Chapitre 11 : Nombres entiers et rationnels. PGCD

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 11 : Nombres entiers et rationnels. PGCD"

Transcription

1 Chapitre 11 : Nombres entiers et rationnels. PGCD I. Ensembles de nombres 1/ Les nombres entiers Les nombres entiers naturels sont les nombres positifs qui peuvent s'écrire sans virgule ; 3,1 102 ; 7,00 ; 121 ; 124. Les nombres entiers relatifs sont les nombres positifs et négatifs qui peuvent s'écrire sans virgule ; 87 ; / Les nombres décimaux Un nombre décimal est un nombre qui s'écrit avec une partie décimale finie. 5, =0,05124 ; sont des nombres décimaux. Attention! 1 n'est pas un nombre décimal car 1 3=0, De même : 1 7 ; 2 11 ; 7 13.

2 3/ Les nombres rationnels a et b sont deux nombres entiers ; b étant différent de 0. Un nombre rationnel est un nombre qui peut s'écrire sous la forme a b. 12,548= ; 1 3 ; ; 45= 45 1 ; 7= ; Remarque Il existe des nombres dits irrationnels qui ne peuvent pas s'écrire sous la forme a b : 2 ; 4 3 ; Rappels Périmètre d'un cercle de rayon r : 2 r. Aire d'un disque de rayon r : r 2. II. Diviseurs Rappel Lorsqu'on pose la division euclidienne de deux nombres, on a : D=d q r et r d. Dividende (D) Diviseur (d) Quotient (q) Reste (r) 1/ Diviseurs d'un nombre entier a et b représentent deux nombres entiers non nuls. b divise a si le reste de la division euclidienne de a par b est nul. Est-ce que 3 divise 111? Oui car 3 37=111 (donc le reste de la division euclidienne de 111 par 3 est 0 ). Est-ce que 17 divise 54? Non, car 54= (le reste est égal à 3 ).

3 S'exprimer On peut dire que : 3 divise est divisible par 3 3 est un diviseur de 111. Rappels : critères de divisibilité Un nombre est divisible par 2 s'il est pair (le chiffre des unités est 0, 2, 4, 6 ou 8). Divisible par 3 : la somme des chiffres est dans la table de 3. Par 5 : évident! Par 9 : la somme des chiffres est dans la table de 9. Par 10 : évident! 2/ Recherche des diviseurs d'un nombre Exemple 1 Trouve tous les diviseurs de 84, sans en oublier! On trouve toutes les décompositions possibles de façon systématique : 84= = = = = =7 12 Les diviseurs sont les nombres qui interviennent dans les décompositions : 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42 et 84 Exemple 2 Même question avec ; 2 ; 4 ; 7 ; 8 ; 14 ; 28 ; 56 3/ Diviseurs communs à deux nombres Exemple 1 D'après le paragraphe précédent, les diviseurs communs à 84 et 56 sont 1, 2, 4, 7, 14 et 28. Le plus grand d'entre eux est 28. Exemple 2 Trouve les diviseurs communs à 27 et 42. Diviseurs de 27 : 1, 3, 9, 27. Diviseurs de 42 : 1, 2, 3, 6, 7, 14, 21, 42 Diviseurs communs : 1 et 3 Plus grand diviseur commun : 3.

4 Application à la simplification de fraction Simplifie On sait que 28 est le plus grand des diviseurs communs à 84 et 56. On se sert donc de 28 pour simplifier : = = 3 2 On obtient directement une fraction irréductible. 4/ Nombres premiers entre eux Deux nombres sont premiers si le seul diviseur commun est 1. Remarque On pourrait dire aussi que ces deux nombres ne sont pas dans une même table de multiplication. 3 et 7 18 et 25 Interprétation 3 18 et sont irréductibles III. PGCD 1/ /Notation Le PGCD de deux nombres est le Plus Grand Commun Diviseur. Exemple/Méthode Quel est le PGCD de 24 et 36? Diviseurs de 24 : 1, 2, 3, 4, 6, 8, 12 et 24. Diviseurs de 36 : 1, 2, 3, 4, 6, 9, 12, 18 et 36 Le PGCD est 12. Notation PGCD( 24, 36 )= 12

5 2/ Méthode par soustractions successives (avec calculatrice) a. Activité Comparer le PGCD de deux nombres ainsi que celui du plus petit et de leur différence. On pourra prendre 36 et 48. On trouve PGCD(36,48)=12 Plus petit : 36 Différence : 48-36=12 PGCD(12,36)=12 On remarque que PGCD(36,48)=PGCD(36,48-36). On continue sur le même principe : Plus petit entre 36 et 12 : 12 Différence : 36-12=24 PGCD(12,24)=12 Encore... Plus petit entre 12 et 24 : 12 Différence : 24-12=12 PGCD(12,12)=12 b. Méthode sur un exemple Quel est le PGCD de 1035 et 322? Plus petit Différence

6 Puisque PGCD(1035,322)=PGCD(322,713)=...=PGCD(23,23) alors PGCD(1035,322)=23. Par ailleurs, on a : =45 et = = = Autre exemple Même question avec 2886 et Plus petit Différence Donc PGCD(2886,1258)=74 Et encore un Calcule le PGCD de 2170 et Plus petit Différence Plus petit Différence Donc PGCD(2170,4433)=31. C'est un peu long!

7 3/ Méthode d'euclide (avec calculatrice) a. Activité On considère 36 et 48. Comparer le PGCD de ces deux nombres avec le PGCD du diviseur et du reste. On trouve assez facilement que PGCD(36,48)=12 Posons la division euclidienne de 48 par 36. Dividende (D) Diviseur (d) Quotient (q) Reste (r) PGCD(36,12)=12 On remarque PGCD(nombre1,nombre2)=PGCD(diviseur, reste) b. Méthode sur un exemple Calcule PGCD(1035,322) Dividende diviseur reste quotient PGCD(1035,322)=PGCD(46,23)=23. On remarque que c'est le dernier reste non nul.

