Chapitre 6 La dérivation

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 6 La dérivation"

Transcription

1 Capitre 6 La dérivation A) Nombre dérivé et tangente 1) Tangente en un point à une courbe et nombre dérivé Soit f(x) la fonction dont la courbe est représentée ci-dessus, et prenons deux points A et B sur cette courbe, avec pour coordonnées A(a ; f(a)) et B(a+ ; f(a+)). Traçons alors la droite (AB), puis rapprocons le point B du point A. On appellera tangente en A à la courbe de f(x) la droite vers laquelle tend (AB) lorsque B se rapproce de A. La pente de cette droite est appelée nombre dérivé de f(x) en A. On la note f'(a). Or la pente de la droite (AB) est égale au taux de variation entre A et B, soit : t a ()= f (a+) f (a) Le nombre dérivé f'(a) est donc la limite de ce taux de variation lorsque se rapproce de 0, 2) Équation de la tangente Cette équation s'écrit : y= f ' (a)( x a)+ f (a) Démonstration : La pente (ou coefficient directeur) de la tangente est f'(a), donc son équation peut s'écrire (k étant un réel à déterminer) : y= f ' (a) x+ k. Or elle passe par le point A(a ; f(a)), d'où f (a )= f ' (a) a+k soit k= f (a) a f ' (a). On en déduit que son équation est : y= f ' (a) x+ f (a) f ' (a) a, soit y= f ' (a) (x a)+ f (a). CQFD. Page 1/6

2 2) Fonction dérivable en un point Il y a trois cas où une fonction n'a pas de nombre dérivé en un point : Soit le cas où la tangente en ce point est verticale (pente infinie!). Soit le cas où il y a une tangente "à droite" et une autre tangente "à gauce". Soit le cas où il n'y a aucune tangente possible en ce point. Lorsque une fonction admet un nombre dérivé en un point, on dit qu'elle est dérivable en ce point. Exemples de non dérivabilité : a) f ( x )= x n'est pas dérivable pour x = 0 : On voit bien ici que la tangente en x=0 est verticale, donc sa pente est infinie. b) f ( x )= x Page 2/6

3 On voit bien que le nombre dérivé est égal à -1 à gauce de zéro et à 1 à droite : f (x) n'est pas dérivable en zéro mais elle y est "dérivable à gauce" et "dérivable à droite". c) f x =sin 1 x Fonction en forme de ressort de plus en plus comprimé pour x = 0 Ici, pas de nombre dérivé en zéro, l'approximation de la tangente n'arrête pas de canger! Remarque : Ces trois fonctions sont dérivables pour toutes les autres valeurs autorisées de x. B) Fonctions dérivées 1) Définition Soit une fonction f définie sur un intervalle I. Si f est dérivable en tout point de I, on dit qu'elle est dérivable sur I et on appelle dérivée, ou fonction dérivée de f, et on note f', la fonction qui à tout x I associe f'(x), nombre dérivé de f en x. Exemple f(x) = x² est dérivable sur R et sa dérivée est f'(x) = 2x En effet, t a = a 2 a 2 = a2 2a 2 a 2 = 2a 2 =2a Or, se rapprocant de 0, f'(a) se rapprocera de 2a pour tout a, ce qui amène bien f'(x) = 2x pour tout x. 2) Dérivées usuelles Fonction Dérivée Domaine de définition f x =a f ' x =0 R f x =ax b f ' x =a R f x =ax 2 f x =2ax R f x = 1 x f x = x f ' x = 1 x² f x = 1 2 x f x =sin x f x =cos x R f x =cos x f x = sin x R Page 3/6 R* R*

4 La connaissance de la fonction dérivée permet de calculer aisément la pente de la courbe, c'est-àdire de sa tangente, en tout point. En particulier, le signe de la dérivée donne le sens de variation de la fonction! On peut aussi trouver aisément l'équation de la tangente à la courbe en tout point donné. C) Opérations sur les dérivées On supposera que u et v sont deux fonctions définies et dérivables sur I, et k une constante réelle. 1) Somme et différence u + v et u v sont alors définies et dérivables sur I, et : (2x² - 4x + 3)' = (2x²)' (4x)' + (3)' = 4x 4 (3x² + 7x -9 + sin(x))' =? 2) Produit (u + v)' = u' + v' (u v)' = u' v' Si u et v sont dérivables sur I, u v est dérivable sur I, ainsi que k u et : (u v)' = u' v + u v' (k u)' = k u' ( x sin x )' =? ( x 3 1 x )' =? ( 2 x 1 cos x )' =? (7 x 2 )' =? ( x 4 )'=? (3x 3 )'=? 3) Inverse 1 ' v = v ' v 2 1 ( 3 x 2 1 )'=? ( 1 sin( x) )'=? 4) Quotient ( u u ' v u v ' '= v) v 2 Page 4/6

