Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon"

Transcription

1 PACES - APEMK UE 4 Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon

2 Plan du cours I - Echantillon et estimation II -Estimateur et estimateur ponctuel III - Distribution d échantillonnage IV - Estimation par intervalle de confiance V - Imprécision et taille de l échantillon

3 ECHANTILLON ET ESTIMATION

4 Evaluer un paramètre (une caractéristique) sur un échantillon afin d estimer (inférence) ce paramètre pour la population entière.

5 Echantillon et estimation Fonction de distribution d une variable Echantillon obtenu par sondage aléatoire simple = Représentatif de la population étudiée Réaliser une estimation ponctuelle qui revient à attribuer une valeur, l estimation, au paramètre de la population à partir des données provenant de l échantillon. On est ainsi amené à construire un estimateur qui est une fonction qui associe l estimation à l échantillon D un échantillon à l autre l estimateur utilisé est le même mais on peut avoir des estimations ponctuelles différentes

6 Estimateurs et Estimation ponctuelle

7 Définition de la procédure d estimation L estimateur est une nouvelle variable aléatoire construite à partir des données expérimentales-de l échantillon et dont la valeur se rapproche du paramètre que l on cherche à connaître.

8 Définition d un estimateur et d une estimation un estimateur du paramètre θ est une variable aléatoire φ fonction des X i L'estimation de θ est une variable aléatoire φ dont la distribution de probabilité s'appelle la distribution d'échantillonnage du paramètre θ. L'estimateur φ admet donc une espérance E(φ) et une variance V(φ).

9 Les propriétés requises pour un bon estimateur son espérance mathématique tend vers θ quand n augmente indéfiniment sa variance tend vers 0 quand n augmente indéfiniment

10 Estimation ponctuelle : moyenne et pourcentage

11 Estimation ponctuelle variance Variance Moyenne des carrés des écarts à la moyenne

12 Distribution d échantillonnage

13 Distribution d échantillonnage de la moyenne

14 Distribution d échantillonnage de la moyenne Estimation de la moyenne d une population Soient μ et σ2 la moyenne et la variance (inconnues), obtenues à partir d un échantillon pris au hasard, d une v.a. que l on cherche à estimer. Supposons que l on effectue z échantillonnages (tirages au sort), tous d effectif n, dans cette population et que l on obtienne les résultats suivants : x1, x2,, xn : premier échantillon d effectif n y1, y2,, yn : deuxième échantillon d effectif n z1, z2,, zn : z ième échantillon d effectif n

15 Distribution d échantillonnage de la moyenne On peut, pour chacun des échantillons, calculer leur moyenne : - Chacune des moyennes est une estimation de la moyenne de la population ; - Celles ci sont différentes

16 Distribution d échantillonnage de la moyenne

17 Estimation par intervalle de confiance

18 Définition d un intervalle de confiance Si je répète 100 fois l expérience i.e. l estimation de la moyenne j ai, avec un risque d erreur de 5%, 95% de Chance que la moyenne de la population dans soit dans l IC

19 Définition d un intervalle de confiance Construction de 100 estimations d intervalle pour les 100 échantillons. La vraie valeur μ est correctement encadrée dans 95 % des situations

20 Bien distinguer : Intervalle de pari ( proportion, Concerne la loi connue d un paramètre (moyenne, A priori, on veut demontrer que l estimation se trouve dans un intervalle fixé Intervalle de confiance Concerne l estimation d un paramètre inconnu à partir d observations tirées d un échantillon

21 Intervalle de Pari & Intervalle de confiance Si l'on extrait d'une population parfaitement définie (µ et σ connus) des échantillons suffisamment grands ( en pratique n>30) IP = 95 % des valeurs moyennes des n échantillons appartiennent à l'intervalle fixé au préalable

22 Intervalle de confiance d une moyenne Cas le plus courant Ecart type de la moyenne

23 Estimation de la moyenne Estimation de la variance de la population Ecart type de la moyenne

24 Intervalle de confiance d une moyenne

25

26 Intervalle de confiance d un pourcentage

27 Facteurs influençant l IC Mais pas les mêmes conséquences sur la précision des estimations

28 IC d autres paramètres

29 Imprécision et taille de l échantillon

30 Imprécision - Risque d erreur - taille de l échantillon

31 Imprécision absolue et relative

32 Taille de l échantillon Estimation d une moyenne

33

34 Taille de l échantillon Estimation d un pourcentage

35

36 PACES - APEMK UE 4 Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Le Principe des tests d hypothèse Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon

37 Plan GENERALITES 1. a ) Fluctuations d échantillonnage et tests statistiques 1. b ) Qu est-ce qu un test statistique (ou d hypothèses)? 1. c ) Les étapes de mise en œuvre et réalisation d un test. II. FORMULATION DES HYPOTHESES Test unilatéraux et test bilatéraux III. RISQUES D ERREUR IV. VARIABLE DE DECISION ou CHOIX DU TEST STATISTIQUE