8 Autre exemple Calcule le PGCD de 2170 et 4433 par la méthode d'euclide, et retrouve plus rapidement le résultat précédent. Dividende diviseur reste quotient Le dernier reste non nul est 31, c'est donc le PGCD recherché. 4/ Méthode par décomposition (cas simples) On a 210= et 84= On trouve le PGCD en prenant les nombres en commun dans les décompositions : PGCD 210,84 =2 3 7=42.

C3T3 PGCD - Puissances

C3T3 PGCD - Puissances Objectif 3-1 Division euclidienne C3T3 PGCD - Puissances Définition a r b q La division euclidienne de l'entier a par l'entier b est l'opération qui permet de trouver deux entiers naturels q et r tels

Plus en détail

CHAPITRE 5 : Arithmétique. Module 1 : Division euclidienne

CHAPITRE 5 : Arithmétique. Module 1 : Division euclidienne Module 1 : Division euclidienne 1 ) Rappels de vocabulaire On pose l opération : 51 6 Voici le vocabulaire à maîtriser : 2 ) La division euclidienne Définition : Soient a et b deux nombres entiers positifs

Plus en détail

PLUS GRAND COMMUN DIVISEUR P.G.C.D.

PLUS GRAND COMMUN DIVISEUR P.G.C.D. PLUS GRAND COMMUN DIVISEUR P.G.C.D. Prérequis : Nombres entiers; Multiple; Division Euclidienne I - DIVISEURS II- CALCUL DU PGCD III PROPRIETES I. Divisibilité 1) Diviseurs Soient a et b deux entiers non

Plus en détail

ELEMENTS D ARITHMETIQUE DANS L ENSEMBLE DES ENTIERS NATURELS

ELEMENTS D ARITHMETIQUE DANS L ENSEMBLE DES ENTIERS NATURELS ELEMENTS D ARITHMETIQUE DANS L ENSEMBLE DES ENTIERS NATURELS I. Multiples et diviseurs 1. Multiples d un nombre entier naturel Définition Un nombre entier naturel a est multiple d un nombre entier naturel

Plus en détail

3 ème Chapitre A 2 NOMBRES RATIONNELS, IRRATIONNELS PGCD DE DEUX NOMBRES ENTIERS. 1) Schéma représentant les différents ensembles de nombres.

3 ème Chapitre A 2 NOMBRES RATIONNELS, IRRATIONNELS PGCD DE DEUX NOMBRES ENTIERS. 1) Schéma représentant les différents ensembles de nombres. 1 I) Le point sur les nombres. 1) Schéma représentant les différents ensembles de nombres. entiers naturels IN entiers relatifs Z décimaux D rationnels IQ réels IR irrationnels 2 2) Définitions des différents

Plus en détail

Ecritures fractionnaires :

Ecritures fractionnaires : Ecritures fractionnaires : I) Ecritures fractionnaires d un quotient (Révision de 6e) 1) Définitions: La notation a b (b 0) est une écriture fractionnaire. Le nombre a est le numérateur. Le nombre b est

Plus en détail

Séquence 1 : Arithmétique (Nombres et calculs)

Séquence 1 : Arithmétique (Nombres et calculs) Séquence 1 : Arithmétique (Nombres et calculs) Plan de la séquence : I- Rappels de 4ème: 1) Calculs 2) Fractions 3) Nombres relatifs 4) Puissances a) Définition b) Propriétés c) Calculs d expressions d)

Plus en détail

Chapitre 0 : Mise au point sur les nombres

Chapitre 0 : Mise au point sur les nombres Classe de seconde Chapitre 0 : Mise au point sur les nombres Année scolaire 2012/20 Introduction historique : Dans l'histoire, des pratiques différentes ont conduit à l'utilisation d'ensembles de nombres

Plus en détail

CH I Diviseurs d un entier. PGCD. Algorithme d Euclide.

CH I Diviseurs d un entier. PGCD. Algorithme d Euclide. CH I Diviseurs d un entier. PGCD. Algorithme d Euclide. A) Diviseurs d un entier naturel Les diviseurs de 35 sont 1 ; 5 35 ; 7 1. Diviseurs d un nombre entier non nul Les diviseurs de 72 sont : 1 ; 2 ;

Plus en détail

Division euclidienne, division décimale

Division euclidienne, division décimale Division euclidienne, division décimale I. La division euclidienne Définition 1: Effectuer la division euclidienne d un nombre entier (le dividende) par un nombre entier (le diviseur) différent de 0, c

Plus en détail

est l ensemble des entiers naturels..., 100,..., 50,..., 2, 1,0,1,2,3,...,50,...,100,... est l ensemble des entiers relatifs.

est l ensemble des entiers naturels..., 100,..., 50,..., 2, 1,0,1,2,3,...,50,...,100,... est l ensemble des entiers relatifs. Série d'exercices *** 1 ère Année Lycée Secondaire Ali Zouaoui ACTIVITE NUMERIQUE I " Hajeb Laayoun " 0,1,,3,...,50,...,100,... est l ensemble des entiers naturels..., 100,..., 50,...,, 1,0,1,,3,...,50,...,100,...

Plus en détail

CALCUL NUMERIQUE I. ENSEMBLES DE NOMBRES. a.) Entiers naturels

CALCUL NUMERIQUE I. ENSEMBLES DE NOMBRES. a.) Entiers naturels CALCUL NUMERIQUE I. ENSEMBLES DE NOMBRES a.) Entiers naturels Les entiers naturels sont les entiers positifs et 0. Par exemple, 0, 1, 2 et 5676 sont des entiers naturels. Par contre 45 n'en est pas un.

