On note u = AB = AB. de (AB) tel que (CC ) est perpendiculaire à (AB). AB = u et AC = v et un point C

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "On note u = AB = AB. de (AB) tel que (CC ) est perpendiculaire à (AB). AB = u et AC = v et un point C"

Transcription

1 I Pour bien commencer I.1 Norme d un vecteur Une unité de longueur étant choisie, la norme d un vecteur u = AB est la longueur AB. Si u = 1, le vecteur u est dit unitaire. On note u = AB = AB. Conséquences : AB = 0 équivaut à A = B. Pour tout nombre λ et tout vecteur u, λ u = λ u. Par exemple u = et 5 u = Dans un repère orthonormé (O; i ; j ) a pour coordonnées (x; y), alors u = x + y I. Projection vectorielle orthogonale v C A u B v C Soit u et v deux vecteurs non nuls. Il existe trois points A, B et C du plan tels que AB = u et AC = v et un point C de (AB) tel que (CC ) est perpendiculaire à (AB). Le vecteur u = AC est appelé projection orthogonale du vecteur v sur le vecteur u. EXERCICE 1 : Dans la figure ci-contre, ABC est un triangle isocèle en A et ABIJ est un parallélogramme. Soit u = BC. Déterminer les projetés orthogonaux sur le vecteur u des vecteurs suivants et les coefficients de colinéarité (le nombre k tel que v = k u ) BO, AB, IJ, BI, BJ, CJ, IA et CI. I J A B O C II Définitions et premières propriétés II.1 Produit scalaire de deux vecteurs Attention, il s agit d une nouvelle «opération» entre deux vecteurs et dont le résultat est un nombre réel. II.1.1 Cas de deux vecteurs colinéaires Soit u et v deux vecteurs colinéaires. On appelle produit scalaire des vecteurs u et v le nombre réel noté u v défini par { : u v si u et v sont de même sens u v = u v si u et v sont de sens contraires Exemple 1 Soit A et B deux points tels que AB = 4. Calculer AB AC lorsque : A est le milieu de [BC] ; B est le milieu de [AC] ; C est le milieu de [AB]. My Maths Space 1 sur 5

2 II.1. Cas général Soit u et v deux vecteurs non nuls et soit v le projeté orthogonal de v sur u. On pose par définition : v u v = u v (1) Exemple Soit ABC un triangle rectangle en B. Calculer AB AC et AB BC u v EXERCICE Soit ABCD un carré de centre O tel que AB = 4. Le point I est le milieu de [AB]. Calculer les produits scalaires AB BC, AB CD, AB AC et AB DO. Calculer également les produits scalaires OA OC, AC BD, OI BC et AO BC. II.1.3 Caractérisation de l orthogonalité de vecteurs On dit que deux vecteurs sont orthogonaux lorsque leur produit scalaire est nul. u et v orthogonaux u v = 0 II.1.4 Autre expression du produit scalaire j B OB = v Soit C t le cercle trigonométrique et (O; i ; j ) le repère associé. Soit u et v deux vecteurs non nuls et deux points A et B tels que OA = u et OB = v. Quelles sont les coordonnées de v dans la base ( i, j)? ( u, v) O i H u A En déduire une autre expression du produit scalaire u v. Pour deux vecteurs non nuls u et v : u v = u v cos( u, v) () Exemple 3 : Calculer u v sachant que u = 5, v = 3 et qu une mesure de ( u, v) est 5π 9 ; Déterminer une mesure de l angle ( u, v) (principale) sachant que u = 3, v = 4 et u v = 7 ; Soit ABC un triangle équilatéral. Calculer de deux manières le produit scalaire AB AC. My Maths Space sur 5

3 Remarque 1 : Soit α une mesure de ( u; v). Le signe du produit scalaire u v est celui de cos(α) : ] pour α π ; π [, u v > 0 pour α ] π ; 3π [, u v < 0 III III.1 Propriétés du produit scalaire Symétrie du produit scalaire Quels que soient les vecteurs u et v : u v = v u démonstration : Pour u et v deux vecteurs non nuls, ( v; u) = ( u; v) (π) et cos(x) = cos( x) implique que cos( u; v) = cos( v; u) et donc que u v = v u. Si u ou v est un vecteur nul, l égalité est également vérifiée. III. Produit scalaire et opérations Soit u, v et w des vecteurs et α un nombre réel. Alors : u ( v + w) = u v + u w u (α v) = α( u v) On peut donc dire : Le comportement du produit scalaire par rapport à l addition des vecteurs et à leur multiplication par un nombre réel suit des règles analogues à celles de la «multiplication des nombres» EXERCICE 3 On pose a = u, b = v et c = u v. Exprimer en fonction de a, b et c, les produits scalaires suivants : (3 u + 5 v) ( u + 4 v) ; ( u 3 v) ( u + 3 v) ; ( u + v) + ( u v) Remarque On obtient, compte-tenu des propriétés précédentes, certains produits scalaires «remarquables» ( u + v) = u + v + u v ( u v) = u + v u v ( u + v) ( u v) = u v = u v EXERCICE 4 Soit ABCD un parallélogramme. Montrer que AC + BD = (AB + AD ) IV Produit scalaire en géométrie analytique On suppose que le plan est muni d un repère orthonormé (O; i ; j ). IV.1 Expression du produit scalaire dans un repère orthonormé ( ( ) x x Soit u et v y) y deux vecteurs. u v = xx + yy (3) et u = x + y démonstration : My Maths Space 3 sur 5