5 Exemples ( 3 x 4 2 x +1) ' =? sin( ( 2 cos( x)) '=? 5) Puissances de u (u n )'=nu ' u n 1 ((2 x 3) 7 )' =? (sin 9 ( x))'=? (noter l'écriture sin 9 (x) qui signifie (sin(x)) 9!) 6) Fonction composée a) Définition On appelle fonction composée une fonction du type f(x) = u(v(x)) et on note f = u o v. Soit u(x) = 3 sin(x) et v(x) = x² 2 x + 3. Exprimer f(x) et g(x) avec f = u o v et g = v o u. (f(x) = 3 sin(x² 2 x + 3) et g(x) = 9 sin²(x) 6 sin(x) + 3) On remarquera que f et g sont très différentes! b) Dérivation Soit (u(v(x)))' = v'(x) u' (v(x)) : (u(v))' =v ' (u' (v)) I) u(x) = cos(x) f (x)=u(v(x))=cos(2x 3) v(x) = 2x -3 II) u = sin(x) v = 2x² -3x + 1 c) Cas particulier important Soit v(x) = a x + b avec a et b réels : f ' ( x)=2sin(2x 3) f (x)=u(v(x))=sin(2x² 3x+1) f ' ( x)=(4x 3)cos(2x² 3x+1) Exemples ( 2 x+1)'=? (u(a x+b))' =a u ' (a x +b) ((3 x 2) 4 )'=? (sin( 1 x ))'=? Page 5/6

6 Fice de révision : Dérivation Définition : f (a)= df dx ( (a)=lim 0 f (a+) f (a) ) Équation de la tangente en x 0 à la courbe de f : y = f (x 0 ) (x x 0 ) + f(x 0 ) Dérivées de base : Fonction définie sur Fonction f(x) = Dérivée f (x) = Dérivée définie sur R k 0 R R a x + b a R R a x n n a x n - 1 R R * = R \ {0} R * = R \ {0} [0; ] a x a x n a x a x 2 R * = R \ {0} n a x n+1 R * = R \ {0} a 2 x ]0 ; ] R a sin( x) a cos( x) R R a cos( x) asin( x) R Dérivée d une fonction composée (formule générale) : (u(v( x))) ' = v ( x) u (v( x)) Opérations sur les dérivées Dérivées des fonctions composées Opération Formule de la dérivée Fonction composée Formule de la dérivée u v u ' v' sin(u) u ' cos(u) k u ku' cos(u) u ' sin(u) u v u ' v+u v' u ax b au' ax b u u v u ' 2 u (a x+b) n a n(a x+b) n 1 u' v uv ' 1 a n v 2 (a x+b) n (a x+b) n+1 u n n u ' u n 1 sin(a x+b) a cos(a x+b) 1 u n nu ' u n+1 cos(a x+b) asin(a x+b) Page 6/6

La dérivation dans R

La dérivation dans R S La dérivation dans R Introduction Activité sur la cute libre d un corps. 2 Nombre dérivé Définition du nombre dérivé Soit f une fonction définie sur un intervalle I de R et soit a un réel de l intervalle

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

Chapitre 3 Les Dérivées

Chapitre 3 Les Dérivées Cours de Terminale ST2S Capitre 3 : Les dérivées Capitre 3 Les Dérivées A) Nombre dérivé et tangente à une courbe en un point (rappels de première) 1) Définitions Soit un point A sur la courbe d'une fonction

Plus en détail

Chapitre 3 Term. S. Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Chapitre 3 Term. S. Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 3 Term. S. Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIES appels : Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

Dérivation Primitives

Dérivation Primitives Cours de Terminale STI2D Giorgio Chuck VISCA 27 septembre 203 Dérivation Primitives Table des matières I La dérivation 3 I Rappels 3 I. exemple graphique............................................. 3

Plus en détail

Cours de mathématiques. Chapitre 4 : Dérivabilité. Terminale S1. Année scolaire 2008-2009 mise à jour 22 novembre 2008. Fig.

