,58 cm 2 10,58 x 4,6 = 48,668 Le volume de ce prisme est 48,668 cm 3 V- Exercices: Exercice 1: Calculer l'aire latérale d'un prisme de hauteur 8,4 cm ayant pour base un triangle dont les côtés mesurent 3,2 cm, 2,7 cm et 4,9 cm Exercice 2: Calculer l'aire latérale d'un prisme de hauteur 6,7 cm ayant pour base un octogone régulier de côté 3,1 cm Exercice 3: Calculer le volume d'un prisme de hauteur 5,3 cm dont la base a pour aire 62,4 cm 2 Exercice 4: Calculer l'aire de base d'un prisme de hauteur 3,8 cm et de volume 150,86 cm 3 3

4 Exercice 5: Calculer la hauteur d'un prisme ayant pour volume 426,06 cm 3 et pour aire de base 52, 6 cm 2 Exercice 6: Calculer le volume d'un prisme de hauteur 6,3 cm ayant pour base un triangle dont la base mesure 5,7 cm et la hauteur 4,2 cm Exercice 7: Calculer le volume d'un prisme de hauteur 12 cm ayant pour base un parallélogramme dont la base mesure 7,5 cm et la hauteur 3,8cm Exercice 8: Calculer le volume d'un prisme de hauteur 4,5 cm ayant pour base un losange dont les diagonales mesurent 7,8 cm et 5,5 cm Exercice 9: Calculer le volume d'un prisme de hauteur 14 cm ayant pour base un trapèze dont les bases mesurent 9 cm et 7 cm et la hauteur 6 cm 4

5 PRISME DROIT - CORRECTION DES EXERCICES Exercice 1: Le périmètre de la base est: 3,2 + 2,7 + 4,9 = 10,8 cm 10,8 x 8,4 = 90,72 L'aire latérale de ce prisme est 90,72 cm 2 Exercice 2: Le périmètre de la base est: 3,1 x 8 = 24,8 cm 24,8 x 6,7 = 166,16 L'aire latérale de ce prisme est 166,16 cm 2 Exercice 3: 62,4 x 5,3 = 330,72 Le volume de ce prisme est 330,72 cm 3 Exercice 4: 150,86 : 3,8 = 39,7 L'aire de base de ce prisme est 39,7 cm 2 Exercice 5: 426,06 : 52,6 = 8,1 La hauteur de ce prisme est 8,1 cm Exercice 6: L'aire de base du prisme est l'aire du triangle, donc: (5,7 x 4,2) / 2 = 11,97 cm 2 11,97 x 6,3 = 75,411 Le volume de ce prisme est 75,411 cm 3 Exercice 7: L'aire de base du prisme est l'aire du parallélogramme, donc: 7,5 x 3,8 = 28,5 cm 2 28,5 x 12 = 342 Le volume de ce prisme est 342 cm 3 Exercice 8: L'aire de base du prisme est : (7,8 x 5,5) / 2 = 21,45 cm 2 21,45 x 4,5 = 96,525 Le volume de ce prisme est 96,525 cm 3 Exercice 9: L'aire de base du prisme est : [(9 + 7) x 6] / 2 = 48 cm 2 48 x 14 =672 Le volume de ce prisme est 672 cm 3 5

GEOMETRIE CM2. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté.

GEOMETRIE CM2. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. x I x K x F Une droite est un alignement infini de points. On la désigne par

Plus en détail

Les droites, points, segments 1. Le point

Les droites, points, segments 1. Le point Les droites, points, segments 1. Le point Un point est un endroit précis du plan. On le repère avec une croix ( ). On le nomme avec une lettre majuscule. 2. La ligne et la droite Une ligne est une suite

Plus en détail

Géométrie C.M.1. Ecole primaire de Provenchères sur Fave

Géométrie C.M.1. Ecole primaire de Provenchères sur Fave Géométrie C.M.1 Ecole primaire de Provenchères sur Fave Sommaire Dans le plan Le point p. 03 La droite p. 04 La demi-droite p. 05 Le segment de droite p. 06 Droites sécantes p. 07 Droites perpendiculaires

Plus en détail

Géométrie - notion : Solides de l espace

Géométrie - notion : Solides de l espace Géométrie - notion : Solides de l espace 1. Généralités a) Définition Un solide est une portion d espace délimitée et envisagée comme un tout déformable (dictionnaire Petit Larousse). b) Classification

Plus en détail

Ex 1 : Vrai ou faux CM1

Ex 1 : Vrai ou faux CM1 Ex 1 : Vrai ou faux a)une droite est limité par deux points En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. b)si trois points sont sur

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Définition : Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui

Plus en détail

PYRAMIDE ET CONE DE REVOLUTION

PYRAMIDE ET CONE DE REVOLUTION PYRAMIDE ET CNE DE REVLUTIN I) Perspective cavalière : Les solides de l espace sont représentés en perspective cavalière. Les conventions suivantes sont à respectées : - une droite est représentée par

Plus en détail

Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3

Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3 Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3 Exercice 4 (Aix Marseille 1996) 1. Rappel : tracé de l hexagone. On place un point, qu on nomme O. On trace un cercle de centre O, de rayon