4 Remarque 3 Distance AB : Compte-tenu de la condition d orthogonalité vue précédement : u et v orthogonaux xx + yy = 0. IV. Exercices 1) Calculer le produit scalaire u v dans chacun des cas suivants : ( ) ( ) ( ( ) α β β) α u ( ) 1 et v 3 + ( ) + 1 ; 3 ( 3 ) Soit A ; 3 ), B(0; 1) et C(; 0). Montrer que le triangle ABC est rectangle isocèle. 3) Déterminer ( ( une ) mesure de ( u; v) dans chacun des cas suivants 3 u et v 3 ; 0) ( ( 1 3 3) 4) 4) Soit Ω(a;. Le cercle C de rayon R et de centre Ω est l ensemble des points M(x; y) tels que ΩM = R. Déterminer une équation du cercle C. Application : équation du cercle de centre Ω(3; 4) et de rayon 5. IV.3 IV.3.1 Équation d une droite par vecteur normal Vecteur normal à une droite Étant donné une droite D, tout vecteur non nul orthogonal à un vecteur directeur de D est appelé vecteur normal à D. ( ) 1 Exemple 4 Soit n. Le vecteur n est-il normal à chacune des droites d équations : x + 4y 5 = 0 ; x y = 0 ; y = x + 3? EXERCICE 5 Donner un vecteur normal pour chacune des droites définies par les équations suivantes : a) x + 3y 5 = 0 y = 3x + c) 5x = 3 d) y 3 = 0 IV.3. Équation de droite par vecteur normal Soit n un vecteur non nul. Une droite admettant n comme vecteur normal a une équation de la forme ax + by + c = 0, où c est un nombre réel. Réciproquement, toute droite dont une équation est de la forme ax + by + c = 0 admat le vecteur n comme vecteur normal. EXERCICE 6 Déterminer, dans chaque cas, une équation de la droite D passant par A et admettant n comme vecteur normal. ( ) 1 a) A(3; 1) et n A( 1/; ) et n = 3 j My Maths Space 4 sur 5

5 Deux droites sont orthogonales si et seulement si elles admettent des vecteurs normaux orthogonaux. Exemple 5 Soit D : 3x y + 1 = 0 et D : 4x + 7y = 0. Ces deux droites sont-elles orthogonales? IV.3.3 Applications : équations de droite particulière Hauteur dans un triangle : La hauteur issue de A dans le triangle ABC est la droite passant par et perpendiculaire à (BC). Soit A(1, 1), B( 1, 4) et C(, 5). Déterminer les coordonnées de l orthocentre H du triangle ABC. réponse : H ( 1 11, 41 ) 11 Médiatrice d un segment : La médiatrice du segment [AB] est la droite passant par le milieu I de [AB] et perpendiculaire au segment. Soit A( 4, 3), B(, 5). Déterminer une équation de la médiatrice de [AB]. réponse : 3x + y 7 = 0 Tangente à un cercle : La tangente en M à un cercle de centre Ω est orthogonale à (ΩM). Soit M(cos(θ), sin(θ)) (θ R) un point du cercle C de centre O et de rayon 1. Déterminer une équation de la tangente en M à C. réponse : x cos(θ) + y sin(θ) 1 = 0 IV.4 Équation d un cercle Nous avons déjà vu une équation d un cercle de centre Ω et de rayon R (voir VI. Exercices). Soit A et B deux points donnés. Le cercle C de diamètre [AB] est l ensemble des points M tels que : AM BM = 0 Exemple 6 On donne A( 1, 3) et B(, ). Déterminer une équation du cercle C de diamètre [AB]. V Compléments V.1 Encore une Si l on réécrit les produits scalaires remarquables avec u = u ( u carré scalaire), on obtient u v = 1 ( u + v u v ) = 1 ( u + v u v ) V. Théorème de la médiane Soit A et B deux points distincts fixés et I le milieu du segment [AB]. Pour tout point M du plan, on a : MA + MB = MI + AB démonstration : MA + MB = MA + MB = Chasles:I V.3 Relation de Pythagore généralisée Dans tout triangle ABC, on a : a = b + c bc cos(â) démonstration : BC = ( AC AB) = prod.rem My Maths Space 5 sur 5

Produit scalaire. 1 Vecteurs Norme Angle orienté-angle géométrique Projection orthogonale... 3

Produit scalaire. 1 Vecteurs Norme Angle orienté-angle géométrique Projection orthogonale... 3 Table des matières 1 Vecteurs 1.1 Norme................................................. 1. Angle orienté-angle géométrique.................................. 1.3 Projection orthogonale........................................

Plus en détail

P R O D U I T S C A L A I R E.

P R O D U I T S C A L A I R E. ère S 00/005 Produit scalaire J TAUZIEDE P R O D U I T S C A L A I R E I- DEFINITION ET PREMIERES PROPRIETES ) Produit scalaire de deux vecteurs colinéaires Définition Soit u et v deux vecteurs colinéaires

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

CHAPITRE 12 : Produit scalaire

CHAPITRE 12 : Produit scalaire CHAPITRE 12 : Produit scalaire 1 Définition avec la norme des vecteurs et la norme de leur somme... 2 2 Produit scalaire de vecteurs colinéaires de même sens ; Produit scalaire de vecteurs orthogonaux...

Plus en détail

CHAPITRE 13 : Produit scalaire

CHAPITRE 13 : Produit scalaire CHAPITRE 13 : Produit scalaire 1 Définition avec la norme des vecteurs et la norme de leur somme... 2 2 Produit scalaire de vecteurs colinéaires de même sens ; Produit scalaire de vecteurs orthogonaux...