Plus en détail

Ensembles de nombres :

Ensembles de nombres : Méthode 1 Simplifier une fraction. Pour simplifier une fraction : trouver un diviseur commun au numérateur et au dénominateur en utilisant sa mémoire des tables de multiplication ou les critères de divisibilité

Plus en détail

1 Priorités sur les opérations

1 Priorités sur les opérations OBJECTIFS du chapitre Numéro Arithmétique Pour toi N1 Mener des calculs avec des expressions numériques N2 Mener des calculs avec des fractions N3 Utiliser les puissances de 10 et déterminer l écriture

Plus en détail

Opérations. Cours de mathématiques niveau Sixième

Opérations. Cours de mathématiques niveau Sixième Fiche issue de http://www.ilemaths.net 1 Opérations 1. L addition Cours de mathématiques niveau Sixième L addition est l opération qui permet de calculer la somme de nombres. On utilise l addition pour

Plus en détail

MULTIPLICATION - DIVISION. COURS 18 : Vocabulaire de la multiplication

MULTIPLICATION - DIVISION. COURS 18 : Vocabulaire de la multiplication CHAPITRE 4 MULTIPLICATION - DIVISION COURS 18 : Vocabulaire de la multiplication Définition Une multiplication est une opération qui permet de calculer un produit. Le produit de a par b se note a b, a

Plus en détail

! 1. Diviseurs d un nombre entier non nul

! 1. Diviseurs d un nombre entier non nul CH I Diviseurs d un entier. PGCD. Algorithme d Euclide. 1. Diviseurs d un nombre entier non nul A) Diviseurs d un nombre entier Les diviseurs de 35 sont 1 ; 5 35 ; 7 Les diviseurs de 72 sont : 1 ; 2 ;

Plus en détail

NOMBRES ENTIERS ET RATIONNELS. N Les entiers relatifs, -3; -2; -1; 0; 1; 2,

NOMBRES ENTIERS ET RATIONNELS. N Les entiers relatifs, -3; -2; -1; 0; 1; 2, NOMBRES ENTIERS ET RATIONNELS I Les ensembles de nombres Désignation Exemples Notation Les entiers naturels 0; 1; 2... N Les entiers relatifs, -3; -2; -1; 0; 1; 2, Z Les nombres décimaux : Un nombre décimal

Plus en détail

Thème N 1 : NOMBRES ENTIERS ET NOMBRE DECIMAUX (1) Division euclidienne - Multiples et diviseurs Ecriture des nombres décimaux Repérage (1)

Thème N 1 : NOMBRES ENTIERS ET NOMBRE DECIMAUX (1) Division euclidienne - Multiples et diviseurs Ecriture des nombres décimaux Repérage (1) Thème N 1 : NOMBRES ENTIERS ET NOMBRE DECIMAUX (1) Division euclidienne - Multiples et diviseurs Ecriture des nombres décimaux Repérage (1) A la fin du thème, tu dois savoir : Effectuer une division euclidienne

Plus en détail

Guesmi.B. Propriété: On se donne a et b deux nombres entiers naturels avec b non nul. Il existe deux nombres entiers q et r tels que: et tel que:.

Guesmi.B. Propriété: On se donne a et b deux nombres entiers naturels avec b non nul. Il existe deux nombres entiers q et r tels que: et tel que:. Division Euclidienne Guesmi.B 1. Division euclidienne. 1.1. Vocabulaire. Propriété: On se donne a et b deux nombres entiers naturels avec b non nul. Il existe deux nombres entiers q et r tels que: et tel

Plus en détail

Arithmétique : Nombres Premiers Division Euclidienne

Arithmétique : Nombres Premiers Division Euclidienne Arithmétique : Nombres Premiers Division Euclidienne «JE ME SOUVIENS» : A FAIRE Que signifie ARITHMETIQUE? C est la science qui a pour objet l'étude de la formation des nombres, de leurs propriétés et

Plus en détail

Opérations sur les nombres rationnels en écriture fractionnaire

Opérations sur les nombres rationnels en écriture fractionnaire Opérations sur les nombres rationnels en écriture fractionnaire A la fin du chapitre tu dois être capble de : 3 N 1: Maîtriser les règles opératoires sur les relatifs en écriture fractionnaire. 3 N 2 :

Plus en détail

b) 67 = et 2 < 13 : dans la division euclidienne de 67 par 13, le quotient est 5 et le reste est 2.

b) 67 = et 2 < 13 : dans la division euclidienne de 67 par 13, le quotient est 5 et le reste est 2. Exercice p 58, n 1 : Déterminer le quotient entier et le reste de chaque division euclidienne : a) 15 par 7 ; b) 67 par 13 ; c) 124 par 61 ; d) 275 par 25 ; e) 88 par 17 ; f) 146 par 15. a) 15 = 7 2 +

Plus en détail

les racines carrées :

les racines carrées : les racines carrées : 1) Introduction : il existe un et un seul nombre positif dont le carré est 4 c est 2. il existe un et un seul nombre positif dont le carré est 9, c est 3. Existe il un nombre positif

Plus en détail

CH I) Les nombres. 3 ; 5 ; 9 ; 217 sont des entiers naturels, ils sont écrits à partir des 10 chiffres {0 ;1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 }.

CH I) Les nombres. 3 ; 5 ; 9 ; 217 sont des entiers naturels, ils sont écrits à partir des 10 chiffres {0 ;1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 }. CH I) Les nombres I) Les ensembles de nombres 1) Les entiers naturels N : ; 5 ; 9 ; 17 sont des entiers naturels, ils sont écrits à partir des 10 chiffres {0 ;1 ; ; ; ; 5 ; 6 ; 7 ; 8 ; 9 }. ) Les entiers

Plus en détail

PGCD. Définition : On dit que est un diviseur de si le reste de la division euclidienne de par est égale à 0. On dit aussi que est un multiple de.