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 Ex 1 : Vrai ou faux a)une droite est limité par deux points En géométrie, il faut être attentif lors de la lecture des consignes et très

Plus en détail

Mathématiques niveau CFG

Mathématiques niveau CFG Mathématiques niveau CFG Chapitre 4 : Géométrie COURS 4 : QUADRILATERES 1. IDENTIFIER UN QUADRILATERE ABCD est une figure géométrique formée de 4 côtés et de 4 sommets : c est un quadrilatère Le segment

Plus en détail

Lire les coordonnées d un point

Lire les coordonnées d un point Lire les coordonnées d un point 1) Repérer les cases 2) Repérer les nœuds : On peut repérer les nœuds d un quadrillage avec un code. La lettre indique le code de la colonne. Le nombre indique le code de

Plus en détail

Chapitre VIII : Polygones et aires

Chapitre VIII : Polygones et aires Classe de Sixième Chapitre VIII : Polygones et aires Année scolaire 2008/2009 Introduction : Un polygone est une figure fermée à plusieurs côtés dont les sommets sont reliés par des segments. Exemples

Plus en détail

Réaliser le patron d une pyramide de dimension donnée. Calculer le volume d une pyramide et d un cône de révolution.

Réaliser le patron d une pyramide de dimension donnée. Calculer le volume d une pyramide et d un cône de révolution. HPITRE N PYRIE ET ÔNE E REVLUTIN (hapitre 11 en 008/009) Réaliser le patron d une pyramide de dimension donnée. alculer le volume d une pyramide et d un cône de révolution. HPITRE N PYRIE ET ÔNE E REVLUTIN

Plus en détail

FICHES OUTILS GEOMETRIE CE2

FICHES OUTILS GEOMETRIE CE2 FICHES OUTILS GEOMETRIE 1 Reproduire avec un calque 2 Reproduire avec un quadrillage 3 Reproduire avec un gabarit 4 Les solides 5 Figures planes et polygones 6 Parallèles et perpendiculaires 7 Cercles

Plus en détail

Fichier de géométrie

Fichier de géométrie Fichier de géométrie Sommaire F1 F2 F3 F4 Périmètres Aires Volumes Tableaux de conversions F5 F6 Comment démontrer que deux droites sont parallèles Comment démontrer que deux droites sont perpendiculaires

Plus en détail

Notes de cours. Annexe A : Retour sur les formules d aire

Notes de cours. Annexe A : Retour sur les formules d aire Notes de cours Rappel : Les polygones, le périmètre et l aire 4.1 Le système international d unités (SI) 4.2 L aire d un triangle, d un rectangle et d un parallélogramme 4.3 L aire d un trapèze et d un

Plus en détail

Droites parallèles et perpendiculaires Groupe 1

Droites parallèles et perpendiculaires Groupe 1 Droites parallèles et perpendiculaires Groupe 1 Objectif: reconnaître et tracer des droites parallèles et perpendiculaires. 1. Trace la droite perpendiculaire à la droite d et qui passe par le point C.

Plus en détail

Géométrie - notion : Angles, cercles, triangles

Géométrie - notion : Angles, cercles, triangles Géométrie - notion : Angles, cercles, triangles 1. Angles a) Vocabulaire Angle nul : L angle nul est formé par deux demi-droites identiques et donc de même origine. Angle plat : Un angle est plat si les

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. b)on nomme un segment entre

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. b)on nomme un segment entre Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points

Plus en détail

1 : VOCABULAIRE, REPRÉSENTATION. e. La figure de gauche représente un... de révolution. g. Les deux bases de ce cylindre de révolution sont...

1 : VOCABULAIRE, REPRÉSENTATION. e. La figure de gauche représente un... de révolution. g. Les deux bases de ce cylindre de révolution sont... SÉRI 1 : VOBULIR, RPRÉSNTTION 1 omplète le tableau suivant. Nom du solide Nombre de sommets Nombre de faces Nombre d'arêtes olorie en rouge les bases des prismes droits et des cylindres de révolution.

Plus en détail

ACTIVITE 4 Représenter une maison en perspective cavalière. Guide pour le professeur

ACTIVITE 4 Représenter une maison en perspective cavalière. Guide pour le professeur ACTIVITE 4 Représenter une maison en perspective cavalière Guide pour le professeur Objectifs - Préciser des conventions de représentation en perspective cavalière : choix d'un angle et d'un facteur de

Plus en détail

PYRAMIDES ET CONES DE REVOLUTION

PYRAMIDES ET CONES DE REVOLUTION PYRMIE ET ONE E REVOLUTION 1) Vocabulaire onsidérons le solide suivant : F G H I E E, GF, GH, sont des faces du solide.,,,, sont des sommets du solide. [], [], [], sont des arêtes du solide. Toutes les