38 Plan V. DEFINITION DE LA ZONE DE REJET DU TEST 5. a) Test unilatéraux 5. b) Test bilatéraux VI. CONCLUSION DU TEST 6. a) Calcul de la valeur expérimentale de la variable de décision. 6. b) Conclusion du test : Rejet ou non de Ho 6. c) Calcul du degré de signification «p»

39 Généralités

40 Généralités Définir l Hypothèse nulle H0 que l on souhaite rejeter

41

42 Fixer le risque d erreur global acceptable du test dans l hypothèse où H0 est vraie

43 Formulation des hypothèses Attention : la formulation des hypothèses ne se fait pas avec les estimateurs mais avec les paramètres que l on souhaite estimer

44 Les risques d erreur Pas d erreur Risque α = Faux positif

45 Les risques d erreur Risque β = Faux négatif

46 Les risques d erreur

47 Choix de la variable de décision

48 Choix de la variable de décision Méthode classique Avec la «méthode classique», la conclusion au test statistique repose sur la comparaison entre la valeur du résultat de la statistique du test choisie et la valeur seuil Fonction d un risque d erreur α fixé a priori et arbitrairement Rejet de H0 si résultat de la statistique du test valeur seuil Non rejet = Conservation de H0 si résultat de la statistique du test < valeur seuil Calcul du degré de signification Quantifie la crédibilité de H0 au vue des données observées p: probabilité d observer une différence au moins aussi importante que celle observée sous H0

49 Définition des valeurs seuils de rejet

50 Z = valeur seuil de décision

51 Valeur seuil de décision

52 Valeur seuil de décision

53 Conclusion du test

54 Conclusion du test

55 Degré de signification Calcul du degré de signification - Quantifie la crédibilité de H0 au vue des données observées - p: probabilité d observer une différence au moins aussi importante que celle observée sous H0

56 Degré de signification p = Proba(valeur de la statistique valeur calculée si H0 est vraie)

57

58

59 Synthèse La conclusion du test statistique repose sur la comparaison entre la valeur du degré de signification et la valeur de α Rejet de H0 si p <α Non rejet = Conservation de H0 si p α En général on conclu avec un risque d erreur α et on donne le degré de signification p

60 Synthèse p < α valeur calculée de la statistique > valeur seuil Valeur calculée de la statistique p p n est pas le risque ou la probabilité de rejeter à tord l hypothèse nulle p traduit en terme de probabilité l éloignement entre la valeur observée de la statistique et la valeur attendue sous H0 p ne s interprète pas en terme de force de différence p quand écart entre la réalité et H0 est grand, puissance élevée, les deux, hasard (risque α)

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq»

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Guy Perrière Pôle Rhône-Alpes de Bioinformatique 14 novembre 2012 Guy Perrière (PRABI) Tests statistiques 14 novembre 2012 1 / 40 Plan

Plus en détail

Estimation. Anita Burgun

Estimation. Anita Burgun Estimation Anita Burgun Estimation Anita Burgun Contenu du cours Sondages Mesures statistiques sur un échantillon Estimateurs Problème posé Le problème posé en statistique: On s intéresse à une population

Plus en détail

Statistique (MATH-F-315, Cours #3)

Statistique (MATH-F-315, Cours #3) Statistique (MATH-F-315, Cours #3) Thomas Verdebout Université Libre de Bruxelles 2015 Plan de la partie Statistique du cours 1. Introduction. 2. Théorie de l estimation. 3. Tests d hypothèses et intervalles

Plus en détail

Chapitre 7 Tests d hypothèse (partie 1)

Chapitre 7 Tests d hypothèse (partie 1) Chapitre 7 Tests d hypothèse (partie 1) I Qu est ce qu un test statistique? La philosophie est toujours la même : déterminer des informations sur une population à partir d informations sur un échantillon

Plus en détail

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50 10. Estimation MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: estimation 1/50 Plan 1. Introduction 2. Estimation ponctuelle 3. Estimation par intervalles de confiance 4. Autres

Plus en détail

Chapitre VI Échantillonages et simulations

Chapitre VI Échantillonages et simulations Chapitre VI Commentaires : Récursivement, les commentaires ne sont pas à l attention des élèves.. Fluctuation d échantillonnage Définition : En statistiques, un échantillon de taille n est la liste des

Plus en détail

Échantillonnage Équipe Académique Mathématiques - 2011

Échantillonnage Équipe Académique Mathématiques - 2011 Échantillonnage Équipe Académique Mathématiques - 2011 Fluctuation des échantillons Considérons une urne «de Bernoulli» (la population) contenant une proportion p de boules blanches, dont on extrait n