PGCD. Définition : On dit que est un diviseur de si le reste de la division euclidienne de par est égale à 0. On dit aussi que est un multiple de. PGCD 1 Notions de diviseurs et multiples Définition : On dit que est un diviseur de si le reste de la division euclidienne de par est égale à 0. On dit aussi que est un multiple de. Exemple : 6 7=42 6

Plus en détail

Chapitre 1 Nature des nombres Divisibilité

Chapitre 1 Nature des nombres Divisibilité ème Chapitre Nature des nombres Divisibilité I_ Nature des nombres A. Nombres entiers Définition Les nombres entiers naturels sont les nombres entiers positifs. Les nombres entiers relatifs sont les nombres

Plus en détail

Cours de Troisième / Arithmétique. E. Dostal

Cours de Troisième / Arithmétique. E. Dostal Cours de Troisième / Arithmétique E. Dostal juillet 2014 Table des matières 1 Arithmétique 2 1.1 Ensembles de Nombres...................................... 2 1.2 Nombres Entiers Naturels....................................

Plus en détail

Chapitre 1 : Plus Grand Commun Diviseur ou P G C D

Chapitre 1 : Plus Grand Commun Diviseur ou P G C D Chapitre 1 : Plus Grand Commun Diviseur ou P G C D Le PGCD est utilisé pour simplifier des fractions et pour résoudre des problèmes de partage de deux quantités à la fois. Exemple : Pour partager bonbons

Plus en détail

V Ca CALCUL. Fiche numéro Titre de la leçon

V Ca CALCUL. Fiche numéro Titre de la leçon V Ca CALCUL Fiche numéro Titre de la leçon Ca 1 Addition de nombres entiers Ca 2 Soustraction de nombre entiers Ca 3 Multiplication de nombres entiers Ca 4 La table de Pythagore Ca 5 Multiplier par 10,

Plus en détail

Nombres entiers et rationnels cours 3e

Nombres entiers et rationnels cours 3e Nomres entiers et rationnels cours 3e F.Gaudon 2 septemre 2004 Tale des matières 1 Diviseurs de nomres entiers 2 2 Application à la simplification de fractions 3 3 Recherche pratique du PGCD de deux nomres

Plus en détail

DIVISEURS D UN NOMBRE ENTIER

DIVISEURS D UN NOMBRE ENTIER DIVISEURS D UN NOMBRE ENTIER - Décompose les nombres suivants en produits de facteurs aussi petits que possible : Exemple : 2= 2 2 8 =... 0 =... 90 =... 20 =... - Les diviseurs de 2 et de 8 : Avec 2 personnes,

Plus en détail

Progression calcul CM

Progression calcul CM Progression calcul CM2 2014-2015 Séquences Ca1 Additionner des entiers Effectuer un calcul posé : addition de Évaluer l ordre de. Ca2 Soustraire des entiers Effectuer un calcul posé : soustraction de Évaluer

Plus en détail

Corrigé de la Feuille d exercices FE-3-001

Corrigé de la Feuille d exercices FE-3-001 Chapitres de 3 e sur le PGCD de deux nombres entiers Exercice 1.01 : a) Oui, 4 est un diviseur de 28 b) Non, 32 n est pas un multiple de 6 c) Non, 4 ne divise pas 18 d) Oui, 35 est divisible par 5 Corrigé

Plus en détail

Chapitre 1 : Nombres entiers, rationnels et PGCD.

Chapitre 1 : Nombres entiers, rationnels et PGCD. Chapitre 1 : Nombres entiers, rationnels et PGCD I Les diviseurs Rappel : critères de divisibilités : Un nombre est divisible par 2 s il Un nombre est divisible par s il Un nombre est divisible par 10

Plus en détail

v3 - PGCD 17/09/ :56:0006/04/ :22:00 Hervé Lestienne Page 1 sur 11

v3 - PGCD 17/09/ :56:0006/04/ :22:00 Hervé Lestienne Page 1 sur 11 Le Plus Grand Commun Diviseur Rappels Critères de divisibilité Un nombre entier est divisible par 2 s'il est pair (il se termine par 0, 2, 4, 6 ou 8). Un nombre entier est divisible par 3 si la somme de

Plus en détail

FRACTIONS EQUIVALENTES

FRACTIONS EQUIVALENTES FRACTIONS EQUIVALENTES Je sais travailler avec des fractions équivalentes et des nombres relatifs Je sais simplifier une fraction Exercice 1 : Complète les pointillés par des nombres entiers positifs ou

Plus en détail

Répartition annuelle

Répartition annuelle Année scolaire 2016-2017 Classe : EB5 Matière : Mathématiques Répartition annuelle Semaine Chapitre Titre Objectifs/Compétences 1/2 1 1 er trimestre Les entiers les multiples (révision) - Lire, écrire

Plus en détail

OPERATIONS. Tableau de la numération décimale.

OPERATIONS. Tableau de la numération décimale. A5 p6 Puissances A4 p5 Calculs avec des relatifs A6 p7 Equations A7 p8 Pourcentages A8a p9 Proportions (1) A8b p10 Proportions (2) A8c p11 Proportions (3) A9 p12 Calcul algébrique (1) A10 p13 Calcul algébrique

Plus en détail

Chapitre n 7 : «Division»

Chapitre n 7 : «Division» Chapitre n 7 : «Division» I. Division euclidienne Cette division ne concerne que les nombres entiers. En général, lors de la division euclidienne, il y a un reste. Cette division a été étudiée en primaire

Plus en détail

14. Division : 14. Division : 14. Division : 14. Division :

14. Division : 14. Division : 14. Division : 14. Division : 14 Division : (max 2 chiffres après la virgule) par un entier Critères de divisibilité par 2, 5, 10, 3, 4,9 Résolution de problèmes Sens des opérations Connaitre le sens des mots "dividende, diviseur,

Plus en détail

MATHEMATIQUES. TRAVAUX NUMÉRIQUES 1ère partie. Nombres entiers. Nombres décimaux. Fractions. Opérations de Base

MATHEMATIQUES. TRAVAUX NUMÉRIQUES 1ère partie. Nombres entiers. Nombres décimaux. Fractions. Opérations de Base EXAMEN PROFESSIONNEL Adjoint technique territorial de ère classe MATHEMATIQUES TRAVAUX NUMÉRIQUES ère partie Nombres entiers Nombres décimaux Fractions Opérations de Base TRAVAUX NUMERIQUES - Nombres Entiers

Plus en détail

( En seconde ) Dernière mise à jour : Samedi 16 Août Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année )

( En seconde ) Dernière mise à jour : Samedi 16 Août Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année ) Généralités sur les nombres ( En seconde ) Dernière mise à jour : Samedi 16 Août 2008 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2008-2009) -1- J aimais et j aime encore les mathématiques

Plus en détail

Opé 1 Additionner des entiers

Opé 1 Additionner des entiers Opé 1 Additionner des entiers L addition est une opération qui permet de calculer la somme de plusieurs nombres. On peut changer l ordre de ses termes sans que cela modifie le résultat. Ex : 12 + 4 520

Plus en détail

I.1 Reprenez les bases de l arithmétique

I.1 Reprenez les bases de l arithmétique I.1 Reprenez les bases de l arithmétique 1.a Les nombres : naturels, relatifs, décimaux et réels L essentiel à savoir Les nombres entiers naturels : Il s agit de l ensemble des nombres entiers (sans décimale

Plus en détail

CHAPITRE 1 : NOMBRES RÉELS. 2. NOMBRES RÉELS R ensemble de nombres réels, c est-à-dire des nombres qui sont soit rationnels, soit irrationnels

CHAPITRE 1 : NOMBRES RÉELS. 2. NOMBRES RÉELS R ensemble de nombres réels, c est-à-dire des nombres qui sont soit rationnels, soit irrationnels 1. NOMBRES IRRATIONNELS Nombres décimaux dont le nombre de chiffres après la virgule est infini et non périodique : Ils n ont pas une écriture rationnelle 2. NOMBRES RÉELS R ensemble de nombres réels,

Plus en détail

On dit que 14 est un diviseur de 378 ou aussi que 378 est divisible par 14

On dit que 14 est un diviseur de 378 ou aussi que 378 est divisible par 14 PLUS GRAND COMMUN DIVISEUR (P.G.C.D.) DE DEUX NOMBRES I - Diviseurs d'un entier ; Le reste de la division euclidienne de 378 par 14 est 0 On dit que 14 est un diviseur de 378 ou aussi que 378 est divisible

Plus en détail

Ex 1 : Calcule en ligne CM2

Ex 1 : Calcule en ligne CM2 Ex 1 : Calcule en ligne Pour calculer la somme de plusieurs nombres, on effectue une addition. Pour simplifier le calcul, on peut changer l ordre des nombres sans que cela modifie le résultat. 15 250 +

Plus en détail

Opé 1 Additionner des entiers

Opé 1 Additionner des entiers Opé 1 Additionner des entiers Pour calculer la somme de plusieurs nombres, on effectue une addition. Pour simplifier le calcul, on peut changer l ordre des nombres sans que cela modifie le résultat. 15

Plus en détail

CHAPITRE 1 : DIVISIBILITÉ et NOMBRES ENTIERS RELATIFS

CHAPITRE 1 : DIVISIBILITÉ et NOMBRES ENTIERS RELATIFS 1. La relation de divisibilité. Soient a e b deux entiers naturels. Si la division est exacte alors : o a est un MULTIPLE de b o b est un DIVISEUR de a Multiples d un nombre Les multiples d un nombre entier

Plus en détail

Les Romains utilisaient le code suivant: I V X L C D M. pour désigner "chez nous" :

Les Romains utilisaient le code suivant: I V X L C D M. pour désigner chez nous : LES CHIFFRES ROMAINS chiffre(s), romain(s), compter, grec 1 Les Romains utilisaient le code suivant: I V X L C D M pour désigner "chez nous" : 1 5 10 50 100 500 1000 Nous les utilisons encore parfois (histoire,

Plus en détail

CLASSE DE SECONDE ACTIVITES NUMERIQUES.

CLASSE DE SECONDE ACTIVITES NUMERIQUES. LES NOMBRES 1. Les entiers naturels. 1.1 Nature. Un entier naturel dénombre une collection d objets. Ainsi : 0 signifie aucun objet ; signifie objets 0 ; 1 ; ; constituent l ensemble des entiers naturels.

Plus en détail

Divisions euclidienne. Zéro dans les divisions

Divisions euclidienne. Zéro dans les divisions Table des matières 1La division euclidienne :...2 2La notion de multiple...2 3Divisibilité...2 4Critères de divisibilité...3 1Divisible par 2...3 2Divisible par 5...3 3Divisible par 10...3 4Divisible par

Plus en détail

Chapitre n 5 : comparaison et addition des écritures fractionnaires (1 ère partie)

Chapitre n 5 : comparaison et addition des écritures fractionnaires (1 ère partie) Chapitre n 5 : comparaison et addition des écritures fractionnaires (1 ère partie) I. Sens de l'écriture fractionnaire 1/ Rappels Définition a et b représentent deux nombres non nuls (différents de 0 ).

Plus en détail

Ch1 : Arithmétique. Tous les nombres utilisés dans cette leçon sont des nombres entiers positifs. Sur la calculatrice, 5 est un diviseur d'un

Ch1 : Arithmétique. Tous les nombres utilisés dans cette leçon sont des nombres entiers positifs. Sur la calculatrice, 5 est un diviseur d'un Ch1 : Arithmétique Tous les nombres utilisés dans cette leçon sont des nombres entiers positifs. I- Multiples et diviseurs Multiples : Les multiples d'un nombre sont les résultats de la table de multiplication

Plus en détail

L3 : Algorithme d Euclide et problèmes relevant de la divisibilité

L3 : Algorithme d Euclide et problèmes relevant de la divisibilité L3 : Algorithme d Euclide et problèmes relevant de la divisibilité de deux nombres. PGCD. I Rappel : Définition de la divisibilité d un nombre par un autre : Un nombre entier est divisible par un autre

Plus en détail

VERS LA MULTIPLICATION DES NOMBRES RELATIFS. Deux méthodes de recherche sont proposées :