Cours de mathématiques. Chapitre 4 : Dérivabilité. Terminale S1. Année scolaire 2008-2009 mise à jour 22 novembre 2008. Fig. Cours de matématiques Terminale S1 Capitre 4 : Dérivabilité Année scolaire 008-009 mise à jour novembre 008 Fig. 1 Jean Dausset Fig. alliday Fig. 3 Joann Radon Il y a des gens connus et des gens importants-idée

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Nombre dérivé, interprétations géométrique et cinématique

Nombre dérivé, interprétations géométrique et cinématique CHAPITRE 4 DÉRIVATION ET PRIMITIVATION Nombre dérivé, interprétations géométrique et cinématique 08. Nombre dérivé Soit f une fonction numérique, définie sur un intervalle ou une réunion d intervalles,

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Dérivées : Rappels et compléments

Dérivées : Rappels et compléments Dérivées : Rappels et compléments I) Rappels ) Dérivabilité en un point Soit f une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative dans un repère ( O;

Plus en détail

Première S chapitre 3 partie 3 opérations sur les fonctions dérivées

Première S chapitre 3 partie 3 opérations sur les fonctions dérivées 1. Dérivée d'une somme u et v sont deux fonctions dérivables en x. Si ces deux conditions sont remplies alors : La fonction u + v est dérivable en x. Le nombre dérivé au point x de la somme u + v est la

Plus en détail

Dérivation : Résumé de cours et méthodes

Dérivation : Résumé de cours et méthodes Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers

Plus en détail

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction On dit qu une fonction est dérivable sur un intervalle I si elle est définie sur I et admet en chaque point de I un nombre dérivé.

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton BTS MCI Lycée Vauban, Brest 4 mai 06 André Breton Table des matières I Compléments pour les bac pro 8 ÉquationsFactorisationsInéquations 9. Identités remarquables................................ 9. Le

Plus en détail

Objectifs: connaître les propriétés des fonctions élémentaires pour pouvoir étudier des fonctions plus complexes.

Objectifs: connaître les propriétés des fonctions élémentaires pour pouvoir étudier des fonctions plus complexes. FONCTIONS DE REFERENCE Objectifs: connaître les propriétés des fonctions élémentaires pour pouvoir étudier des fonctions plus complexes. I. LES FONCTIONS ELEMENTAIRES ce sont les touches «fct» de la calculatrice

Plus en détail

Dérivation, cours pour la classe de Terminale STG

Dérivation, cours pour la classe de Terminale STG Dérivation, cours pour la classe de Terminale STG F.Gaudon 7 novembre 2007 Table des matières 1 Fonction dérivée 2 2 Dérivées usuelles 3 3 Opérations sur les fonctions dérivables 4 3.1 Somme...............................

Plus en détail

Exercices corrigés sur la dérivation dans R

Exercices corrigés sur la dérivation dans R Exercices corrigés sur la dérivation dans R Exercice : déterminer le nombre dérivé d une fonction Soit f la fonction définie sur R par f(x) = x +x.. En utilisant la définition du nombre dérivé, montrer

Plus en détail

DERIVATION. ou f'(x 0 ) = lim. h 0

DERIVATION. ou f'(x 0 ) = lim. h 0 DERIVATION I. DE LA TANGENTE A LA DERIVABILITE a) Tangente et nombre dérivé Aux origines la dérivation, était un problème purement géométrique : il s'agissait de connaître le coefficient directeur ou pente

Plus en détail

Mathématiques I Section Architecture, EPFL

Mathématiques I Section Architecture, EPFL Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même

Plus en détail

Fonctions numériques : dérivation

Fonctions numériques : dérivation Fonctions numériques : dérivation Table des matières I Notion de tangente à une courbe Soit f une fonction définie sur un intervalle I de courbe représentative C f et soit A un point fixe de C f. Soit

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

CHAPITRE 7 Fonction carré et fonction inverse

CHAPITRE 7 Fonction carré et fonction inverse CHAPITRE 7 Fonction carré et fonction inverse A) La fonction "carré" : f() = ² ) Domaine de définition Elle est définie sur ℝ complet (on peut toujours multiplier deu nombres entre eu). 2) Sens de variation

Plus en détail

Chapitre 9 Les équations différentielles

Chapitre 9 Les équations différentielles Chapitre 9 Les équations différentielles A) Généralités Une équation différentielle est une équation dont l inconnue est une fonction et dans laquelle apparaissent une ou plusieurs dérivées de cette fonction.