Plus en détail

Principe des Tests Statistiques

Principe des Tests Statistiques Principe des Tests Statistiques Vocabulaire & Notions Générales Marc AUBRY Plateforme Transcriptome Biogenouest Rennes Askatu Les Étapes d un Test Statistique Question scientifique Choix d un test statistique

Plus en détail

Principes Pourcentage / Standard Moyenne / Standard. Tests d'hypothèse. Formation Fondamentale

Principes Pourcentage / Standard Moyenne / Standard. Tests d'hypothèse. Formation Fondamentale Tests d'hypothèse Formation Fondamentale Sommaire 1 Principes Généralités 2 Pourcentage par rapport à un standard 3 Moyenne par rapport à un standard Sommaire 1 Principes Généralités 2 Pourcentage par

Plus en détail

«Cours Statistique et logiciel R»

«Cours Statistique et logiciel R» «Cours Statistique et logiciel R» Rémy Drouilhet (1), Adeline Leclercq-Samson (1), Frédérique Letué (1), Laurence Viry (2) (1) Laboratoire Jean Kuntzmann, Dép. Probabilites et Statistique, (2) Laboratoire

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2008/2009 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

11. Tests d hypothèses (partie 1/2)

11. Tests d hypothèses (partie 1/2) 11. Tests d hypothèses (partie 1/2) MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v1) MTH2302D: tests d hypothèses 1/30 Plan 1. Introduction 2. Hypothèses et erreurs 3. Tests d hypothèses

Plus en détail

Échantillonnage et estimation

Échantillonnage et estimation Échantillonnage et estimation Dans ce chapitre, on s intéresse à un caractère dans une population donnée dont la proportion est notée. Cette proportion sera dans quelques cas connue (échantillonnage),

Plus en détail

ECGE 1224 - Statistiques en économie et gestion : TP 1

ECGE 1224 - Statistiques en économie et gestion : TP 1 ECGE 14 - Statistiques en économie et gestion : TP 1 Exercice 1 Un dé parfaitement équilibré est lancé. Soit X la variable aléatoire (v.a.) correspondant au résultat obtenu avec le dé. a) Justifer pourquoi

Plus en détail

Comparaison de Moyennes et de Variances Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHU Besançon

Comparaison de Moyennes et de Variances Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHU Besançon PACES - APEMK UE 4 Evalua0on des méthodes d analyses appliquées aux sciences de la vie et de la santé Comparaison de Moyennes et de Variances Prof Franck Bonnetain Unité de méthodologie & de qualité de

Plus en détail

Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7.

Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7. Statistique Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7.fr Cours Statistique, 2010 p. 1/52 Plan du cours Chapitre 1 : Estimation

Plus en détail

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 Statistiques IUT Biotechnologie 2ème année Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 version du 04 octobre 2008 Table des matières 1 Lois de probabilité usuelles 1 1.1 Dénombrement................................

Plus en détail

Statistique (MATH-F-315, Cours #1)

Statistique (MATH-F-315, Cours #1) Statistique (MATH-F-315, Cours #1) Thomas Verdebout Université Libre de Bruxelles 2015 Plan de la partie Statistique du cours 1. Introduction. 2. Théorie de l estimation. 3. Tests d hypothèses et intervalles

Plus en détail

APPLICATIONS SUR LES ANALYSES ASSOCIÉES AUX CHAPITRES 12 ET 13 (TESTS DE COMPARAISON ET D INDÉPENDANCE)

APPLICATIONS SUR LES ANALYSES ASSOCIÉES AUX CHAPITRES 12 ET 13 (TESTS DE COMPARAISON ET D INDÉPENDANCE) 5 APPLICATIONS SUR LES ANALYSES ASSOCIÉES AUX CHAPITRES 12 ET 13 (TESTS DE COMPARAISON ET D INDÉPENDANCE) Exercice 1 : test de comparaison de proportions (voir chapitre 12) Une entreprise souhaite lancer

Plus en détail

Approche empirique du test χ 2 d ajustement

Approche empirique du test χ 2 d ajustement Approche empirique du test χ 2 d ajustement Alain Stucki, Lycée cantonal de Porrentruy Introduction En lisant des rapports, on rencontre souvent des raisonnements du style : «le premier groupe est meilleur

Plus en détail

2. Formalisation ... Or les variables sont indépendantes. Donc si

2. Formalisation ... Or les variables sont indépendantes. Donc si L'estimation 1. Concrètement... Dernièrement un quotidien affichait en première page : en 30 ans les françaises ont grandi de... je ne sais plus exactement, disons 7,1 cm. C'est peut-être un peu moins

Plus en détail

TUTORAT UE4 2010-2011 Biostatistiques Concours Blanc

TUTORAT UE4 2010-2011 Biostatistiques Concours Blanc TUTORAT UE4 2010-2011 Biostatistiques Concours Blanc Lorsque cela n est pas précisé (explicitement ou implicitement), les tests sont réalisés à 5% en bilatéral QCM n 1 : Généralités sur les probabilités

Plus en détail

SONDAGE DANS LA MISSION D AUDIT UNITE MONETAIRE. Fethi NEJI & Mounir GRAJA

SONDAGE DANS LA MISSION D AUDIT UNITE MONETAIRE. Fethi NEJI & Mounir GRAJA SONDAGE DANS LA MISSION D AUDIT UNITE MONETAIRE Le sondage est une sélection d'éléments que l'auditeur décide d'examiner afin de tirer, en fonction des résultats obtenus, une conclusion sur les caractéristiques

Plus en détail

Tests statistiques élémentaires

Tests statistiques élémentaires Résumé Il serait vain de chercher à présenter l ensemble des tests statistiques, la littérature est très abondante sur le sujet. Cette vignette introduit les plus couramment calculés par les logiciels

Plus en détail

TESTS D'HYPOTHESES Etude d'un exemple

TESTS D'HYPOTHESES Etude d'un exemple TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses

Plus en détail

Statistiques inférentielles : estimation

Statistiques inférentielles : estimation Statistiques inférentielles : estimation Table des matières I Estimation ponctuelle d un paramètre 2 I.1 Moyenne................................................ 2 I.2 Écart-type...............................................

Plus en détail

4.1 Planification d une expérience complètement randomisée

4.1 Planification d une expérience complètement randomisée Chapitre 4 La validation des hypothèses d ANOVA à un facteur Dans le modèle standard d ANOVA, on a fait quelques hypothèses. Pour que les résultats de l analyse effectuée soient fiables, il est nécessaire

Plus en détail

INTRODUCTION A LA RECHERCHE QUANTITATIVE

INTRODUCTION A LA RECHERCHE QUANTITATIVE INTRODUCTION A LA RECHERCHE QUANTITATIVE Deuxième partie : de la base de données aux résultats Juin 2010 Julien Gelly, Caroline Huas, Josselin Le Bel Plan 2 1. Introduction 2. Saisie des données : Epi

Plus en détail

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction

Plus en détail

Master 1 Informatique Éléments de statistique inférentielle

Master 1 Informatique Éléments de statistique inférentielle Master 1 Informatique Éléments de statistique inférentielle Faicel Chamroukhi Maître de Conférences UTLN, LSIS UMR CNRS 7296 email: chamroukhi@univ-tln.fr web: chamroukhi.univ-tln.fr 2014/2015 Faicel Chamroukhi

Plus en détail

Chapitre 6 TESTS STATISTIQUES

Chapitre 6 TESTS STATISTIQUES Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 6 TESTS STATISTIQUES Les tests statistiques sont des méthodes de la statistique inférentielle qui, comme

Plus en détail

Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire

Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire Julien JACQUES Polytech Lille - Université Lille 1 Julien JACQUES (Polytech Lille) Statistiques de base 1 / 48 Plan 1 Tests

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

Test de Poisson à 1 échantillon et à 2 échantillons

Test de Poisson à 1 échantillon et à 2 échantillons Test de Poisson à 1 échantillon et à 2 échantillons Sous-menus de Minitab 15 : Stat>Statistiques élémentaires>test de Poisson à 1 échantillon Stat>Statistiques élémentaires>test de Poisson à 2 échantillons

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S ÉPREUVE DU JEUDI 19 JUIN 2014 Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont

Plus en détail

TD1, sur la Régression Logistique (STA 2211)

TD1, sur la Régression Logistique (STA 2211) TD, sur la Régression Logistique STA 22) Exercice : Un sondage international cité dans un article de presse le 4 décembre 2004) rapportait le faible taux d approbation de la politique du Président des

Plus en détail

Analyse des données 1: erreurs expérimentales et courbe normale

Analyse des données 1: erreurs expérimentales et courbe normale Analyse des données 1: erreurs expérimentales et courbe normale 1 Incertitude vs. erreur Une mesure expérimentale comporte toujours deux parties: la valeur vraie de la grandeur mesurée et l'erreur sur

Plus en détail

Qualité Six Sigma. Sommaire. Sylvain ROZÈS. 28 mars 2008. 1 Introduction 1. 2 Étude séparée de quatre échantillons 1

Qualité Six Sigma. Sommaire. Sylvain ROZÈS. 28 mars 2008. 1 Introduction 1. 2 Étude séparée de quatre échantillons 1 Qualité Six Sigma Sylvain ROZÈS 28 mars 2008 Sommaire 1 Introduction 1 2 Étude séparée de quatre échantillons 1 3 Étude sur l ensemble des échantillons 8 4 Étude sur les range 13 1 Introduction Le but

Plus en détail

LE TRAITEMENT STATISTIQUE. I. Les types de traitements statistiques en fonction des questions-problèmes (QP)

LE TRAITEMENT STATISTIQUE. I. Les types de traitements statistiques en fonction des questions-problèmes (QP) LE TRAITEMENT STATISTIQUE I. Les types de traitements statistiques en fonction des questions-problèmes (QP) Dans une recherche, on se pose toujours une ou plusieurs questions qu'il s'agira de résoudre.

Plus en détail

Statistiques - Notes de cours - M1. Elisabeth Gassiat

Statistiques - Notes de cours - M1. Elisabeth Gassiat Statistiques - Notes de cours - M1 Elisabeth Gassiat Table des matières 1 Introduction 5 1.1 Estimation et régions de confiance...................... 5 1.2 Tests.......................................

Plus en détail

Tests Statistiques. Rejeter, ne pas rejeter... Se risquer? Magalie Fromont. Année universitaire 2015-2016

Tests Statistiques. Rejeter, ne pas rejeter... Se risquer? Magalie Fromont. Année universitaire 2015-2016 Tests Statistiques Rejeter, ne pas rejeter... Se risquer? Magalie Fromont Année universitaire 2015-2016 Table des matières 1 Introduction 5 1.1 Problèmes de tests.................................. 5 1.1.1

Plus en détail

partie a Introduction à la statistique 1

partie a Introduction à la statistique 1 table des matières F AVANT-PROPOS À L ÉDITION AMÉRICAINE Abréviations viii xiv partie a Introduction à la statistique 1 1. Statistique et probabilité ne sont pas intuitives 3 Nous avons tendance à passer

Plus en détail

Probabilités et inférence statistique (STAT-S-202) Titulaires : Catherine Dehon et Davy Paindaveine Partie 2 : Inférence statistique

Probabilités et inférence statistique (STAT-S-202) Titulaires : Catherine Dehon et Davy Paindaveine Partie 2 : Inférence statistique Probabilités et inférence statistique (STAT-S-202) Titulaires : Catherine Dehon et Davy Paindaveine Partie 2 : Inférence statistique Les exercices qui vous sont proposés sont classés de la façon suivante

Plus en détail

Validation des méthodes analytiques : Le profil d exactitude

Validation des méthodes analytiques : Le profil d exactitude Validation des méthodes analytiques : Le profil d exactitude Pourquoi valider une méthode analytique? Passer à une utilisation de l outil d analyse en routine Obligations réglementaires : normes qualité,

Plus en détail

Traitement statistique. des petits échantillons. Application avec JMP - 3 jours (*)

Traitement statistique. des petits échantillons. Application avec JMP - 3 jours (*) Traitement statistique Application avec JMP - 3 jours (*) Référence : STA-N1-SPECHAJMP Durée : 3 jours soit 21 heures (*) : La durée proposée est une durée standard. Elle peut être adaptée selon les besoins,

Plus en détail

1. Calculer: P(Z<1.34); P(Z<-1.72); P(Z>2.41); P(Z>-1.53); P(1.12<Z<1.57); P(- 0.75<Z<0.36); P( Z >1.96)

1. Calculer: P(Z<1.34); P(Z<-1.72); P(Z>2.41); P(Z>-1.53); P(1.12<Z<1.57); P(- 0.75<Z<0.36); P( Z >1.96) EXERCICES SUR LA LOI NORMALE Exercice 1. Soit Z une V.A. de loi N(0,1). 1. Calculer: P(Z-1.53); P(1.12

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé Baccalauréat ES/L Amérique du Sud 2 novembre 2 Corrigé A. P. M. E. P. EXERCICE Commun à tous les candidats 5 points. Diminuer le budget de 6 % sur un an revient à multiplier par 6 =,94. Diminuer le budget

Plus en détail

DIU Infirmières de Santé au Travail - IDF. Service Central de Santé au Travail de l AP-HP PLAN DE COURS

DIU Infirmières de Santé au Travail - IDF. Service Central de Santé au Travail de l AP-HP PLAN DE COURS DIU Infirmières de Santé au Travail - IDF Faculté de Médecine Paris VII - Denis Diderot Mardi 7 juin 2016 STATISTIQUES EN SANTE AU TRAVAIL : NOTIONS ESSENTIELLES Service Central de Santé au Travail de

Plus en détail

Probabilité mathématique et distributions théoriques

Probabilité mathématique et distributions théoriques Probabilité mathématique et distributions théoriques 3 3.1 Notion de probabilité 3.1.1 classique de la probabilité s Une expérience ou une épreuve est dite aléatoire lorsqu on ne peut en prévoir exactement

Plus en détail

Les statistiques en biologie expérimentale

Les statistiques en biologie expérimentale Les statistiques en biologie expérimentale Qualités attendues d une méthode de quantification : Le résultat numérique de la mesure permet d estimer avec précision la grandeur mesurée (ex. : il lui est

Plus en détail

TD : Microéconomie de l incertain. Emmanuel Duguet

TD : Microéconomie de l incertain. Emmanuel Duguet TD : Microéconomie de l incertain Emmanuel Duguet 2013-2014 Sommaire 1 Les loteries 2 2 Production en univers incertain 4 3 Prime de risque 6 3.1 Prime de risque et utilité CRRA.................. 6 3.2

Plus en détail

Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme

Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme Distance et classification Cours 4: Traitement du signal et reconnaissance de forme Plan Introduction Pré-traitement Segmentation d images Morphologie mathématique Extraction de caractéristiques Classification

Plus en détail

Statistiques et estimation

Statistiques et estimation DERNIÈRE IMPRESSION LE 23 juillet 2014 à 16:35 Statistiques et estimation Table des matières 1 Intervalle de fluctuation 2 1.1 Simulation................................. 2 1.2 Définition.................................

Plus en détail

T.P. 8 - Exercice 1 Khi-Carré d ajustement (Corrigé)

T.P. 8 - Exercice 1 Khi-Carré d ajustement (Corrigé) T.P. 8 - Exercice 1 Khi-Carré d ajustement (Corrigé) Connaissances préalables : Buts spécifiques : Outils nécessaires : Consignes générales : Distribution de fréquences, proportions. Test d ajustement.

Plus en détail

LA QUALITÉ EN BIOCHIMIE -PRÉCISION ET EXACTITUDE

LA QUALITÉ EN BIOCHIMIE -PRÉCISION ET EXACTITUDE LA QUALITÉ EN BIOCHIMIE -PRÉCISION ET EXACTITUDE I. Incidences d'une mauvaise qualité dans le domaine industriel - Mise en vente de produits de mauvaise qualité. - Mécontentement des clients. - Perte de

Plus en détail

Validation d une méthode performante de dosage des steviols glycosides de Stevia Rebaudiana

Validation d une méthode performante de dosage des steviols glycosides de Stevia Rebaudiana Validation d une méthode performante de dosage des steviols glycosides de Stevia Rebaudiana J.M. Roussel, Consultant, Aix-en-Pce Prof. Dr. Gertrud Morlock, Chair of Food Science, JLU Giessen S. Meyer,

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental

Plus en détail

Statistiques et essais cliniques

Statistiques et essais cliniques Hegel Vol. 3 N 1 2013 DOI : 10.4267/2042/49204 21 Statistiques et essais cliniques François Kohler Laboratoire SPI-EAO, Faculté de Médecine, Vandœuvre-les-Nancy francois.kohler@univ-lorraine.fr Introduction

Plus en détail

Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier

Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier Zaher Mohdeb Université Mentouri Département de Mathématiques, Constantine, Algérie E-mail: zaher.mohdeb@umc.edu.dz

Plus en détail

Corrigé du baccalauréat ES Pondichéry 16 avril 2015

Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Exercice 1 Commun à tous les candidats 5 points Partie A On appelle B l événement «la batterie est défectueuse» ; l événement «le disque dur est défectueux».

Plus en détail

Support du cours de Probabilités et Statistiques. IUT d Orléans, Département Informatique

Support du cours de Probabilités et Statistiques. IUT d Orléans, Département Informatique Support du cours de Probabilités et Statistiques IUT d Orléans, Département informatique Pierre Andreoletti IUT d Orléans, Département Informatique Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences)

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

MÉTHODE GRAPHIQUE DE CALCULS DE LA MOYENNE ET DE L'ÉCART TYPE DUNE DISTRIBUTION NORMALE TEST DE NORMALITÉ

MÉTHODE GRAPHIQUE DE CALCULS DE LA MOYENNE ET DE L'ÉCART TYPE DUNE DISTRIBUTION NORMALE TEST DE NORMALITÉ REVUE FORESTIÈRE FRANÇAISE 791 MÉTHODE GRAPHIQUE DE CALCULS DE LA MOYENNE ET DE L'ÉCART TYPE DUNE DISTRIBUTION NORMALE TEST DE NORMALITÉ r PAR R. TOMASSONE Ingénieur des Eaux et Forêts Ψ Section de la

Plus en détail

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 Durée : 3h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Ressources pour le lycée technologique

Ressources pour le lycée technologique éduscol Enseignement de mathématiques Classe de première STMG Ressources pour le lycée technologique Échantillonnage : couleur des yeux au Canada Contexte pédagogique Objectifs Obtenir un intervalle de

Plus en détail

Estimation indirecte en sciences humaines : une méthode bayésienne

Estimation indirecte en sciences humaines : une méthode bayésienne Estimation indirecte en sciences humaines : une méthode bayésienne Henri Caussinus, Institut de Mathématiques de Toulouse, en collaboration avec Daniel Courgeau, INED Isabelle Séguy, INED Luc Buchet, CNRS

Plus en détail

L espace virtuel de La Branche Cochrane-Québec

L espace virtuel de La Branche Cochrane-Québec L espace virtuel de La Branche Cochrane-Québec Bonjour cher(ère)s auditeurs et auditrices web! SVP prendre quelques secondes pour tester vos paramètres audio via l assistant situé au haut de la page: Outils

Plus en détail

Points méthodologiques Adapter les méthodes statistiques aux Big Data

Points méthodologiques Adapter les méthodes statistiques aux Big Data Points méthodologiques Adapter les méthodes statistiques aux Big Data I. Répétition de tests et inflation du risque alpha II. Significativité ou taille de l effet? 2012-12-03 Biomédecine quantitative 36

Plus en détail

Cours (8) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012. Test du Khi 2

Cours (8) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012. Test du Khi 2 Test du Khi 2 Le test du Khi 2 (khi deux ou khi carré) fournit une méthode pour déterminer la nature d'une répartition, qui peut être continue ou discrète. Domaine d application du test : Données qualitatives

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques 7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux

Plus en détail

Exercices de Statistique

Exercices de Statistique Université Joseph Fourier, Grenoble I Licence Sciences et Technologies e année STA30 : Méthodes Statistiques pour la Biologie Exercices de Statistique http ://ljk.imag.fr/membres/bernard.ycart/sta30/ Chaque

Plus en détail

LOIS DE PROBABILITÉ À DENSITÉ

LOIS DE PROBABILITÉ À DENSITÉ LOIS DE PROBABILITÉ À DENSITÉ Une expérience aléatoire consiste à choisir au hasard un nombre réel X dans l'intervalle I = ]0 ; 0]. L'univers est l'intervalle I. C'est un univers infini. On ne peut pas

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Cours Statistiques L2 Université Nice Sophia-Antipolis. François Delarue

Cours Statistiques L2 Université Nice Sophia-Antipolis. François Delarue Cours Statistiques L2 Université Nice Sophia-Antipolis François Delarue Table des matières Chapitre 1. Rappels de Probabilités 5 1. Espaces de probabilité et Variables aléatoires 5 2. Espérances et variances

Plus en détail

PREMIERE ANNEE COMMUNE DES ETUDES DE SANTE. Faculté de Médecine Lyon Est Année Universitaire 2010-2011 UE4. Epreuve du jeudi 16 décembre 2010

PREMIERE ANNEE COMMUNE DES ETUDES DE SANTE. Faculté de Médecine Lyon Est Année Universitaire 2010-2011 UE4. Epreuve du jeudi 16 décembre 2010 PREMIERE ANNEE COMMUNE DES ETUDES DE SANTE Faculté de Médecine Lyon Est Année Universitaire 2010-2011 UE4 Epreuve du jeudi 16 décembre 2010 Dr Claire BARDEL, Dr Marie-Aimée DRONNE, Dr Delphine MAUCORT-BOULCH

Plus en détail

Lot Quality Assurance Sampling. Elise Naoufal EVARISQ 15 septembre 2011

Lot Quality Assurance Sampling. Elise Naoufal EVARISQ 15 septembre 2011 Lot Quality Assurance Sampling LQAS Elise Naoufal EVARISQ 15 septembre 2011 1 LQAS Une question d efficacité? LQAS et santé Méthode et Fondements théoriques Détermination du couple (n,d n,d) Conclusion

Plus en détail

Cours 8 Les tests statistiques

Cours 8 Les tests statistiques Cours 8 Les tests statistiques Intervalle de confiance pour une proportion Dans le cas de grands échantillons (np>5 et n(1-p)>5 ) l'intervalle de confiance au niveau (1- α ) est pour la proportion inconnue

Plus en détail

Chapitre 4 : Variables aléatoires à densité. Soit f une fonction continue sur IR. On définit sous réserve d existence. f(t) dt = [ exp( t) ] b

Chapitre 4 : Variables aléatoires à densité. Soit f une fonction continue sur IR. On définit sous réserve d existence. f(t) dt = [ exp( t) ] b Chapitre 4 : Variables aléatoires à densité I - Généralités 1. Intégrales généralisées. a) Généralisée en +. Soit f une fonction continue sur IR. On définit sous réserve d existence la limite lim b + b

Plus en détail

GENERALITES. - ensemble d'éléments, d'objets --------> population (N) ( population finie ou infinie )

GENERALITES. - ensemble d'éléments, d'objets --------> population (N) ( population finie ou infinie ) GENERALITES 1.1 - TERMINOLOGIE. - ensemble d'éléments, d'objets --------> population (N) ( population finie ou infinie ) - sous-ensemble ==>"échantillon" - données ==>valeurs d'un caractère( sexe, poids,

Plus en détail

Analyse en composantes principales

Analyse en composantes principales Analyse en composantes principales Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire LITIS Analyse en composantes principales p. 1/18 Introduction Objectifs Soit {x i } i=1,,l

Plus en détail

Estimation bayésienne des paramètres d un modèle de culture implémenté sous VLE

Estimation bayésienne des paramètres d un modèle de culture implémenté sous VLE Estimation bayésienne des paramètres d un modèle de culture implémenté sous VLE Arnaud Bensadoun François Brun (ACTA), Philippe Debaeke (INRA), Daniel Wallach (INRA), Luc Champolivier (CETIOM), Emmanuelle

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer [http://mp.cpgedupuydelome.fr] édité le 9 décembre 05 Enoncés Familles sommables Ensemble dénombrable a) Calculer n+ Exercice [ 03897 ] [Correction] Soit f : R R croissante. Montrer que l ensemble des

Plus en détail

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences

Plus en détail

Méthodes du contrôle (maîtrise) statistique de la qualité

Méthodes du contrôle (maîtrise) statistique de la qualité MTH 231 Méthodes statistiques maîtrise statistique des processus : SPC Méthodes du contrôle (maîtrise) statistique de la qualité SPC 1 Méthodes statistiques de la qualité : Statistical Quality Control

Plus en détail

Simulations et Estimations de la volatilité

Simulations et Estimations de la volatilité Simulations et Estimations de la volatilité Daniel Herlemont 5 novembre 2012 Table des matières 1 Introduction 1 2 A faire... 3 3 Rappels 10 3.1 Propriétés des estimateurs............................ 10

Plus en détail

Chapitre 2. Caractéristiques des distributions à une variable quantitative

Chapitre 2. Caractéristiques des distributions à une variable quantitative Chapitre 2. Caractéristiques des distributions à une variable quantitative Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University

Plus en détail

CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25

CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25 TABLE DES MATIÈRES Sommaire... 5 Avant- propos... 9 Remerciements... 19 À propos de l auteur... 23 CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25 1.1 Qu est- ce que

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière PRO 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde PRO partie première PRO partie terminale PRO Sommaire

Plus en détail

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé)

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des questions posées, une seule des quatre réponses

Plus en détail

Statistiques descriptives Variance et écart type

Statistiques descriptives Variance et écart type Statistiques descriptives Variance et écart type I) Rappel : la moyenne (caractéristique de position ) Définition Soit la série statistique définie dans le tableau suivant : Valeur... Effectif... Fréquences

Plus en détail

L estimation du modèle a priori Décompter les ddl

L estimation du modèle a priori Décompter les ddl L estimation du modèle a priori Décompter les ddl ------------ François Cheptou Juin 004 Dans le programme de mathématiques BTS Chimiste, trois modèles a priori sont étudiés. ) = µ (modèle simple) ) =

Plus en détail

Approche expérimentale en IHM

Approche expérimentale en IHM Plan Approche expérimentale en IHM Michel Beaudouin-Lafon, LRI Wendy Mackay, INRIA mbl@lri.fr mackay@lri.fr http://insitu.lri.fr Qu est-ce que l approche expérimentale Concevoir une expérience Un peu de

Plus en détail

Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007. Introduction aux probabilités

Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007. Introduction aux probabilités Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007 Introduction aux probabilités Série n 3 Exercice 1 Une urne contient neuf boules. Quatre de ces boules portent le numéro

Plus en détail

geffray@math.unistra.fr Outils pour la statistique avancée Année 2015/2016 TD 1 : Bootstrap

geffray@math.unistra.fr Outils pour la statistique avancée Année 2015/2016 TD 1 : Bootstrap Université de Strasbourg Ségolen Geffray M2 - Statistique geffray@math.unistra.fr Outils pour la statistique avancée Année 2015/2016 TD 1 : Bootstrap Ces exercices seront effectués au moyen du logiciel

Plus en détail

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6 Probabilités et Statistiques Raphaël KRIKORIAN Université Paris 6 Année 2005-2006 2 Table des matières 1 Rappels de théorie des ensembles 5 1.1 Opérations sur les ensembles................... 5 1.2 Applications

Plus en détail

Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique

Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique Jean Gaudart Laboratoire d Enseignement et de Recherche sur le Traitement de l Information Médicale jean.gaudart@univmed.fr

Plus en détail

Détection statistique d anomalies en présence de paramètres de nuisance

Détection statistique d anomalies en présence de paramètres de nuisance Détection statistique d anomalies en présence de paramètres de nuisance Lionel Fillatre ENST Bretagne, département Signal & Communication Lionel Fillatre (département SC) Détection d anomalies 1 / 29 Structure

Plus en détail