VERS LA MULTIPLICATION DES NOMBRES RELATIFS. Deux méthodes de recherche sont proposées : VERS LA MULTIPLICATION DES NOMBRES RELATIFS Construction d une table de multiplication : Deux méthodes de recherche sont proposées : Complète la table de multiplication ci-dessous en commençant par les

Plus en détail

3 e - programme 2012 mathématiques ch.n1 cahier élève Page 1 sur 12 Ch.N1 : Nombres entiers et rationnels

3 e - programme 2012 mathématiques ch.n1 cahier élève Page 1 sur 12 Ch.N1 : Nombres entiers et rationnels 3 e - programme 2012 mathématiques ch.n1 cahier élève Page 1 sur 12 Ch.N1 : Nombres entiers et rationnels Activité 2 page 16 Division euclidienne 1) On veut partager équitablement un lot de 357 CD entre

Plus en détail

Ex 1 : Calcule en ligne CM2

Ex 1 : Calcule en ligne CM2 ADDITIONNER DES NOMBRES ENTIERS Opé 1 Pour calculer la somme de plusieurs nombres, on effectue une addition. Pour simplifier le calcul, on peut changer l ordre des nombres sans que cela modifie le résultat.

Plus en détail

Ex 1 : Calcule en ligne CM2

Ex 1 : Calcule en ligne CM2 ADDITIONNER DES NOMBRES ENTIERS Opé 1 Pour calculer la somme de plusieurs nombres, on effectue une addition. Pour simplifier le calcul, on peut changer l ordre des nombres sans que cela modifie le résultat.

Plus en détail

DIVISION. Pour s entraîner : Exercice 19 p 86, 20 p 86, 21 p 86

DIVISION. Pour s entraîner : Exercice 19 p 86, 20 p 86, 21 p 86 DIVISION 1 La division Euclidienne 1 a Exemple 9 élèves se partagent 2 revues, le reste va au CDI de collège. 2=9 22+2 22 est le plus grand nombre de revues possible tel que 9 22 est plus petit que 2 (

Plus en détail

Application à un calcul sur les. Nombres premiers entre

Application à un calcul sur les. Nombres premiers entre Académies et années Simplification de fractions Application à un calcul sur les Nombres premiers entre Application à un problème concret fractions eu «Lots» «Découpages» Bordeau 00 Nancy 00 Orléans 00

Plus en détail

Chapitre 1 : CALCUL NUMERIQUE

Chapitre 1 : CALCUL NUMERIQUE Introduction. Ce chapitre a pour but de faire une révision complète et rapide sur l ensemble des connaissances calculatoire de l élève, supposées déjà acquises. Il est fondamental de maîtriser chaque règle

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Introduction Pré-requis : Ensemble de nombres Plan du cours 1. Divisibilité dans Z 2. Congruence 3. Plus grand commun diviseur 1. Divisibilité dans Z Dans tout ce qui suit, on se place dans l ensemble

Plus en détail

Mathématiques. Un ensemble est une collection d objets nommés éléments ou membres de l ensemble.

Mathématiques. Un ensemble est une collection d objets nommés éléments ou membres de l ensemble. ENSEMBLE DE NOMBRES I. Rappels sur les ensembles 1. Définitions Un ensemble est une collection d objets nommés éléments ou membres de l ensemble. Il est décrit : - par la liste de ces éléments (il est

Plus en détail

CHAPITRE 2 : LES NOMBRES ENTIERS

CHAPITRE 2 : LES NOMBRES ENTIERS CHAPITRE 2 : LES NOMBRES ENTIERS Objectifs : 6.210 [S] Connaître et utiliser la valeur des chiffres en fonction de leur rang dans l'écriture d'un nombre entier 6.211 [ ] Organiser l'écriture d'un nombre

Plus en détail

SÉRIE , PGCD NOMBRES ENTIERS ET RATIONNELS : CHAPITRE N1. 6 Trouve les diviseurs communs à 45 et 49.

SÉRIE , PGCD NOMBRES ENTIERS ET RATIONNELS : CHAPITRE N1. 6 Trouve les diviseurs communs à 45 et 49. ÉRIE 1 : DIVISEURSD, PGCD IVISEURS COMMUNS, PGCD 1 Complète chaque phrase avec un des mots suivants : diviseur, multiple, divisible. a. 12 est un... de 6. b. 3 est un... de 18. c. 230 est... par 10. 2

Plus en détail

Chapitre 6 : Multiplications et divisions

Chapitre 6 : Multiplications et divisions Chapitre 6 : Multiplications et divisions 1) La multiplication : Exemple : 3 x 2 = l6 Le résultat d'une multiplication s'appelle le produit. Ici c est 6. Les nombres qu on multiplie s appellent les facteurs.

Plus en détail

Arithmétique. Nombres décimaux et opérations

Arithmétique. Nombres décimaux et opérations Nombres décimaux et opérations 1. Nombres décimaux Un nombre décimal est un nombre dont l'écriture décimale (écriture en chiffres à virgule) possède un nombre fini de chiffres non nuls (différents de zéro)

Plus en détail

éléments de correction - Arithmétique

éléments de correction - Arithmétique éléments de correction - Arithmétique Exercice n o 1 1. a) 5 6+2 = 32 est la division euclidienne de 32 par 5 ou 6 (car 2 < 5 et 2 < 6), b) 3 7+4 = 25 est la division euclidienne de 25 par 7 (car 4 < 7),

Plus en détail

N27 Factoriser une expression en utilisant la distributivité simple 4 ème 3 ème 34 Développer une expression en utilisant la double.

N27 Factoriser une expression en utilisant la distributivité simple 4 ème 3 ème 34 Développer une expression en utilisant la double. N Thème Numéro Titre de la leçon Niveau Page Enchainement d'opérations Nombres relatifs Fractions Divisibilité Racines carrées Puissances Calcul littéral N1 Calculer une expression SANS parenthèses 5 ème

Plus en détail

Opérations sur les nombres entiers. Définitions Le résultat d une addition est une somme. Les nombres que l on additionne sont les termes de la somme.