Plus en détail

PYRAMIDES, CÔNES DE RÉVOLUTION, SPHÈRES ET BOULES, AGRANDISSEMENT ET RÉDUCTION, SECTION. base face latérale

PYRAMIDES, CÔNES DE RÉVOLUTION, SPHÈRES ET BOULES, AGRANDISSEMENT ET RÉDUCTION, SECTION. base face latérale PYRMIDE, ÔNE DE RÉVLUTIN, PÈRE ET ULE, GRNDIEMENT ET RÉDUTIN, ETIN. I) PRIME DRIT ; YLINDRE DE RÉVLUTIN. 1) Prismes droits : Ils ont 2 faces qui sont superposables : ce sont les bases. Les autres faces,

Plus en détail

Évaluations nationales Annales CM

Évaluations nationales Annales CM Évaluations nationales Annales CM symétrie Axes de symétrie 1 / Entoure les figures pour lesquelles la droite en pointillés te semble être un axe de symétrie. (Évaluations nationales 2004) 3 / Entoure

Plus en détail

PÉRIMÈTRE ET SURFACE (AIRES) D UNE FIGURE SIMPLE MATHÉMATIQUES

PÉRIMÈTRE ET SURFACE (AIRES) D UNE FIGURE SIMPLE MATHÉMATIQUES PÉRIMÈTRE ET SURFACE (AIRES) D UNE FIGURE SIMPLE MATHÉMATIQUES CAHIER D EXERCICES Les Services de la formation professionnelle et de l éducation des adultes FP9706 C0106 TABLE DES MATIÈRES 1 EXPLICATION

Plus en détail

Le Pavé droit. I. Description

Le Pavé droit. I. Description I. Description Un solide, au sens géométrique, est un objet limité par des surfaces indéformables. Ces surfaces si elles sont planes sont des faces. Mais il y a beaucoup de solides qui n'ont pas de surface

Plus en détail

Définition : Un quadrilatère est une figure géométrique qui a quatre côtés.. Il peut se nommer :. R, O, S et E sont les quatre...

Définition : Un quadrilatère est une figure géométrique qui a quatre côtés.. Il peut se nommer :. R, O, S et E sont les quatre... Définition et vocabulaire : Définition : Un quadrilatère est une figure géométrique qui a quatre côtés. Vocabulaire : R. Ce quadrilatère est un quadrilatère non croisé.. Il peut se nommer :. R,, S et E

Plus en détail

Chapitre 9. Les volumes. Théorie 9.1 LES UNITÉS DE MESURE. Unité de mesure (avec abréviation) Mesure. ligne. surface l aire le mètre carré (m 2 )

Chapitre 9. Les volumes. Théorie 9.1 LES UNITÉS DE MESURE. Unité de mesure (avec abréviation) Mesure. ligne. surface l aire le mètre carré (m 2 ) 251 Capitre 9 Les volumes Téorie 9.1 LES UNITÉS DE MESURE ligne Mesure la longueur Unité de mesure (avec abréviation) le mètre (m) surface l aire le mètre carré (m 2 ) corps le volume le mètre cube (m

Plus en détail

1. Perspective cavalière

1. Perspective cavalière 1. Perspective cavalière 1.1 vocabulaire de base Pour dessiner un solide à l'aide de la perspective cavalière il faut distinguer: le point de vue : 'est l'endroit où se trouve l'observateur. Pour que l'objet

Plus en détail

SOMMAIRE GEOMETRIE GEOM. http://delautrecotedubureau.eklablog.com/

SOMMAIRE GEOMETRIE GEOM. http://delautrecotedubureau.eklablog.com/ SOMMAIRE GEOMETRIE GEOM http://delautrecotedubureau.eklablog.com/ N Intitulé CE2 CM1 CM2 GEOM0 GEOM1 GEOM2 GEOM3 GEOM4 GEOM5 GEOM6 GEOM7 GEOM8 GEOM9 Les instruments Points, lignes, droites et segments

Plus en détail

Lycée Louis de Broglie

Lycée Louis de Broglie Lycée Louis de Broglie Livret de révisions de Mathématiques pour l entrée en classe de seconde Ce livret vous proposé pour vous remettre au travail avant votre entrée en seconde Il s agit d exercices divers

Plus en détail

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME 2012 FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME NOUS VOUS PRESENTONS ICI UN FORMULAIRE CONTENANT LES DEFINITIONS, PROPRIETES ET THEOREMES VUS EN COURS DE MATHEMATIQUES TOUT AU LONG DE VOTRE SCOLARITE

Plus en détail

Périmètres et aires. Objectifs du chapitre. Énigme du chapitre. Comparer géométriquement des périmètres

Périmètres et aires. Objectifs du chapitre. Énigme du chapitre. Comparer géométriquement des périmètres Périmètres et aires C H A P I T R E 16 Énigme du chapitre. On partage ce champ rectangulaire en trois pacerelles de même aire. Une est triangulaire et les deux autres sont des trapèzes. 72 m 124 m 62 m

Plus en détail

FICHES OUTILS GEOMETRIE CM1

FICHES OUTILS GEOMETRIE CM1 FIHES OUTILS GEOMETRIE 1 Utilisation de la règle et de l équerre 2 Utilisation du compas 3 Reproduire des figures planes 4 Reconnaitre des figures planes 5 onstruire des figures géométriques 6 Les solides

Plus en détail

«Nous allons apprendre à décrire correctement une forme en employant le vocabulaire mathématique correct.»