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Chapitre 5 : Dérivation. Activité préparatoire : p97 du livre. f(x 2 ) 1 f(x 1 )

Chapitre 5 : Dérivation. Activité préparatoire : p97 du livre. f(x 2 ) 1 f(x 1 ) Capitre 5 : Dérivation Taux d accroissement Question : Activité préparatoire : p97 du livre. Définition : Soit une fonction f définie sur un intervalle I de R, et x et x 2 deux réels de I. Le taux d accroissement

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J.

Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. FAIVRE s de cours exigibles au bac S en mathématiques Enseignement

Plus en détail

Dérivation. I. Nombre dérivé d une fonction en un point

Dérivation. I. Nombre dérivé d une fonction en un point I. Nombre dérivé d une fonction en un point Dérivation Dans tout ce paragrape, on considère une fonction f définie sur un intervalle I et a un nombre réel de cet intervalle. ) Définition Le nombre dérivée

Plus en détail

TD Dérivation n 2 : étude des variations de fonctions

TD Dérivation n 2 : étude des variations de fonctions 1) f (x) = 7x+3 TD Dérivation n : étude des variations de fonctions Étude de variations f est une fonction affine, de coefficient directeur négatif, on sait donc qu elle est décroissante surê. Le calcul

Plus en détail

FONCTIONS TRIGONOMÉTRIQUES

FONCTIONS TRIGONOMÉTRIQUES FONCTIONS TRIGONOMÉTRIQUES Définition ( voir animation ) On dit qu'un repère orthonormé (O; i, j) est direct lorsque ( i ; j ) = + []. Dans le plan rapporté à un repère orthonormé direct, si M est le point

Plus en détail

Cours fonctions, expressions algébriques

Cours fonctions, expressions algébriques I. Expressions algébriques, équations a) Développement factorisation Développer Développer un produit, c est l écrire sous forme d une somme. Réduire une somme, c est l écrire avec le moins de termes possibles.

Plus en détail

DERIVATION I. DE LA TANGENTE A LA DERIVABILITE. a) Tangente et nombre dérivé. Ch2 : Dérivation (TES)

DERIVATION I. DE LA TANGENTE A LA DERIVABILITE. a) Tangente et nombre dérivé. Ch2 : Dérivation (TES) DERIVATION I. DE LA TANGENTE A LA DERIVABILITE a) Tangente et nombre dérivé Aux origines la dérivation, était un problème purement géométrique : il s'agissait de connaître le coefficient directeur ou pente

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES RAPPELS DE MATHEMATIQUES ORTHOPHONIE Première année 27 28 Dr MF DAURES 1 RAPPELS DE MATHEMATIQUES I - LES FONCTIONS A - Caractéristiques générales des fonctions B - La fonction dérivée C - La fonction

Plus en détail

Résumé du cours. Fonction dérivable

Résumé du cours. Fonction dérivable Résumé du cours Fonction dérivable Nombre dérivé et fonction dérivée Soit f une fonction définie sur un intervalle ouvert I contenant a. On dit que f est dérivable en a et de nombre dérivé f (a) si Définition

Plus en détail

Chapitre 3. Continuité, dérivation et limite d une fonction

Chapitre 3. Continuité, dérivation et limite d une fonction Chapitre 3. Continuité, dérivation et limite d une fonction I. Continuité Définition : Continuité d une fonction Dire que f est continue en a signifie que f a une limite finie en a ; cette limite est alors

Plus en détail

Équations - Inéquations - Systèmes

Équations - Inéquations - Systèmes Équations - Inéquations - Systèmes I Premier degré Propriétés Soit f définie sur IR par f(x = ax + b avec a 0. f est une fonction affine, elle est représentée graphiquement par une droite. a est le coefficient

Plus en détail

Notion de continuité sur un intervalle. I. Notion de dérivée et tangente à une courbe en un point