Plus en détail

I. Produit scalaire de deux vecteurs du plan

I. Produit scalaire de deux vecteurs du plan 1 ère S - Chapitre 12 : PRODUIT SCALAIRE I. Produit scalaire de deux vecteurs du plan 1. Vocabulaire Dans le plan muni d'un repère orthonormé, on considère les vecteurs u( x y) ( et v x ' y '). Le produit

Plus en détail

Produit scalaire. Chapitre Définition et expressions du produit scalaire Définition

Produit scalaire. Chapitre Définition et expressions du produit scalaire Définition Chapitre 10 Produit scalaire 10.1 Définition et expressions du produit scalaire 10.1.1 Définition Définition 18. u et v sont deux vecteurs du plan. Le produit scalaire de u par v, noté u. v est défini

Plus en détail

PRODUIT SCALAIRE. I)Produit scalaire de deux vecteurs. 1. Définition

PRODUIT SCALAIRE. I)Produit scalaire de deux vecteurs. 1. Définition PRODUIT SCALAIRE I)Produit scalaire de deux vecteurs 1. Définition Définition : Si u et v sont deux vecteurs non nuls, on appelle produit scalaire de u par v, le réel noté u. v = u v cos( u, v) u. v défini

Plus en détail

Le produit scalaire. II) Propriétés du produit scalaire 2 a) Symétrie et bilinéarité... 2 b) Orthogonalité... 3

Le produit scalaire. II) Propriétés du produit scalaire 2 a) Symétrie et bilinéarité... 2 b) Orthogonalité... 3 Le produit scalaire Table des matières I) Définitions et propriétés 1 a) Norme d un vecteur............................................ 1 b) de deux vecteurs..................................... 1 c) Autres

Plus en détail

PRODUIT SCALAIRE. Première S - Chapitre 7

PRODUIT SCALAIRE. Première S - Chapitre 7 PRODUIT SCALAIRE Première S - Chapitre 7 Table des matières I Expressions du produit scalaire I 1 Exercice de motivation....................................... I Norme d un vecteur........................................

Plus en détail

1 Norme d un vecteur. 2 Produit scalaire. 2.1 Definition. #» u + #» v 2 #» u 2 #» v 2 ) = #» u #» v cos( #» u, #» v )

1 Norme d un vecteur. 2 Produit scalaire. 2.1 Definition. #» u + #» v 2 #» u 2 #» v 2 ) = #» u #» v cos( #» u, #» v ) 1 Norme d un vecteur Définition 1. Soit #» u un vecteur, A et B deux points du plan tels que #» AB = #» u. On appelle norme du vecteur #» u, que l on note #» u, la longueur du segment [AB] : #» u = AB

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

Produit scalaire. 1 Vecteurs Norme Angle orienté de deux vecteurs Projection orthogonale... 4

Produit scalaire. 1 Vecteurs Norme Angle orienté de deux vecteurs Projection orthogonale... 4 Table des matières 1 Vecteurs 1.1 Norme................................................. 1. Angle orienté de deux vecteurs................................... 1.3 Projection orthogonale........................................

Plus en détail

Le produit scalaire et ses applications

Le produit scalaire et ses applications Le produit scalaire et ses applications Lycée du golfe de Saint Tropez Année 2017/2018 1 Définitions et propriétés Norme d un vecteur de deux vecteurs Autres expressions du produit scalaire 2 Symétrie

Plus en détail

Produit scalaire, cours, première S

Produit scalaire, cours, première S Produit scalaire, cours, première S F.Gaudon 2 mai 2016 Table des matières 1 Norme d'un vecteur 2 2 Produit scalaire 2 3 Orthogonalité de vecteurs 4 4 Produit scalaire et projection orthogonale 4 5 Propriétés

Plus en détail

Le produit scalaire et ses applications

Le produit scalaire et ses applications Le produit scalaire et ses applications Lycée du golfe de Saint Tropez Année 2016/2017 Première S ( Lycée du golfe de Saint Tropez) Produit scalaire Année 2016/2017 1 / 1 Première S ( Lycée du golfe de

Plus en détail

Produit scalaire de deux vecteurs

Produit scalaire de deux vecteurs Index Prérequis... 2 I- Présentation du produit scalaire... 2 I-1- Vocabulaire... 2 I-2- Quoi, pourquoi, comment?... 2 I-3- Quelques calculs :... 3 I-3-1- Travail d'une force... 3 1er cas : La force est

Plus en détail

PRODUIT SCALAIRE. I Produit scalaire. Définition ( voir animation ) Remarques ( voir animation ) Configurations fondamentales.

PRODUIT SCALAIRE. I Produit scalaire. Définition ( voir animation ) Remarques ( voir animation ) Configurations fondamentales. PRODUIT SCALAIRE I Produit scalaire Définition ( voir animation ) Soient et deux vecteurs du plan. On considère trois points O, A et tels que : OA = u et O =. On appelle produit scalaire du vecteur par

Plus en détail

PRODUIT SCALAIRE DANS V 2

PRODUIT SCALAIRE DANS V 2 I) RAPPELLE 1) Définition du produit scalaire. 1.1 Mesure algébrique : PRODUIT SCALAIRE DANS V Soit (D) (O,I) une droite graduée ; M et N deux points sur la droite (D) d abscisses respectifs x M et x N

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 : Sur les expressions du produit scalaire Pour les sept figures suivantes, calculer AB AC. Exercice : Sur les expressions du produit scalaire Sur la figure

Plus en détail

Chapitre 13 Produit scalaire (2) Applications

Chapitre 13 Produit scalaire (2) Applications Chapitre 13 Produit scalaire (2) Applications Ex 1 Soit ABCD un losange de côté 5 avec AC=4. 1. Calculer la longueur BD. 2. Calculer les produits scalaires suivants : a. AB AC ; b. AB c. AB CD ; AD ; d.