Opérations sur les nombres entiers. Définitions Le résultat d une addition est une somme. Les nombres que l on additionne sont les termes de la somme. Chapitre 1 Opérations sur les nombres entiers I. Définitions et propriétés 1. Addition Définitions Le résultat d une addition est une somme. Les nombres que l on additionne sont les termes de la somme.

Plus en détail

= 0.75 ; Règle : Pour prendre une fraction 2 d une grandeur, on divise cette grandeur en 3 parts égales et on en prends 2. Hachurer 2 de ce rectangle

= 0.75 ; Règle : Pour prendre une fraction 2 d une grandeur, on divise cette grandeur en 3 parts égales et on en prends 2. Hachurer 2 de ce rectangle ème Chapitre A ECRITURES FRACTIONNAIRES, FRACTIONS. 1 I) Définition vocabulaire. 1) Définitions. Df : Une fraction est une écriture de nombre formé de deux nombres entiers l un au dessus de l autre, séparés

Plus en détail

PROPRIÉTÉ Dans une expression sans parenthèses. les multiplications et les divisions doivent être effectuées avant les additions et les soustractions.

PROPRIÉTÉ Dans une expression sans parenthèses. les multiplications et les divisions doivent être effectuées avant les additions et les soustractions. 1 Expressions sans parenthèses OBJECTIF 1 PROPRIÉTÉ Dans une expression sans parenthèses, les multiplications et les divisions doivent être effectuées avant les additions et les soustractions. s Calcul

Plus en détail

Répartition annuelle

Répartition annuelle Année scolaire 2016-2017 Classe : EB4 Matière : Mathématiques Répartition annuelle Semaine Chapitre Titre Objectifs/Compétences 1 er trimestre 1/2 Chapitres 1-2-3 Les multiples (1) Les multiples (2) Les

Plus en détail

Exercices de 3 ème Chapitre 1 Nombres entiers et rationnels Énoncés

Exercices de 3 ème Chapitre 1 Nombres entiers et rationnels Énoncés Énoncés Exercice 1 Cocher la ou les catégories auxquelles appartiennent chacun des nombres donnés. -5 1 2/3-3/10 Entier naturel Entier relatif Nbre décimal Nbre rationnel Exercice 2 a] Déterminer tous

Plus en détail

PARTIE 1 : Quand une division de nombres entiers «tombe juste» :

PARTIE 1 : Quand une division de nombres entiers «tombe juste» : PARTIE 1 : Quand une division de nombres entiers «tombe juste» : I- De la multiplication à la division : 1) Sur un exemple : Petit problème : Jean a 15 et veut acheter des paquets d autocollants à 3 pièce.

Plus en détail

Diviseurs PGCD. EXTRAIT DU B.O. SPÉCIAL N 6 DU 28 AOÛT 2008 Connaissances Capacités Commentaires

Diviseurs PGCD. EXTRAIT DU B.O. SPÉCIAL N 6 DU 28 AOÛT 2008 Connaissances Capacités Commentaires Diviseurs PGCD EXTRAIT DU B.O. SPÉCIAL N 6 DU 28 AOÛT 2008 Connaissances Capacités Commentaires 2. s et calculs 2.1 s entiers et rationnels Diviseurs communs à deux entiers, PGCD. Fractions irréductibles.

Plus en détail

Puissances de 10. Exercices : Quelle est l aire d un carré de 10 cm de côté? Notation : Lecture : Quel est le volume d un cube de 10 cm d arête?

Puissances de 10. Exercices : Quelle est l aire d un carré de 10 cm de côté? Notation : Lecture : Quel est le volume d un cube de 10 cm d arête? Puissances de 0. I- Activité préliminaire : Exercices : Quelle est l aire d un carré de 0 cm de côté? Notation : Lecture : Quel est le volume d un cube de 0 cm d arête? Notation : Lecture : Vocabulaire

Plus en détail

I. Nature des nombres

I. Nature des nombres Seconde Lycée Desfontaines Melle Cours 01 - Les nombres I. Nature des nombres Définitions : L ensemble des entiers naturels est l ensemble des entiers positifs. Il se note IN. On écrit alors IN={0;1;2;

Plus en détail

Arithmétique. Ensembles de nombres, opérations sur les nombres et priorités des opérations

Arithmétique. Ensembles de nombres, opérations sur les nombres et priorités des opérations Ensembles de nombres, opérations sur les nombres et priorités des opérations 1. Ensembles de nombres Nombres entiers naturels 1; 2; 3; 4; 5;... sont les premiers nombres que l on apprend déjà avant d entrer

Plus en détail

Divisibilité - Division euclidienne

Divisibilité - Division euclidienne Divisibilité - Division euclidienne I Ensembles IN et ZZ L'ensemble des entiers {0 ; 1 ; 2 ; 3 ;... } est appelé ensemble des entiers naturels et noté IN. L'ensemble des entiers {... ; -3 ; -2 ; -1 ; 0

Plus en détail

C3T3 PGCD - Puissances Exercices 1/6

C3T3 PGCD - Puissances Exercices 1/6 C3T3 PGCD - Puissances Exercices /6 Division euclidienne On donne l'égalité 35 = 78 + 3. a. Sans faire de division, détermine le quotient et le reste de la division 35 par 78? b. 78 est-il le quotient

Plus en détail

Arithmétique. Nombres rationnels et opérations

Arithmétique. Nombres rationnels et opérations Nombres rationnels et opérations Nombres rationnels ou fractions Un nombre rationnel est le quotient de deux nombres entiers (le diviseur est différent de zéro) Exemple: : = 0,7 Au lieu d'écrire le résultat

Plus en détail

Première partie Cours et méthodologies

Première partie Cours et méthodologies Première partie Cours et méthodologies I Cours, savoir-faire et méthodes II Méthodologie du QCM de Calcul III Méthodologie du QCM de Conditions minimales I Cours, savoir-faire et méthodes Avant de vous

Plus en détail

EXERCICES D ARITHMÉTIQUE

EXERCICES D ARITHMÉTIQUE 1. On note D(a) l'ensemble des diviseurs positifs de l'entier a. a) Déterminer l'ensemble des diviseurs positifs de 60, puis l'ensemble des diviseurs positifs de 11. Déterminer ensuite l'intersection de

Plus en détail

Chapitre OPERATIONS ET NOMBRES ENTIERS

Chapitre OPERATIONS ET NOMBRES ENTIERS Chapitre 6 ème OPERATIONS ET NOMBRES ENTIERS Connaître les tables d addition et de multiplication et les résultats qui en dérivent. Choisir les opérations qui conviennent au traitement de la situation

Plus en détail

1) Calcule le PGCD de 1078 et 322 en utilisant l algorithme d Euclide. 2) a) Calcule le PGCD de 273 et 163 par la méthode de ton choix.