Notion de continuité sur un intervalle. I. Notion de dérivée et tangente à une courbe en un point Capitre 3 Term. ES Notion de continuité sur un intervalle Ce que dit le programme : CONTENUS Notion de continuité sur un intervalle CAPACITÉS ATTENDUES Exploiter le tableau de variation pour déterminer

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

DERIVEE D'UNE FONCTION EN UN POINT FONCTION DERIVEE

DERIVEE D'UNE FONCTION EN UN POINT FONCTION DERIVEE DERIVEE D'UNE FONCTION EN UN POINT FONCTION DERIVEE I. Limite d'une fonction en : ) Observation des fonctions de référence : Soit x x ; x x² ; x x 3 et x x sont quatre fonctions de référence. Observons

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Terminale S3 Année 2009-2010 Table des matières I Les fonctions. 4 1 Les limites (suite du cours) 5 IV Limites par comparaison....................................... 5 V Fonctions

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

GÉNÉRALITÉS. f étant définie sur un intervalle de borne, f(x) = L si tout intervalle ouvert contenant L contient toutes les

GÉNÉRALITÉS. f étant définie sur un intervalle de borne, f(x) = L si tout intervalle ouvert contenant L contient toutes les 1 Limites GÉNÉRALITÉS Définitions Dans les énoncés suivants, L et a sont deux réels. f étant définie sur un intervalle de borne +, f(x) = L si tout intervalle ouvert contenant L contient toutes les valeurs

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Corrigé des exercices de mise à niveau en Mathématiques

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Corrigé des exercices de mise à niveau en Mathématiques UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 04 05 L Économie Cours de M. Desgraupes Corrigé des exercices de mise à niveau en Mathématiques Séance 0 : Fonctions usuelles

Plus en détail

Les fonctions sinus et cosinus

Les fonctions sinus et cosinus DERNIÈRE IMPRESSION LE 6 juin 03 à 5:06 Les fonctions sinus et cosinus Table des matières Rappels. Mesure principale.............................. Résolution d équations...........................3 Signe

Plus en détail

1 Fonctions de plusieurs variables

1 Fonctions de plusieurs variables Université de Paris X Nanterre U.F.R. Segmi Année 006-007 Licence Economie-Gestion première année Cours de Mathématiques II. Chapitre 1 Fonctions de plusieurs variables Ce chapitre est conscré aux fonctions

Plus en détail

Sommaire. Prérequis. Généralités sur les fonctions

Sommaire. Prérequis. Généralités sur les fonctions Généralités sur les fonctions Stépane PASQUET, 4 octobre 06 C Sommaire Limites aux infinis....................................... Limite en un nombre fini, ite à droite, ite à gauce d un nombre fini........

Plus en détail

2 Généralités sur les fonctions

2 Généralités sur les fonctions Chapitre Généralités sur les fonctions. Fonctions usuelles.. Fonction racine carrée Définition. On appelle fonction racine carrée la fonction définie sur R + par x x. Théorème. La fonction racine carrée

Plus en détail

EXERCICES 1S DERIVATION

EXERCICES 1S DERIVATION EXERCICES S DERIVATION Nombre dérivé ; utilisation des formules On trouvera les solutions après la liste des exercices Ne les consultez pas trop vite! EX : Calculer la fonction dérivée de la fonction f

Plus en détail

9. Équations différentielles

9. Équations différentielles 63 9. Équations différentielles 9.1. Introduction Une équation différentielle est une relation entre une ou plusieurs fonctions inconnues et leurs dérivées. L'ordre d'une équation différentielle correspond

Plus en détail

Calculs de dérivées. Compléments.

Calculs de dérivées. Compléments. 1. Nombre dérivé-tangente à une courbe- Dérivée d'une fonction... 2. Dérivée d'une fonction composée... p5 3. Fonctions trigonométriques... p6 p2 4.... p9 Copyrigt meilleurenmats.com. Tous droits réservés

Plus en détail

MATHS Rappels Suites, Fonctions, Développements limités

MATHS Rappels Suites, Fonctions, Développements limités INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE MATHS Rappels Suites, Fonctions, Développements limités Pascal Floquet Xuân Meyer Première Année à Distance Septembre 006 Jean-Claude Satge Table des matières

Plus en détail

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4 Chapitre Convexité TABLE DES MATIÈRES page -1 Chapitre Convexité Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