«Nous allons apprendre à décrire correctement une forme en employant le vocabulaire mathématique correct.» OBJECTIFS : Etre capable d établir un classement des différents quadrilatères. Etre capable d énoncer les différentes caractéristiques de chacun des quadrilatères. Etre capable de les dessiner. COMPÉTENCES

Plus en détail

MINISTERE DE L EDUCATION Direction des Enseignements Secondaires POLYNESIE FRANCAISE SESSION 2011 S U J E T DNB C11-22 SÉRIE COLLÈGE

MINISTERE DE L EDUCATION Direction des Enseignements Secondaires POLYNESIE FRANCAISE SESSION 2011 S U J E T DNB C11-22 SÉRIE COLLÈGE MINISTERE DE L EDUCATION Direction des Enseignements Secondaires POLYNESIE FRANCAISE SESSION 2011 S U J E T DNB C11-22 SÉRIE COLLÈGE EXAMEN ÉPREUVE DURÉE : : : 2 heures COEFFICIENT : 2 NB DE PAGE(S) :

Plus en détail

ÉPREUVE EXTERNE COMMUNE SOLIDES ET FIGURES LIVRET 3 LUNDI 15 JUIN. savoir écrire mathématiques grandeurs HISTORIQUE ET GÉOGRAPHIQUE

ÉPREUVE EXTERNE COMMUNE SOLIDES ET FIGURES LIVRET 3 LUNDI 15 JUIN. savoir écrire mathématiques grandeurs HISTORIQUE ET GÉOGRAPHIQUE ÉPREUVE EXTERNE COMMUNE CEB2015 SOLIDES ET FIGURES LIVRET 3 LUNDI 15 JUIN FRANÇAIS SAVOIR ÉCOUTER français SAVOIR ÉCRIRE savoir MATHÉMATIQUES écouter GRANDEURS savoir écrire SOLIDES ET mathématiques FIGURES

Plus en détail

École secondaire Mont Ste-Anne. Situation d évaluation en mathématique de fin d année au 2 e cycle du secondaire ( 3 e secondaire)

École secondaire Mont Ste-Anne. Situation d évaluation en mathématique de fin d année au 2 e cycle du secondaire ( 3 e secondaire) École secondaire Mont Ste-Anne Situation d évaluation en mathématique de fin d année au 2 e cycle du secondaire ( 3 e secondaire) 063-306 Juin 2011 Compétence 2 : Déployer un raisonnement mathématique

Plus en détail

Les quadrilatères. Table des matières. 1 Polygones. Paul Milan. Professeurs des écoles le 29 septembre 2009. 1.1 Définition TABLE DES MATIÈRES 1

Les quadrilatères. Table des matières. 1 Polygones. Paul Milan. Professeurs des écoles le 29 septembre 2009. 1.1 Définition TABLE DES MATIÈRES 1 TABLE DES MATIÈRES 1 Les quadrilatères Paul Milan Professeurs des écoles le 29 septembre 2009 Table des matières 1 Polygones 1 1.1 Définition.................................. 1 1.2 Différentes sortes

Plus en détail

Propriété : Les médiatrices des cotés d un triangle sont concourantes : Leur point de concours est le centre du cercle circonscrit au triangle.

Propriété : Les médiatrices des cotés d un triangle sont concourantes : Leur point de concours est le centre du cercle circonscrit au triangle. MISE U POINT ES NOTIONS E GEOMETRIE I. Triangles : 1. roites remarquables : a. Médiatrices d un triangle : Médiatrice d un segment : La médiatrice d un segment est la droite perpendiculaire à ce segment

Plus en détail

L essentiel des propriétés utiles aux démonstrations

L essentiel des propriétés utiles aux démonstrations L essentiel des propriétés utiles aux démonstrations Sésamath Cinquième L essentiel des propriétés utiles aux démonstrations http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Illustrations

Plus en détail

Symétrie Axiale. La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu.

Symétrie Axiale. La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu. Symétrie Axiale 1 Médiatrice d un segment. 1 a Définition La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu. Exemple : (d) est la médiatrice du segment [AB]

Plus en détail

Géométrie des Transformations

Géométrie des Transformations Géométrie des Transformations Plan des activités de PREMIÈRE ANNÉE SECONDAIRE Thème 1 Dans le plan et dans l'espace: droites, demi droites, segments de droites et plans Plans dans l'espace Droites, demi

Plus en détail

Activités et exercices de géométrie dans l espace

Activités et exercices de géométrie dans l espace Activités et exercices de géométrie dans l espace Première partie : rappel : projection sur un plan parallèlement à une droite Sur chacune des trois figures, dessiner la trace lumineuse laissée par le

Plus en détail

PARTIE NUMERIQUE. Brevet Blanc de Mathématiques 18/01/11. Exercice 1. 1) Ecrire les nombres A et B sous la forme de fractions irréductibles

PARTIE NUMERIQUE. Brevet Blanc de Mathématiques 18/01/11. Exercice 1. 1) Ecrire les nombres A et B sous la forme de fractions irréductibles Brevet Blanc de Mathématiques 18/01/11 PARTIE NUMERIQUE Exercice 1 1) Ecrire les nombres A et B sous la forme de fractions irréductibles A= 13 3 4 3 2 5 B=5+ 1+ 1 8 3 4 A= 13 3 4 3 5 2 A= 13 3 10 3 B=

Plus en détail

Fiche d activité. Introduire les formules d aire

Fiche d activité. Introduire les formules d aire Fiche d activité Introduire les formules d aire L objectif de cette activité est d introduire les formules d aire des rectangles, carrés et triangles. Matériel - Papier quadrillé dont les carreaux mesurent

Plus en détail

Mathématiques 2ème année du secondaire Pratiques de CD-1 Résoudre une situation problème 1. L aménagement paysager 2. Rénover la piscine municipale

Mathématiques 2ème année du secondaire Pratiques de CD-1 Résoudre une situation problème 1. L aménagement paysager 2. Rénover la piscine municipale Mathématiques 2 ème année du secondaire Pratiques de CD-1 Résoudre une situation problème 1. L aménagement paysager 2. Rénover la piscine municipale Nom : Foyer : Un aménagement paysagé au Collège Letendre

Plus en détail

Angle inscrit et angle au centre Géométrie Exercices corrigés

Angle inscrit et angle au centre Géométrie Exercices corrigés Angle inscrit et angle au centre Géométrie Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : angle inscrit dans un cercle (reconnaissance d un

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES OLYMPIADES ACADEMIQUES DE MATHEMATIQUES SESSION 2009 MERCREDI 11 MARS 2009 (14h 18h) SUJET PREMIERE S 1 Exercice 1 : Partie A : Questions préliminaires On considère trois entiers deux à deux distincts

Plus en détail

Programmation numération CM1

Programmation numération CM1 Programmation numération CM1 Les nombres entiers jusqu au milliard - Connaître, savoir écrire et nommer les nombres entiers jusqu au milliard. - Comparer, ranger, encadrer ces nombres. P1 Les nombres de

Plus en détail

FORMATION INTERMÉDIAIRE MAT 2031 CAHIER 4 ET CORRIGÉ

FORMATION INTERMÉDIAIRE MAT 2031 CAHIER 4 ET CORRIGÉ FORMATION INTERMÉDIAIRE MAT 031 ET CORRIGÉ TABLE DES MATIÈRES I 1.0 UNITÉS D'AIRE... 1 1.1 Donner la différence entre l'aire et la surface... 1 1. Énumérer les principales unités d'aire... 3 1.3 Convertir

Plus en détail

Les Vecteurs ( En seconde )

Les Vecteurs ( En seconde ) Les Vecteurs ( En seconde ) Dernière mise à jour : Mardi 22 Avril 2008 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2007-2008) -1- J aimais et j aime encore les mathématiques pour elles-mêmes

Plus en détail

Comparatif des programmes de mathématiques Cycle 3 et 6 ème

Comparatif des programmes de mathématiques Cycle 3 et 6 ème Comparatif des programmes de mathématiques Cycle 3 et 6 ème 1 - Nombres et calcul Cycle 3 L étude organisée des nombres est poursuivie jusqu au milliard, mais des nombres plus grands peuvent être rencontrés

Plus en détail

CRPE 2011-2012 derniers réglages avant l écrit (2).

CRPE 2011-2012 derniers réglages avant l écrit (2). CRPE 2011-2012 derniers réglages avant l écrit (2). Problème 1 OAB et OAC sont deux triangles distincts, tous les deux isocèles en O et tels que AOB = AOC. D est le symétrique de B par rapport à O. Démontrer

Plus en détail

Compétences Math CE2-CM1-CM2

Compétences Math CE2-CM1-CM2 Compétences Math CE2-CM1-CM2 MATHÉMATIQUES - NOMBRES ET CALCUL CE2 CM1 CM2 Notions abordées dans le logiciel LES NOMBRES ENTIERS JUSQU AU MILLION Connaître, savoir écrire et nommer les nombres entiers

Plus en détail

Petit lexique de géométrie

Petit lexique de géométrie Petit lexique de géométrie à l usage des élèves de sixième et de cinquième M. PARCABE Petit lexique de géométrie à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain-Fournier

Plus en détail

Dizaines et centaines

Dizaines et centaines Comprendre ce que vaut un chiffre Dizaines et centaines 2 centaines = 200 unités 0 dizaines 1 dizaine = 10 unités 1 centaine = 100 unités 2 dizaines = 20 unités 2 centaines = 200 unités 205 ou 1 centaine

Plus en détail

http://joho.monsite.orange.fr/ MATHS

http://joho.monsite.orange.fr/ MATHS MATHS Notion de base PDF Formules 1 à 36 «Géométrie» Géométrie Surface d un triangle Surface d un triangle équilatéral Surface d un triangle isocèle Surface d un triangle scalène L hypoténuse d un triangle

Plus en détail

Module 8 : Périmètre et aire de figures planes

Module 8 : Périmètre et aire de figures planes RÉDUCTION DES ÉCARTS DE RENDEMENT 9 e année Module 8 : Périmètre et aire de figures planes Guide de l élève Module 8 Périmètre et aire de figures planes Évaluation diagnostique...3 Aire de parallélogrammes,

Plus en détail

Digisibles. digisible.

Digisibles. digisible. igisibles ) Essayer chiffre des dizaines, chiffre des unités : : ou encore ou bien 36... )L'idée est d'utiliser le I comme chiffie des milliers. 000 étant divisible par,,8... on cherche à partir des trois

Plus en détail

Activité 1 : Comparaisons

Activité 1 : Comparaisons Activité 1 : Comparaisons 1. Quadrillage hexagonal a. Détermine l'aire de chaque figure. Tu prendras pour unité d'aire. b. Détermine le périmètre de chaque figure. Tu prendras la longueur du côté d'un

Plus en détail

Chapitre n 10 : «Les triangles»

Chapitre n 10 : «Les triangles» Chapitre n 10 : «Les triangles» I. Rappels Vocabulaire A, B et C sont les sommets. [ AB], [ BC ] et [ AC ] sont les trois côtés du triangle. BAC, BCA et ABC sont les trois angles du triangle. Le point

Plus en détail

Brevet blanc de mathématiques

Brevet blanc de mathématiques Brevet blanc de mathématiques février 20 L'usage de la calculatrice est autorisé. I Activités numériques 2 points II Activités géométriques 2 points III Problème Qualité de rédaction et présentation 2

Plus en détail

Solides et patrons. Cours

Solides et patrons. Cours Solides et patrons EXERCICE 1 : Cours 1) Représenter un cube en perspective cavalière. 2) Qu est-ce qu un polyedre? 3) Qu est-ce qu un prisme droit? Si les bases du prisme ont n côtés combien le prisme

Plus en détail

géométrie - Reconnaitre, nommer, décrire, reproduire, représenter, construire des figures et solides usuels.

géométrie - Reconnaitre, nommer, décrire, reproduire, représenter, construire des figures et solides usuels. Se) repérer et (se) déplacer dans l espace en utilisant ou en élaborant des représentations. géométrie - Reconnaitre, nommer, décrire, reproduire, représenter, construire des figures et solides usuels.

Plus en détail

En mathématiques, pour savoir si un énoncé est vrai ou faux, on utilise certaines règles. En voici quelques-unes :

En mathématiques, pour savoir si un énoncé est vrai ou faux, on utilise certaines règles. En voici quelques-unes : 1. Les règles du débat mathématique En mathématiques, pour savoir si un énoncé est vrai ou faux, on utilise certaines règles. En voici quelques-unes : (1) Un énoncé mathématique est soit vrai, soit faux

Plus en détail

Réponse. Réponse. Réponse

Réponse. Réponse. Réponse Exercice 1 La médiatrice d un segment est la droite qui est perpendiculaire à ce segment et qui passe par son milieu. Justifier avec rigueur l affirmation suivante : La droite (d) est la médiatrice du

Plus en détail

ÉVALUATION DÉBUT CM1 LIVRET DE L ÉLÈVE MATHÉMATIQUES

ÉVALUATION DÉBUT CM1 LIVRET DE L ÉLÈVE MATHÉMATIQUES ÉVALUATION DÉBUT CM1 LIVRET DE L ÉLÈVE MATHÉMATIQUES Edition Septembre 2008 Exercices supprimés : M9, M10, M11, M12, M13, M14, M15, M18 1/22 Exercice M1 Voici 3 problèmes. Tu n as aucun calcul à effectuer.

Plus en détail

PARALLÉLÉPIPÈDE ET CUBE

PARALLÉLÉPIPÈDE ET CUBE 1 PARALLÉLÉPIPÈDE ET CUBE p222 n 1 p222 n 1 I. Le parallélépipède rectangle ou pavé droit Vient du grec «parellêlos»= parallèle et «epipedon» = surface plane Hauteur x arête x face Longueur largeur x sommet

Plus en détail

Thème N 1 : RACINES CARREES (1)

Thème N 1 : RACINES CARREES (1) Thème N 1 : RACINES CARREES (1) EQUATION (1) ESPACE (1) CALCUL LITTERAL (1) A la fin du thème, tu dois savoir : Utiliser le théorème de Pythagore (rappels de 4 ). Réduire une écriture littérale (rappels

Plus en détail

Mon plan de travail en géométrie

Mon plan de travail en géométrie Mon plan de travail en géométrie Sommaire Programme CM1 Programme CM2 1 Tracer un cercle. 2 Tracer et reconnaître des droites parallèles. 3 Tracer et reconnaîtredes droites perpendiculaires. 4 Reconnaître,décrire,

Plus en détail

CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE

CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE I) SYMETRIE AXIALE. 1) SYMETRIQUE D UN POINT PAR RAPPORT A UNE DROITE. a) Définition. On dit que A est le symétrique de A par rapport à (d). Remarque :

Plus en détail

Méli-mélo de preuves graphiques Parimaths - Niveau débutant

Méli-mélo de preuves graphiques Parimaths - Niveau débutant Méli-mélo de preuves graphiues Parimaths - Niveau débutant Diego Izuierdo 1er février 014 Tous les exercices de cette séance doivent être résolus en faisant des dessins, en coloriant, en complétant des

Plus en détail

Programmation mathématiques CE2 Maths tout terrain - édition Bordas

Programmation mathématiques CE2 Maths tout terrain - édition Bordas Programmation mathématiques CE2 Maths tout terrain - édition Bordas Période Domaines Titre séquence Compétences Les nombres jusqu à 99. - Connaître, savoir, écrire et nommer les nombres jusqu à 99 - Comparer,

Plus en détail

I. Définition : - [MM ] est perpendiculaire à d. - Le milieu de [MM ] est sur d. On dit que M est le symétrique de M par la symétrie axiale d axe d.

I. Définition : - [MM ] est perpendiculaire à d. - Le milieu de [MM ] est sur d. On dit que M est le symétrique de M par la symétrie axiale d axe d. I. Définition : M M' N M est le point symétrique de M par rapport à la droite d signifie que : - [MM ] est perpendiculaire à d. - Le milieu de [MM ] est sur d. On dit que M est le symétrique de M par la

Plus en détail

Thème N 17 : ANGLE INSCRIT - ANGLE AU CENTRE POLYGONES REGULIERS

Thème N 17 : ANGLE INSCRIT - ANGLE AU CENTRE POLYGONES REGULIERS Thème N 17 : NGLE INSRIT - NGLE U ENTRE PLYGNES REGULIERS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Pour prendre un bon départ Exercice n 1 : n considère

Plus en détail

Correction du brevet blanc n 2

Correction du brevet blanc n 2 Correction du brevet blanc n 2 Exercice 1 : 5 points Laura et Maxime jouent au même jeu vidéo. Maxime a fait cinq parties et note les scores obtenus. Partie 1 Partie 2 Partie Partie 4 Partie 5 108 points

Plus en détail

Cours de mathématiques de sixième

Cours de mathématiques de sixième Cours de mathématiques de sixième Bertrand Carry SOMMAIRE 1. Nombres entiers, nombres décimaux... 1 1.1 Ecriture et lecture de nombres... 1 1.2 Comparaison de deux nombres... 2 1.3 Valeurs approchées...

Plus en détail

THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX

THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX Pour prendre un bon départ Initiation à la démonstration 1 ) Lire la partie A de la synthèse : «Notion de démonstration» 2 ) Complète les raisonnements

Plus en détail

N1 : LES CHIFFRES Comme pour écrire des mots, il y a besoin des lettres, pour écrire des nombres il y a besoin des chiffres : 0 1 2 3 4 5 6 7 8 9

N1 : LES CHIFFRES Comme pour écrire des mots, il y a besoin des lettres, pour écrire des nombres il y a besoin des chiffres : 0 1 2 3 4 5 6 7 8 9 N1 : LES CHIFFRES Comme pour écrire des mots, il y a besoin des lettres, pour écrire des nombres il y a besoin des chiffres : 0 1 2 3 4 5 6 7 8 9 N2 : LES NOMBRES Avec ces chiffres, on peut écrire des

Plus en détail

NOM : DROITE DES MILIEUX 4ème

NOM : DROITE DES MILIEUX 4ème Exercice 1 Soit ABCD un carré de côté 8cm. On appelle I le milieu de [AB] et L le milieu de [DA]. 1) Faire une figure. 2) Montrer que les droites (IL) et (BD) sont parallèles. 3) En utilisant les propriétés

Plus en détail

Cahier de pratique La géométrie

Cahier de pratique La géométrie Nom : Groupe : Cahier de pratique La géométrie Éléments de géométrie 1- Réponds aux questions suivantes. a) Combien de droites peut-on faire passer par un point? b) Combien de droites peut-on faire passer

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

... La planche à clous

... La planche à clous La planche à clous Si la dénomination de planche à clous donne une image instantanée de l outil, l appellation géoplan en éclaire davantage l utilisation didactique. Le géoplan est une planche sur laquelle

Plus en détail

Ses hauteurs [AP], [BQ] et [CR] se coupent au point H.

Ses hauteurs [AP], [BQ] et [CR] se coupent au point H. D 9 E EE D EUE Soit un triangle. Ses hauteurs [], [] et [] se coupent au point. es milieux de [], [] et [] sont respectivement, et, ceux de [], [] et [] sont respectivement, et. Démontre qu il existe un

Plus en détail

Le lexique géométrique

Le lexique géométrique Le lexique géométrique Document réalisé, sous la direction de : M. DETILLEUX, I-IPR de Mathématiques Mme GIEN, Inspectrice de l'education Nationale dans le cadre des temps de concertation écoles / collège

Plus en détail

Application du produit scalaire: Géométrie analytique

Application du produit scalaire: Géométrie analytique Application du produit scalaire: Géométrie analytique I) Vecteur normal et équation de droite 1) Vecteur normal à une droite Dire que est un vecteur non nul normal à une droite (d) de vecteur directeur

Plus en détail

COURS : LA SYMÉTRIE AXIALE

COURS : LA SYMÉTRIE AXIALE HPTRE 7 OURS : L SYMÉTRE XLE Extrait du programme de la classe de Sixième : ONTENU Symétrie orthogonale par rapport à une droite (symétrie axiale) OMPÉTENES EXGLES -onstruire le symétrique d un point,

Plus en détail

DIRECTION DE L ÉVALUATION ET DE LA PROSPECTIVE SOUS - DIRECTION DE L ÉVALUATION. ÉVALUATION À L ENTRÉE EN 5 e MATHÉMATIQUES CAHIER DE L ÉLÈVE

DIRECTION DE L ÉVALUATION ET DE LA PROSPECTIVE SOUS - DIRECTION DE L ÉVALUATION. ÉVALUATION À L ENTRÉE EN 5 e MATHÉMATIQUES CAHIER DE L ÉLÈVE DIRECTION DE L ÉVALUATION ET DE LA PROSPECTIVE SOUS - DIRECTION DE L ÉVALUATION K ÉVALUATION À L ENTRÉE EN 5 e MATHÉMATIQUES CAHIER DE L ÉLÈVE NOM DE L ÉLÈVE... PRÉNOM DE L ÉLÈVE... N DE LA CLASSE... 2003

Plus en détail

Sommaire. 1 Rappels. 2

Sommaire. 1 Rappels. 2 Sommaire 1 Rappels. 2 2 Triangle rectangle et cercle circonscrit. 7 2.1 Propriété n 1............................. 7 2.2 Exemple d utilisation de la propriété n 1.............. 8 2.3 Propriété n 2.............................

Plus en détail

Préparation du CRPE, problèmes du jour, mai 2011 (1 à 10)

Préparation du CRPE, problèmes du jour, mai 2011 (1 à 10) Préparation du CRPE, problèmes du jour, mai 2011 (1 à 10) Problème 1, les baguettes de bois Jean et Cécile forment chacun une ligne en mettant bout à bout des baguettes de bois. Toutes les baguettes utilisées

Plus en détail

L essentiel des propriétés utiles aux démonstrations

L essentiel des propriétés utiles aux démonstrations L essentiel des propriétés utiles aux démonstrations Sésamath Troisième L essentiel des propriétés utiles aux démonstrations http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Illustrations

Plus en détail

Cours de mathématiques de cinquième

Cours de mathématiques de cinquième Cours de mathématiques de cinquième Bertrand Carry SOMMAIRE 1. Factorisation, développement... 1 1.1 Quelques règles d écriture de calculs... 1 1.1.1 Parenthèses :... 1 1.1.2 Multiplication :... 1 1.2

Plus en détail

Programmation Mathématiques cycle 3

Programmation Mathématiques cycle 3 Programmation Mathématiques cycle 3 Ecole Sainte Marie Classe de CE2-CM1 Manuel : Pour Comprendre les maths CE2 et CM1 Période 1 CE2 CM1 Connaître et savoir écrire les nombres inférieurs à 100 Comparer,

Plus en détail

Tableau comparatif des connaissances et capacités des programmes de CM2 et 6ème

Tableau comparatif des connaissances et capacités des programmes de CM2 et 6ème Lundi Matin - «Comparatif des programmes de CM2 et 6 ème» Page 1 Tableau comparatif des connaissances et capacités des programmes de CM2 et 6ème CM2 6 ème Plus tard... Vocabulaire divers Le vocabulaire

Plus en détail

Triangles isométriques Triangles semblables - Agrandissements et réductions Homothéties. Triangles isométriques Triangles semblables

Triangles isométriques Triangles semblables - Agrandissements et réductions Homothéties. Triangles isométriques Triangles semblables Triangles isométriques Triangles semblables - Agrandissements et réductions Homothéties 1 Triangles isométriques Triangles semblables Dire que deux triangles sont isométriques signifie que leurs côtés

Plus en détail

Triangle rectangle et cercle circonscrit. Théorème de Pythagore et réciproque

Triangle rectangle et cercle circonscrit. Théorème de Pythagore et réciproque Chapitre 7 Triangle rectangle et cercle circonscrit. Théorème de Pythagore et réciproque 1. Triangle rectangle et cercle circonscrit Rappelons que le cercle circonscrit d'un triangle ABC est le cercle

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace A l école primaire Cycle 2 (programme du 19/06/2008) CP CE1 Reconnaître et nommer le cube et le pavé droit. Reconnaître, décrire, nommer quelques solides droits : cube, pavé Manuel

Plus en détail

Outils de démonstration

Outils de démonstration Outils de démonstration Comment démonter que... Année 2009 et 2010 Classe: 4D,4A Collège Fontbruant -Comment démontrer qu un triangle est un triangle isocèle? -Comment démontrer qu un triangle est un triangle

Plus en détail

De la symétrie centrale au parallélogramme

De la symétrie centrale au parallélogramme La géométrie en 5 doit nous permettre de passer de l identification perceptive (la reconnaissance par la vue) de figures et de configurations à leur caractérisation par des propriétés (passage du dessin

Plus en détail