1) Calcule le PGCD de 1078 et 322 en utilisant l algorithme d Euclide. 2) a) Calcule le PGCD de 273 et 163 par la méthode de ton choix. 3 ème D DS1 nombres entiers et rationnels 2012-2013 sujet 1 Exercice 1. (5 points) 1) Calcule le PGCD de 1078 et 322 en utilisant l algorithme d Euclide. 2) a) Calcule le PGCD de 273 et 163 par la méthode

Plus en détail

Quotients - Fractions

Quotients - Fractions Quotients - Fractions I) Définitions : 1) Quotient Avec des nombres : on sait que 5 x 6,8 = 34 donc 5 est un diviseur de 34 ou 34 est divisible par 5 (revoir vocabulaire chapitre précédent), on dit que

Plus en détail

1 Divisibilité dans Z

1 Divisibilité dans Z 1 Divisibilité dans Z Soient a et b deux entiers avec b 0. On dit que b divise a, ou que b est un diviseur de a, s il existe un entier q tel que a = b q. Si b divise a, on écrit b a; dans le cas contraire,

Plus en détail

Arithmétique (2) Multiples ; diviseurs ; PGCD ; PPCM. 1 ère L Option. 5 ) Liste de tous les diviseurs d un entier naturel

Arithmétique (2) Multiples ; diviseurs ; PGCD ; PPCM. 1 ère L Option. 5 ) Liste de tous les diviseurs d un entier naturel 1 ère L Option I. Multiples et diviseurs 1 ) Définition Arithmétique (2) Multiples ; diviseurs ; PGCD ; PPCM 5 ) Liste de tous les diviseurs d un entier naturel Question : Trouver tous les diviseurs d'un

Plus en détail

A retenir : Chapitre 1

A retenir : Chapitre 1 A retenir : Chapitre 1 C1 * 1 et * 2 Définition de division euclidienne et vocabulaire Effectuer la DIVISION EUCLIDIENNE de D par d non nul, c est trouver le quotient q et le reste r tel que : D = d. q

Plus en détail

Chapitre Opérations avec des nombres décimaux

Chapitre Opérations avec des nombres décimaux Chapitre Opérations avec des nombres décimaux Division d un nombre décimal par un entier. Multiplier un nombre par, ;, ;, ;...etc. Multiplier un nombre décimal par un nombre décimal. Choisir les opérations

Plus en détail

Thème 6 : Racines carrées-le point sur les nombres

Thème 6 : Racines carrées-le point sur les nombres Thème 6 : Racines carrées-le point sur les nombres I - DEFINITION DE LA RACINE CARREE d un nombre positif a est un nombre positif La racine carrée de a notée a est le nombre positif tel que a a = ( a )

Plus en détail

FICHES OUTILS OPERATIONS CM2

FICHES OUTILS OPERATIONS CM2 FICHES OUTILS OPERATIONS 1 Addition et soustraction Multiplication des entiers Multiplication des décimaux 4 La divisibilité 5 Les caractères de divisibilité 6 Technique de la division Moyennes et partages

Plus en détail

ARITHMETIQUE P.G.C.D. Dans ce chapitre, les nombres considérés seront des entiers naturels ( donc positifs )

ARITHMETIQUE P.G.C.D. Dans ce chapitre, les nombres considérés seront des entiers naturels ( donc positifs ) THEME : ARITHMETIQUE P.G.C.D. EUCLIDE Dans ce chapitre, les nombres considérés seront des entiers naturels ( donc positifs ) DIVISION EUCLIDIENNE Faire une division, c est calculer un quotient. Par exemple,

Plus en détail

Spécialité Terminale S IE4 Bézout - Fermat S

Spécialité Terminale S IE4 Bézout - Fermat S Spécialité Terminale S IE4 Bézout - Fermat S1 2011-2012 1) Soit p V, p premier. 2) a) Montrer que pour tout n W, n 13 n est divisible par 546. 1) On considère l équation (E) dans W² : 8x + 5y = 1 a) Donner

Plus en détail

2 Plus grand commun diviseur

2 Plus grand commun diviseur 2 Plus grand commun diviseur PGCD DE DEUX ENTIERS NATURELS Définition Soit deux nombres entiers naturels a et b non nuls. Un nombre entier naturel δ qui divise chacun de ces nombres est appelé diviseur

Plus en détail

Chapitre I : Nombres - Ensembles et opérations

Chapitre I : Nombres - Ensembles et opérations Algèbre Chapitre I : Nombres - Ensembles et opérations I. Rappels du collège - règles de calcul 1. Notions d'opposé et d'inverse Deux nombres sont opposés lorsque leur somme est égale à 0. Exercice : Donner

Plus en détail

Chapitre n 1 : «Opérations sur les nombres relatifs»

Chapitre n 1 : «Opérations sur les nombres relatifs» Chapitre n 1 : «Opérations sur les nombres relatifs» I. Rappels 1/ Addition avec ou sans parenthèses 3 7= 4 57=2=2 118= 3 28=6 61= 5 618=12=12 21 24= 21 24= 45 7 25= 32 5 8= 3 45 8= 53 Règles de simplifications

Plus en détail