STI - 1N5 - DERIVATION D'UNE FONCTION EN UN POINT COURS (1/5)

STI - 1N5 - DERIVATION D'UNE FONCTION EN UN POINT COURS (1/5) www.matsenligne.com STI - N5 - DERIVATION D'UNE FONCTION EN UN POINT COURS (/5) La dérivation constitue l'objectif essentiel du programme d'analyse de première ; cet objectif est double : - Acquérir une

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Classe : TES1 Le 12/05/2003 MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Durée : 3h Exercice 1: (5 points) Le tableau suivant donne l évolution du prix d un paquet de café

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Introduction Pré-requis : Etude de fonctions dérivées logarithmes et exponentielles continuité Plan du cours 1. Intégrales 2. Primitives 1. Intégrales A. Aire sous la courbe Méthode des rectangles : Pour

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Dérivées et primitives I. RAPPELS SUR LES DROITES ET LES FONCTIONS AFFINES

Dérivées et primitives I. RAPPELS SUR LES DROITES ET LES FONCTIONS AFFINES Chapitre 2 Dérivées et primitives I. RAPPELS SUR LES DROITES ET LES FONCTIONS AFFINES Une fonction affine est une fonction définie sur R par : f (x)=ax+b, avec a et b réels. La représentation graphique

Plus en détail

Variations des fonctions

Variations des fonctions CH2-1er S Variations des fonctions Rédacteur : Yann BANC Le mot du prof : Ce chapitre vous permet de revoir les fonctions usuelles et de découvrir de nouvelles fonctions usuelles : valeur absolue et racine

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

Terminale SSI 1 Chapitre 1 : limites et continuité 1

Terminale SSI 1 Chapitre 1 : limites et continuité 1 Terminale SSI 1 Chapitre 1 : limites et continuité 1 1 Introduction 1.1 Limites de suites En classe de première, on a déjà rencontré les limites de suites. Définition On dit qu'une suite u, définie sur

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

I. Limites d une fonction à l infini

I. Limites d une fonction à l infini T STI SIN Limites de fonctions 6//202 Lycée Don Bosco 202-203 I. Limites d une fonction à l infini Activité a. Limites infinies On considère la fonction f définie sur ]0 ; + [ par : f(x) = x 2 x +, et

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Compléments sur la dérivation et continuité, cours, terminale S

Compléments sur la dérivation et continuité, cours, terminale S Compléments sur la dérivation et continuité, cours, terminale S F.Gaudon er septembre 206 Table des matières Fonction dérivée, tangente 2 2 Dérivation de fonctions 3 2. Fonctions dérivées usuelles (rappel)..............................

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

5. f(x) = x x en x = f(x) = (x 1) 1 x 2 en x = f(x) = (x 1) 1 x 2 en x = 1. (plus difficile) Aide

5. f(x) = x x en x = f(x) = (x 1) 1 x 2 en x = f(x) = (x 1) 1 x 2 en x = 1. (plus difficile) Aide de la ère S à la TS. I Exercices Dérivabilité Étudier la dérivabilité des fonctions suivantes au point demandé. f(x) = x 2 en x = 3 (Revenir à la définition du nombre dérivé) 2. f(x) = x en x =. 3. f(x)

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Existence et unicité de la fonction exponentielle 2 1.1 Deux résultats préliminaires.......................................

Plus en détail

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin.

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin. Exo7 Développements ités Corrections d Arnaud Bodin. Calculs Exercice Donner le développement ité en 0 des fonctions :. cosx expx à l ordre 2. ln + x)) 2 à l ordre 4 shx x. x à l ordre 6 4. exp sinx) )

Plus en détail

Dérivation, cours, terminale S

Dérivation, cours, terminale S Dérivation, Dérivation, 27 septembre 2016 Définitions : Soit f une fonction définie sur un intervalle I contenant a. Dire que f est dérivable en a de nombre dérivé f (a), signifie que le taux d accroissement

Plus en détail

1S DS n o 5 Durée :1h. ( 4 points ) Exercice 1

1S DS n o 5 Durée :1h. ( 4 points ) Exercice 1 1S DS n o 5 Durée :1 Exercice 1 ( points ) Voici la courbe représentative C f d une fonction f définie sur [ 6; 9] avec quatre de ses tangentes. Le point A de coordonnées ( 2, ; 0), appartient à la courbe

Plus en détail

. b a. ( ) f ( a) Soit f une fonction, définie sur un intervalle contenant le réel a, et h un réel proche de zéro.