Plus en détail

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan Produit scalaire de deux vecteurs de l espace 1 Rappels sur le produit scalaire de deux vecteurs du plan 1.1 Définition Soit u et v deux vecteurs du plan. Si u = 0 ou v = 0, alors u v = 0 (Attention! On

Plus en détail

LE PRODUIT SCALAIRE I) COMPLEMENT ET ACTIVITES. 1) La mesure algébrique. 2) Activités. 1.1 Définition et propriétés Définition :

LE PRODUIT SCALAIRE I) COMPLEMENT ET ACTIVITES. 1) La mesure algébrique. 2) Activités. 1.1 Définition et propriétés Définition : LE PRODUIT SCALAIRE I) COMPLEMENT ET ACTIVITES 1) La mesure algébrique 1.1 Définition et propriétés Définition : Soit (D) (O,I) une droite graduée ; M et N deux points sur la droite (D) d abscisses respectifs

Plus en détail

PRODUIT SCALAIRE. I Produit scalaire : définition. Définition première expression du produit scalaire ( voir animation ) Remarques ( voir animation )

PRODUIT SCALAIRE. I Produit scalaire : définition. Définition première expression du produit scalaire ( voir animation ) Remarques ( voir animation ) PRODUIT SCLIRE I Produit scalaire : définition Définition première expression du produit scalaire ( voir animation ) Soient et v deux vecteurs du plan. On considère trois points O, et tels que : O = u

Plus en détail

Chapitre 7 : Produit scalaire. Module 1 : Découverte du produit scalaire

Chapitre 7 : Produit scalaire. Module 1 : Découverte du produit scalaire Module 1 : Découverte du produit scalaire 1 ) Norme d un vecteur Définition : soit u un vecteur du plan et soient A et B deux points tels que : AB u La norme du vecteur u, notée u, est la distance AB Exemple

Plus en détail

Produit scalaire. Christophe ROSSIGNOL. Année scolaire 2014/2015

Produit scalaire. Christophe ROSSIGNOL. Année scolaire 2014/2015 Produit scalaire Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Différentes expressions du produit scalaire 1.1 Norme d un vecteur........................................... 1. Définition

Plus en détail

APPLICATIONS DU PRODUIT SCALAIRE. I et

APPLICATIONS DU PRODUIT SCALAIRE. I et APPLICATIONS DU PRODUIT SCALAIRE Cours Première S 1 Calculs de longueurs 1) Théorème de la médiane Théorème 1 : Soit I le milieu du segment [ BC ] Alors BC AB + AC = AI + Démonstration : On a : AB = AB

Plus en détail

1 Barycentre de deux points pondérées.

1 Barycentre de deux points pondérées. 1ère STI - Chapitre 7: Géométire Introduction Exercices de révision sur les vecteurs : 35, 37, 38 et 39 page 325. 1 Barycentre de deux points pondérées. 1.1 Présentation du problème. 2kg 5kg? 4kg 1kg On

Plus en détail

Chapitre 8 Produit scalaire.

Chapitre 8 Produit scalaire. Chapitre 8 Produit scalaire I - Définitions équivalentes Origine du produit scalaire (Physique) Le travail d une force : W AB ( = Calculer le travail de la force F 1 d intensité 3 et le travail de la force

Plus en détail

Repérage dans le plan Cours

Repérage dans le plan Cours Repérage dans le plan Cours Objectifs du chapitre Savoir repérer la position d un point à l aide de ses coordonnées dans un repère. Savoir calculer les coordonnées du milieu d un segment. Savoir calculer

Plus en détail

5. Trigonométrie, produit scalaire, produit vectoriel, exercices

5. Trigonométrie, produit scalaire, produit vectoriel, exercices 5. Trigonométrie, produit scalaire, produit vectoriel, exercices 1. Soit un triangle ABC tel que AB =, BC = 4 et ÂBC = π 3. Déterminer AC.. Soit un triangle ABC tel que AB = 4, AC = 3. L angle BAC vaut

Plus en détail

CHAPITRE 9 : Produit scalaire

CHAPITRE 9 : Produit scalaire CHAPITRE 9 : Produit scalaire 1 Produit scalaire, propriétés de calcul et orthogonalité... 2 1.1 Notion de produit scalaire de deux vecteurs... 2 1.2 Un cas simple : les deux vecteurs sont colinéaires...

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 01 Enoncés On demandait de résoudre trois questions

Plus en détail

CHAPITRE 6 : PRODUIT SCALAIRE

CHAPITRE 6 : PRODUIT SCALAIRE CHPITRE 6 : PRODUIT SCLIRE I. Produit scalaire de deux vecteurs dans le plan 1. Généralités Définition : Soit u et v deux vecteurs du plan non nuls, et, B, C trois points du plan tels que Le produit scalaire

Plus en détail

Chapitre VII. Produit scalaire. Activité introductive

Chapitre VII. Produit scalaire. Activité introductive Chapitre VII Produit scalaire VII1 VII11 Introduction Activité introductive EXERCICE I A, B, C sont trois points et a, b, c désignent respectivement les distances : BC ; CA ; AB Partie A Extension du théorème

Plus en détail

Ch.8 : Produit scalaire

Ch.8 : Produit scalaire 1 e - programme 011 - mathématiques ch8 - cours Page 1 sur 7 (D après Hachte - Déclic 011 ch9) 1 PRODUIT SCALAIRE DE DEUX VECTEURS 11 Deux définitions géométriques équivalentes DÉFINITION 1 Ch8 : Produit

Plus en détail

PRODUIT SCALIRE DANS V 2

PRODUIT SCALIRE DANS V 2 PRODUIT SCALIRE DANS V Etude analytique I) BASE ET REPERE ORTHONORMES Définitions : Soit β(i, j ) une ase de V. La ase β est dite orthogonale si i. j = 0 La ase β est dite normée si i = j = 1 Une ase orthogonale

Plus en détail

Chapitre 8 Produit scalaire

Chapitre 8 Produit scalaire Chapitre 8 Produit scalaire I. Produit scalaire 1) Norme d'un vecteur Soit u un vecteur du plan, et soit A et B deux points du plan tels que u= AB. La norme du vecteur u, notée u, est la longueur du segment

Plus en détail

Produit scalaire dans le plan

Produit scalaire dans le plan CH 1 Géométrie : 3 ème Sciences Septembre 009 A LAATAOUI Produit scalaire dans le plan 1 ) PRODUIT SCALAIRE A) DEFINITION Ce n est pas une multiplication Soit u et v deux vecteurs non nuls du plan Le produit

Plus en détail

Chapitre 2 : Calcul vectoriel

Chapitre 2 : Calcul vectoriel Chapitre 2 : Calcul vectoriel 1 ière S I. Vecteurs La notion de vecteur, vue en géométrie plane, se généralise à l espace. Caractérisation d un vecteur : Deux points et B distincts, de l espace, définissent

Plus en détail

PRODUIT SCALAIRE DANS L ESPACE

PRODUIT SCALAIRE DANS L ESPACE PRODUIT SCALAIRE DANS L ESPACE Géométrie - Chapitre 4 Table des matières I Norme d un vecteur de l espace 2 I 1 s.............................................. 2 I 2 Norme et distance.........................................

Plus en détail

NOM : PRODUIT SCALAIRE 1ère S

NOM : PRODUIT SCALAIRE 1ère S Exercice 1 R D Q C Soit un carré ABCD. On construit un rectangle AP QR tel que : P et R sont sur les côtés [AB] et [AD] du carré ; AP = DR. Le problème a pour objet de montrer que les droites (CQ) et (P

Plus en détail

Produit scalaire dans le plan

Produit scalaire dans le plan ème année Maths Produit scalaire dans le plan Octobre 009 A LAATAOUI Exercice n 1 La figure ci-dessous représente un rectangle ABCD tel que : AB = 5 et BC = ; un triangle ABF équilatéral et un triangle

Plus en détail

PRODUIT SCALAIRE DANS L ESPACE.

PRODUIT SCALAIRE DANS L ESPACE. PRODUIT SCALAIRE DANS L ESPACE. I. Produit scalaire dans l espace : 1) Repères orthonormés de l espace : Un repère (O ; I ; J ; K) de l espace est orthonormé lorsque les droites (OI), (OJ) et (OK) sont

Plus en détail

Classe de première Du collège au lycée : Fiche de géométrie

Classe de première Du collège au lycée : Fiche de géométrie Classe de première Du collège au lycée : Fiche de géométrie Les outils collège : Tous les axiomes d Euclide, les résultats sur les angles ; les quadrilatères particuliers ; les triangles isocèles ; équilatéraux

Plus en détail

1. Produit scalaire dans le plan

1. Produit scalaire dans le plan Produit scalaire 1. Produit scalaire dans le plan 1.1 Définition Soit u et v deux vecteurs non nuls du plan. Ce n est pas une multiplication Le produit scalaire de u par v noté u. v est le nombre défini

Plus en détail

Produit scalaire. Définition. Définition. Théorème. Théorème. I. Définition et expressions. 1) Norme d'un vecteur. AB est la distance AB.

Produit scalaire. Définition. Définition. Théorème. Théorème. I. Définition et expressions. 1) Norme d'un vecteur. AB est la distance AB. Produit scalaire. I. et expressions. 1) Norme d'un vecteur Une unité de longueur étant choisie, la norme d un vecteur u u AB AB. AB est la distance AB. On note Conséquences : équivaut à Pour tout nombre

Plus en détail

Géométrie vectorielle et analytique plane

Géométrie vectorielle et analytique plane Géométrie vectorielle et analytique plane 1 Chapitre 1 Produit scalaire 1.1 Définitions produit scalaire et norme Le produit scalaire est une notion importante en géométrie pour traiter des questions

Plus en détail

Chapitre 1. Produit scalaire. 1.1 Définitions produit scalaire et norme

Chapitre 1. Produit scalaire. 1.1 Définitions produit scalaire et norme Géométrie métrique plane 1 Chapitre 1 Produit scalaire 1.1 Définitions produit scalaire et norme Le produit scalaire est une notion importante en géométrie pour traiter des questions de longueurs, angles

Plus en détail

Produit scalaire dans l espace

Produit scalaire dans l espace Vallon 2 février 2016 Vallon 2 février 2016 1 / 13 Table : 1 2 Produit scalaire et orthogonalité dans l espace 3 Equations cartésiennes d un plan 4 Positions relatives de droites et de plans Vallon 2 février

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Correction 1 1. En remarquant l égalité suivante : AC AB + BC On obtient les coordonnées du vecteur : AC Ä x + x ; y + y ä. On a : AB» x + y BC» x + y AC» (x + x ) + (y + y ) 3. Le théorème de Pythagore

Plus en détail

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf "planche + cerf-volant"

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf planche + cerf-volant 1 Produit scalaire de deux vecteurs ctivité : Kitesurf "planche + cerf-volant" 1.1 Produit scalaire et normes Définition 1 (Norme). Produit scalaire Soit u un vecteur et et deux points du plan tels que

Plus en détail

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf "planche + cerf-volant"

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf planche + cerf-volant 1 Produit scalaire de deux vecteurs ctivité : Kitesurf "planche + cerf-volant" 1.1 Produit scalaire et normes Définition 1 (Norme). Produit scalaire Soit u un vecteur et et deux points du plan tels que

Plus en détail

1 ère S Le plan muni d un repère orthonormé

1 ère S Le plan muni d un repère orthonormé ère S Le plan muni d un repère orthonormé I. Expression analytique du produit scalaire ) Remarque préliminaire Dans tout le chapitre, O, i, est un repère orthonormé du plan P c est-à-dire vérifiant les

Plus en détail

Exercices Les nombres complexes ENONCES. DECLIC TS 2012.

Exercices Les nombres complexes ENONCES. DECLIC TS 2012. Exercices Les nombres complexes ENONCES DECLIC TS 0 ) N 8 page 8 Déclic TS Pour tout nombre complexe z, on définit le polynôme ( ) ( ) ( ) ) a) Calculer P ( ) b) Déterminer deux réels et P z = z + z +

Plus en détail

Leçon n 17 : Produit scalaire. Présentation : Célia Giraudeau Questions : Léon Habert

Leçon n 17 : Produit scalaire. Présentation : Célia Giraudeau Questions : Léon Habert Leçon n 17 : Produit scalaire Présentation : Célia Giraudeau Questions : Léon Habert Lundi 5 Mars 2018 Prérequis Géométrie plane et dans l espace Angles Vecteurs Repère orthonormé On note E un espace vectoriel

Plus en détail

1 Produit scalaire de deux vecteurs

1 Produit scalaire de deux vecteurs Exposé 34 : Définitions et propriétés du produit scalaire dans le plan; expression dans une base orthonormale. Application au calcul de distances et d angles. Prérequis 1 : -Notion de distance entre points

Plus en détail

Première S 2 mai 2011

Première S 2 mai 2011 Première S mai 011 Exercices 11 1 Homothétie 1 Mathématiques Soit ABC un triangle, ( Γ ) son cercle circonscrit et O le centre de ( Γ ) Soit H le milieu de [BC] et D le point de ( Γ ) diamétralement opposé

Plus en détail

1 Rappels sur le produit scalaire dans le plan

1 Rappels sur le produit scalaire dans le plan TS Chapitre 07 Produit scalaire dans l Espace Droites et plans de l espace 1 Rappels sur le produit scalaire dans le plan 11 Définition Définition : Soit u et v deux vecteurs non nuls Soit A, B et C des

Plus en détail

CESI - FIA Harmonisation Mathématiques. Intervenant : F.Dumetz. V Les vecteurs I ) LES VECTEURS 1) DEFINITIONS ET REGLES DE CALCUL

CESI - FIA Harmonisation Mathématiques. Intervenant : F.Dumetz. V Les vecteurs I ) LES VECTEURS 1) DEFINITIONS ET REGLES DE CALCUL CESI - FIA12-2015 Harmonisation Mathématiques Intervenant : FDumetz V Les vecteurs I ) LES VECTEURS 1) DEFINITIONS ET REGLES DE CALCUL Définition : Un vecteur de l espace est défini par sa direction, son

Plus en détail

Révisions de géométrie

Révisions de géométrie A Révisions de géométrie Les notions de produit scalaire, produit vectoriel et produit mixte ne seront pas redéfinies dans ce chapitre. Par la suite, le plan ou l espace seront rapportés implicitement

Plus en détail

Classe de terminale Du collège au lycée : Fiche de géométrie

Classe de terminale Du collège au lycée : Fiche de géométrie Classe de terminale Du collège au lycée : Fiche de géométrie Les outils collège : Tous les axiomes d Euclide, les résultats sur les angles ; les quadrilatères particuliers ; les triangles isocèles ; équilatéraux

Plus en détail

1. Définition du produit scalaire et orthogonalité

1. Définition du produit scalaire et orthogonalité Dans tout ce chapitre #» u, #» v et #» w désignent des vecteurs du plan. 1. Définition du produit scalaire et orthogonalité DÉFINITION Le produit scalaire de #» u et #» v,noté #» u #» v qui se lit «#»

Plus en détail

APPLICATIONS DU PRODUIT SCALAIRE

APPLICATIONS DU PRODUIT SCALAIRE APPLICATIONS DU PRODUIT SCALAIRE Lycée Stendhal Première S M Obaton L équipe des professeurs de mathématiques Lycée Stendhal En mathématique, c est comme dans un roman policier ou un épisode de Columbo:

Plus en détail

Chap 13 Application du produit scalaire.

Chap 13 Application du produit scalaire. Chap 13 Application du produit scalaire. Table des matières I. Projeté orthogonal d un vecteur sur un axe... 1 II. Equations cartésiennes dans un repère orthonormé... 1 1. Equation cartésienne d une droite...

Plus en détail

Année Produit scalaire. l angle orienté délimité par les vecteurs AB. v le nombre réel défini par : 1 u. v = u + v 2. v 2 ).

Année Produit scalaire. l angle orienté délimité par les vecteurs AB. v le nombre réel défini par : 1 u. v = u + v 2. v 2 ). Chap 8 : Produit scalaire I. Définitions Rappels : Si u = AB alors u = AB. Si ; j est une base orthonormale et si u (x, y alors : On note AB ; AC l angle orienté délimité par les vecteurs AB u = x 2 +

Plus en détail

v = 3 v = 3 4 cos( 6 ) = 12 2 = 6 Le produit scalaire, comme je vous l ai dit en introduction, permet de démontrer l orthogonalité de deux vecteurs.

v = 3 v = 3 4 cos( 6 ) = 12 2 = 6 Le produit scalaire, comme je vous l ai dit en introduction, permet de démontrer l orthogonalité de deux vecteurs. Produit scalaire dans l espace L année dernière, nous avions vu le produit scalaire dans un espace de deux dimensions. Nous allons généraliser cette notion dans l espace à trois dimension. Je vais d abord

Plus en détail

Applications du produit scalaire

Applications du produit scalaire Applications du produit scalaire Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Relations métriques dans un triangle quelconque 1.1 Quelques notations............................................

Plus en détail

Produit scalaire dans l espace

Produit scalaire dans l espace Chapitre G Produit scalaire dans l espace Contenus Capacités attendues Commentaires Produit scalaire Produit scalaire de deux vecteurs dans l espace : définition, propriétés. Vecteur normal à un plan.

Plus en détail

On se place dans un repère orthonormé (O ; i, j ) du plan.

On se place dans un repère orthonormé (O ; i, j ) du plan. Première S Produit scalaire et applications Année scolaire 01/013 I) Produit scalaire et orthogonalité : On se place dans un repère orthonormé (O ; i, j ) du plan. 1) Définition analytique du produit scalaire

Plus en détail

Chapitre 10 - Produit scalaire dans l espace - Barycentre Page 1/??

Chapitre 10 - Produit scalaire dans l espace - Barycentre Page 1/?? Chapitre 10 - Produit scalaire dans l espace - Barycentre 1 Produit scalaire dans le plan 1.1 Expressions et propriétés du produit scalaire Si les vecteurs u et v sont deux vecteurs colinéaires Définition

Plus en détail

Produit scalaire. v =

Produit scalaire. v = Produit scalaire Le produit scalaire est un outils très puissant utilisé sur des vecteurs. Il permet notamment de montrer que deux vecteurs sont perpendiculaire. Il est très souvent utilisé en physique.

Plus en détail

Applications du Produit Scalaire ( En première S )

Applications du Produit Scalaire ( En première S ) Applications du Produit Scalaire ( En première S ) Dernière mise à jour : Mercredi 1 Décembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 010-011) 1 J aimais et j aime encore les

Plus en détail

Repères et coordonnées. a) repérage sur une droite Choisir un repère sur une droite, c est se donner deux points distincts O et I de,

Repères et coordonnées. a) repérage sur une droite Choisir un repère sur une droite, c est se donner deux points distincts O et I de, I Repères et coordonnées a) repérage sur une droite Choisir un repère sur une droite, c est se donner deux points distincts O et I de, pris dans cet ordre. O est l origine du repère. Posons alors OI =

Plus en détail

La géométrie dans l espace

La géométrie dans l espace Chapitre 2 terminale S La géométrie dans l espace 1 Vecteurs de l espace : La notion de vecteur du plan se généralise dans l espace. 1) Caractérisation : a) On donne deux points de l espace et, distincts.

Plus en détail

Géométrie du plan. 1 Questions de cours. 2 Applications du cours. 3 Exercices

Géométrie du plan. 1 Questions de cours. 2 Applications du cours. 3 Exercices Géométrie du plan 1 Questions de cours 1 Énoncer et démontrer l inégalité de Schwarz Énoncer et démontrer l inégalité triangulaire pour la norme euclidienne 3 Soit u un vecteur unitaire du plan Combien

Plus en détail

I. Définition et propriétés du produit scalaire

I. Définition et propriétés du produit scalaire Leçon 9 : Définition et propriétés du produit scalaire dans le plan ; expression dans une base orthonormale. Application au calcul de distances et d angles. On se place au niveau du secondaire. CADRE :

Plus en détail

CHAPITRE II GÉOMÉTRIE EUCLIDIENNE PLANE. Solution. Il suffit de montrer l implication : AB = A' B' AA' = BB'.

CHAPITRE II GÉOMÉTRIE EUCLIDIENNE PLANE. Solution. Il suffit de montrer l implication : AB = A' B' AA' = BB'. CHAPITRE II GÉOMÉTRIE EUCLIDIENNE PLANE 1.1. Exercices traités. 1. VECTEURS DU PLAN. EXERCICE 1. Soient A,B,A',B' quatre points du plan. Établir que : AB = A' B' AA' = BB'. Solution. Il suffit de montrer

Plus en détail

Oral 1 géométrie. Leçon n 10 : Géométrie vectorielle dans le plan et dans l espace. Niveau : Lycée. (De la seconde à la terminale.

Oral 1 géométrie. Leçon n 10 : Géométrie vectorielle dans le plan et dans l espace. Niveau : Lycée. (De la seconde à la terminale. Oral 1 géométrie Leçon n 10 : Géométrie vectorielle dans le plan et dans l espace. Niveau : Lycée. (De la seconde à la terminale.) Prérequis : Repérage dans le plan et dans l espace, translation, produit

Plus en détail

Repérage dans le plan. repérage du plan

Repérage dans le plan. repérage du plan Repérage dans le plan repérage du plan 1. Repérage du plan Définition : dans le plan, trois points non alignés O, I et J déterminent un repère (O, I, J)... O est appelé l origine du repère. La droite (OI)

Plus en détail

BC = 3 4 AB ( BA 8

BC = 3 4 AB ( BA 8 1 e S - programme 011 mathématiques ch8 cahier élève Page 1 sur 6 Ch8 : Produit scalaire Exercice n A page 5 : Calcul vectoriel Reproduire la figure et compléter le texte On considère le triangle ABC donné

Plus en détail

Chapitre 3 GEO 2. Produit scalaire

Chapitre 3 GEO 2. Produit scalaire Chapitre 3 GEO Produit scalaire À la fin de ce td, vous devez être capale de : Calculer le produit scalaire de deux vecteurs : à l aide des normes et d un angle ; à l aide d une projection orthogonale

Plus en détail

Corrigé. Exercice 67 D après la formule du cours, u v = 1 ( Exercice 68. Exercice 69. QCM d auto-évaluation sur le produit scalaire

Corrigé. Exercice 67 D après la formule du cours, u v = 1 ( Exercice 68. Exercice 69. QCM d auto-évaluation sur le produit scalaire Lycée Louise Michel Gisors) 1S Corrigé QCM d auto-évaluation sur le produit scalaire Exercice 67 D après la formule du cours, u v = 1 u + v u v ). On applique avec u = AB et v = BC. 1 On obtient : AB BC

Plus en détail

IV. Géométrie du plan

IV. Géométrie du plan Repérage dans le plan Repérage cartésien Définition On appelle base du plan un couple ( i, j avec i et j deux vecteurs non colinéaires du plan Tout vecteur u du plan s exprime de manière unique comme combinaison

Plus en détail

Produit scalaire dans l espace.

Produit scalaire dans l espace. Terminale S, Espace Produit scalaire dans l espace. Produit scalaire: Définitions. Définitions du produit scalaire: Soit u et v deux vecteurs de l'espace. On appelle produit scalaire des vecteurs u et

Plus en détail

DERNIÈRE IMPRESSION LE 12 février 2016 à 12:24. Le produit scalaire

DERNIÈRE IMPRESSION LE 12 février 2016 à 12:24. Le produit scalaire DERNIÈRE IMPRESSION LE 1 février 016 à 1: Le produit scalaire Table des matières 1 Définition et propriétés 1.1 Définition par la norme.......................... 1. Définition analytique...........................

Plus en détail

Chapitre 10 : Le Produit Scalaire

Chapitre 10 : Le Produit Scalaire Chapitre 10 : Le Produit Scalaire A) Définitions et cas particuliers 1) Rappels a) Norme d'un vecteur La norme d'un vecteur est sa longueur. Par exemple, la norme du vecteur AB la longueur AB, ou encore

Plus en détail

Mathématique et Mécanique de Base

Mathématique et Mécanique de Base Mathématique et Mécanique de Base Pauline GERUS - Leila LEFEVBRE - Violaine SEVREZ Licence 1 STAPS BMC 51 2009-2010 Définition Repère = zone de référence Etablit en fonction des objectifs On choisit une

Plus en détail

Géométrie élémentaire du plan

Géométrie élémentaire du plan hapitre 3 Géométrie élémentaire du plan ttention 3.1 Penser à dessiner, cela aide souvent à résoudre un exercice. 3.1 Produit scalaire et déterminant Exercice 3.1.1 Soient u et v deux vecteurs du plan.

Plus en détail

1.I.2 - Chap. 03 Géométrie élémentaire du plan 1 / 5. du plan : Exercices

1.I.2 - Chap. 03 Géométrie élémentaire du plan 1 / 5. du plan : Exercices 1.I.2 - Chap. 03 Géométrie élémentaire du plan 1 / 5 Géométrie élémentaire du plan : Exercices Exercice 1 On munit le plan d un repère orthonormal direct R = (O; #» ı, #» j ). On note A le point de coordonnées

Plus en détail

PRODUIT SCALAIRE. , noté u.

PRODUIT SCALAIRE. , noté u. 1 PRODUIT SCLIRE I. Définition et propriétés 1) Norme d'un vecteur Définition : Soit un vecteur u et deux points et B tels que u B. La norme du vecteur u, notée u, est la distance B. ) Définition du produit

Plus en détail

Chapitre 11 Produit scalaire dans l'espace

Chapitre 11 Produit scalaire dans l'espace I. Produit scalaire Chapitre 11 Produit scalaire dans l'espace 1) Produit scalaire dans l'espace Définition : Soient u et v deux vecteurs de l'espace et A, B, C trois points tels que u= AB et v= AC. Les

Plus en détail

BARYCENTRE, PRODUIT SCALAIRE

BARYCENTRE, PRODUIT SCALAIRE 1 re STI Ch04 : Barycentre et produit scalaire 006/007 BARYCENTRE, PRODUIT SCALAIRE Table des matières I Barycentre 1 I.1 Barycentre de deux points pondérés.............................. 1 I. Caratérisations

Plus en détail

Les similitudes. Table des matières

Les similitudes. Table des matières Les similitudes Table des matières 1 Rappels sur les nombres complexes 3 1.1 Expression d un nombre complexe................... 3 1.2 Représentation d un nombre complexe................. 3 1.3 Opérations

Plus en détail

@ Dans l espace personne ne vous entend crier *

@ Dans l espace personne ne vous entend crier * @ Dans l espace personne ne vous entend crier * A/ Droites et plans de l espace : incidence et parallélisme. I/ Positions relatives de droites et de plans. 1/ Deux droites. d 1 et d 2 sont sécantes d 1

Plus en détail

u v = u v cos( u, v = OA i OB = OA OB cos OA;OB et OA = OA Définition géométrique : Si H est le projeté orthogonal de B sur (OA), alors :

u v = u v cos( u, v = OA i OB = OA OB cos OA;OB et OA = OA Définition géométrique : Si H est le projeté orthogonal de B sur (OA), alors : 7/05/07 Chapiitre 13 : Géométriie dans ll espace Premiière Partiie :: Produiit Scallaiire I.. Rappels dans le l plan 11)) Difffféérreenntteess eexpprreessssi ioonnss 2)) Eqquuaatti ioonnss drrooi itteess

Plus en détail

CHAPITRE G: Produit scalaire dans l'espace

CHAPITRE G: Produit scalaire dans l'espace CHAPITRE G: Produit scalaire dans l'espace plan I - Rappels de première sur le produit scalaire dans le A) Dénitions et propriété Définition 1: - Si u et v sont deux vecteurs non nuls tel que u = AC. On

Plus en détail

Géométrie 1 GEOMETRIE ELEMENTAIRE DU PLAN

Géométrie 1 GEOMETRIE ELEMENTAIRE DU PLAN Géométrie chap 1 1/7 Géométrie 1 GEOMETRIE ELEMENTAIRE DU PLAN On considère le plan orienté, noté, muni d une unité de longueur 1 VECTEURS DU PLAN 11 Définitions Définition 1 : Dans le plan, deux bipoints

Plus en détail

CH1 Géométrie : Calcul vectoriel 2 ème Sciences Septembre 2009

CH1 Géométrie : Calcul vectoriel 2 ème Sciences Septembre 2009 CH1 Géométrie : Calcul vectoriel 2 ème Sciences Septembre 2009 A. LAATAOUI Rappel et compléments : Définition : Soient (A, B) et (C, D) deux bipoints du plan tels que les segments [AD] et [BC] ont.., alors

Plus en détail