. b a. ( ) f ( a) Soit f une fonction, définie sur un intervalle contenant le réel a, et h un réel proche de zéro. Capitre 5 : Dérivation I Nombre dérivé et tangente 1 Taux d accroissement de entre a et b Déinition Soit une onction déinie sur un intervalle contenant les réels a et b Le taux d'accroissement de la onction

Plus en détail

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01 Eo7 Dérivée d une fonction Vidéo partie. Définition Vidéo partie. Calculs Vidéo partie 3. Etremum local, théorème de Rolle Vidéo partie 4. Théorème des accroissements finis Eercices Fonctions dérivables

Plus en détail

Fonctions - Continuité Cours maths Terminale S

Fonctions - Continuité Cours maths Terminale S Fonctions - Continuité Cours maths Terminale S Dans ce module, introduction d une nouvelle notion qu est la continuité d une fonction en un point. En repartant de la définition et de l illustration graphique

Plus en détail

Mathématiques Exercices pour le soutien

Mathématiques Exercices pour le soutien Mathématiques 5-6 Exercices pour le soutien Ma9 UVSQ Exercice. Exercice 6. Calculer les dérivées des fonctions suivantes : f : x 3x g : x 4 x +x h : x x x+ k : x (3x +) 9 m : x 3 x +4 j : x 5(x )(x ) l

Plus en détail

( ) = ax. On dit que f est une fonction linéaire. ( ) = b. On dit que f est une fonction constante.

( ) = ax. On dit que f est une fonction linéaire. ( ) = b. On dit que f est une fonction constante. Chapitre : Fonctions de référence I Fonctions affines Définition d'une fonction affine f est une fonction affine si, et seulement si, il existe deux réels a et b tels que pour tout x, f x ( ) = ax + b

Plus en détail

Interprétations du nombre dérivé Exemples d utilisation du nombre dérivé

Interprétations du nombre dérivé Exemples d utilisation du nombre dérivé Elément de cours des exercices Nombre dérivé Soit I un intervalle ouvert non vide de R. On considère une application f définie sur I et à valeurs réelles et un point a de I. Définition du nombre dérivé

Plus en détail

Activité Geogebra d'introduction à la notion de nombre dérivé à partir de la tangente à une courbe en un point

Activité Geogebra d'introduction à la notion de nombre dérivé à partir de la tangente à une courbe en un point Première S Dérivation et applications Année scolaire 202/203 Introduction : Activité Geogebra d'introduction à la notion de nombre dérivé à partir de la tangente à une courbe en un point Cliquer sur le

Plus en détail

Primitives Cours maths Terminale S

Primitives Cours maths Terminale S Primitives Cours maths Terminale S Dans ce module est introduite la notion de primitive d une fonction sur un intervalle. On définit cette notion puis on montre qu une fonction admet une infinité de primitives

Plus en détail

x f(x)

x f(x) Limites de fonctions I) Limite d une fonction en plus l infini Etudier la ite d une fonction f en + c est étudier le comportement des nombres f(x) lorsque x tend vers +. ) Exemples Exemple : x 0 20 30

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Fonctions dérivées & applications

Fonctions dérivées & applications Capitre 5 Fonctions dérivées & applications Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative

Plus en détail

Programme de Première

Programme de Première BAC TECHNO STAV 66 I. Algèbre Programme de Première Objectif 1 - Effectuer de manière autonome des calculs numériques ou algébriques, résoudre des équations ou inéquations en vue de résoudre des problèmes

Plus en détail

Dérivées et applications. Equation

Dérivées et applications. Equation Dérivées et applications. Equation I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de

Plus en détail

3 Dérivées. et primitives. Sommaire CHAPITRE. Partie A (s1) 2. Partie B (s6) 6

3 Dérivées. et primitives. Sommaire CHAPITRE. Partie A (s1) 2. Partie B (s6) 6 CHAPITRE 3 Dérivées et primitives Sommaire Partie A (s) 2 Rappels de première.................................................. 2. Nombre dérivé 2.2 Tableaux des dérivées 3.3 Lien avec le sens de variation

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail