MECA MÉCANIQUE RATIONNELLE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "MECA0003-2 - MÉCANIQUE RATIONNELLE"

Transcription

1 L G L G Octobre 015 MEA MÉANIQUE RATIONNELLE Prof. Éric J.M.DELHEZ Un constructeur de jouets souhaitant mettre au point un nouveau système de propulsion de petites voitures pour son circuit miniature conçoit le dispositif ci-dessous. La voiture, assimilée à un point matériel P de masse m évolue sans frottement sur une courbe de guidage OB disposée dans un plan vertical et décrite par l équation r= acos θ, θ ] π/,π/8] La liaison entre la voiture et la courbe de guidage est supposée bilatérale. La voiture est munie d un aimant. Un électro-aimant est placé en O et permet d exercer sur P une force centrale inversement proportionnelle au cube de la distance OP, i.e. A O θ F=mµ OP OP 4 On suppose dès lors que le point O n est pas accessible. En faisant varier l intensité du courant électrique circulant dans le bobinage de l électro-aimant, on peut ajuster le signe et la valeur de la constante µ. P B i. Déterminez les dimensions de la constante µ intervenant dans l expression de F. ii. Relevez toutes les forces agissant sur la voiture en précisant leurs caractéristiques direction, force appliquée / force de liaison, force conservative. iii. Écrivez l équation différentielle vectorielle du mouvement du point P. iv. Déterminez une intégrale première scalaire du mouvement et son interprétation physique. v. Montrez que cette intégrale première peut s écrire sous la forme où θ ω cos θ+ α cos θ = ω = g a et α= µ 16a 4 vi. Déterminez les positions d équilibre et discutez leur stabilité en fonction de ω et α. On supposera provisoirement que α+ω 0. vii. À l instant initial, la voiture est abandonnée sans vitesse au point A. Montrez qu il est nécessaire que ω > 4α pour que la voiture puisse atteindre le point B θ=π/8 et quitter la courbe de guidage. viii. Déterminez la force exercée par la voiture sur la courbe de guidage lorsque celle-ci passe par le point situé à la verticale de O dans les conditions envisagées au point précédent. ix. Déterminez les positions d équilibre et étudiez leur stabilité dans le cas où α+ω = 0. x. Montrez que la condition ω > 4α est également suffisante pour permettre à la voiture de quitter la courbe de guidage si elle est abandonnée sans vitesse en A.

2 SOLUTION i. De l expression de la force centrale, on tire [µ]= [F]L3 [m] = MLT L 3 M = L 4 T ii. Les forces agissant sur le point P sont mg : la force de pesanteur, force appliquée conservative dirigée verticalement vers le bas ; N : la force de liaison normale à la courbe de guidage en l absence de frottement ; F : la force centrale, force appliquée conservative dirigée selon le vecteur OP. O e θ A θ N e r P B mg F iii. L équation différentielle vectorielle du mouvement du point P s écrit où s est le vecteur position de P par rapport au point fixe O. iv. Multipliant scalairement par ṡ l équation 1, on obtient m s=mg+n+f 1 mṡ s=mṡ g+ṡ N+ṡ F où ṡ N=0 puisque la vitesse est tangente à la courbe et donc perpendiculaire à la réaction normale. hacun des termes restants peut s exprimer comme une dérivée temporelle. On a, d une part, mṡ s= 1 m d dt ṡ et mṡ g= d dt ms g et, d autre part, ṡ F=ṙe r + r θe θ mµr 3 e r = mµṙ r 3 = d dt 1 mµr où on a exprimé les vecteurs position et vitesse en coordonnées polaires dans le plan de la courbe selon s=re r et ṡ=ṙe r + r θe θ Après intégration, on obtient l intégrale première scalaire de conservation de l énergie 1 m ṡ ms g+ 1 mµr = E v. hacun des termes de l équation peut être exprimé en fonction de la seule variable θ en utilisant l équation de la courbe r = a cos θ et donc ṙ = a θ sin θ : 1 m ṡ = 1 mṙ + r θ = 1 m4a θ sin θ+4a cos θ θ =ma θ

3 ms g= mre r gcos θe r gsinθe θ = mrgcos θ= magcos θ Après simplification, on obtient c est-à-dire où on a posé 1 mµ mµr = 8a cos θ θ g a cos θ+ µ 16a 4 1 cos θ = θ ω cos θ+ α cos θ = 3 ω = g a et α= µ 16a 4 vi. L intégrale première 3 peut encore s écrire sous la forme où θ +V θ= V θ= ω cos θ+ α cos θ Les positions d équilibre sont les points stationnaires de la fonction potentielle V. On calcule donc qui s annule si V θ= ω cosθsin θ+αsinθcos 3 θ = sin θcos θ ω + α = sinθ sin θ = 0, ce qui correspond à la position d équilibre θ = 0 ; ω + α cosθ=0, ce qui ne correspond à aucune position d équilibre sur la courbe puisque le point O n est pas accessible ; = α/ω, ce qui, si ω α < 0, conduit à identifier les positions d équilibre +θ et θ où θ = arcos 4 α/ω La position +θ n est cependant située sur la courbe de guidage que si arcos 4 α/ω π 8 4 Remarquons que θ = 0 dans le cas où α= ω. Notons encore que les points stationnaires ± arcos n appartiennent pas à l intervalle ] π/, π/8]. En conclusion, les positions d équilibre sont les suivantes : si α ω : θ=0 ; 4 α/ω ne sont pas admissibles car ils si ω < α<0 : θ=0 et θ=±θ =±arcos 4 α/ω sous réserve de la condition 4 ; si α 0 : θ=0. La nature des positions d équilibre peut être déterminée à partir de la nature des points stationnaires dev. On calcule V θ=cos θ ω + α +sinθ cos 4 4αsin θcos 5 θ θ = cos θ ω + α cos 4 + 8sin θ α θ 3

4 On a alors < 0 si α< ω maximum dev, position d équilibre instable ; V 0=ω + α = 0 si α= ω pas de conclusion à ce stade, voir point ix ; > 0 si α> ω minimum dev, position d équilibre stable. Dans le cas où ω < α<0, on a V ±θ = 8ω sin θ < 0 maxima dev, positions d équilibre instables vii. La voiture étant abandonnée sans vitesse au point A, on a, à l instant initial, θ = π/4 et θ = 0 et la constante peut être déterminée dans 3 : θ ω cos θ+ α cos θ = = ω + α 5 Dans ce cas, le point du diagramme de potentiel correspondant à θ= π/4 est un point de réflexion θ = 0 et, pour pouvoir s en éloigner dans la direction des θ croissants, il est nécessaire qu un puits de potentiel se situe à droite de ce point, c est-à-dire quev π/4<0. V θ π/4 θ On en déduit la condition nécessaire V π/4=sin π/ ω α + cos 4 = ω + 4α<0 π/4 soit ω > 4α. Le cas ω = 4α doit être écarté puisqu on a alorsv π/4 = 0 et que la voiture occupe dans ce cas une position d équilibre instable θ = π/4 qu elle ne peut quitter spontanément. Afin de déterminer si la condition obtenue est également suffisante, il faut vérifier que le puits de potentiel limité par θ = π/4 s étend jusqu en +π/8 qui correspond à l extrémité libre de la courbe de guidage. ette étude est réalisée au point x. viii. La force exercée par la voiture sur la courbe quand elle passe au point est donnée par l opposé de la force de liaison N agissant sur la voiture à cet endroit. Afin de déterminer l expression de la force de liaison, repartons de l équation 1. Remarquons que, en θ = 0, la force de liaison normale est telle que N=Ne r. On a donc N =m s mg F e r = m r r θ mgcosθ mµr 3 où r= a, où θ peut s exprimer à partir de 5, soit et où On a donc θ =ω cos θ α cos θ ω + α=ω α ω ω + α= + α ω r= acos θ θ asinθ θ= a + α ω N = ma + α ω = 4ma + α = 3maω + α ω + ma + α + mg+m µ 8a 3 + maω + maα 4

5 ix. Dans le cas où α= ω, on a V θ ω = sinθ sinθ cos 3 θ V θ ω = cosθ cos θ 6 sin θ V θ ω V iv θ ω = 4sinθ 4 sinθ cos 3 θ 1sinθcos θ 4 sin3 θ cos 5 θ = 4sinθ 16 sinθ cos 3 θ 4 sin3 θ cos 5 θ V 0= 0 V 0= 0 V 0= 0 = 8cosθ 16 cos θ cos 3 θ + sinθ... V iv 0= 4ω < 0 La position θ = 0 est donc un maximum du potentiel quand α = ω, ce qui correspond à une position d équilibre instable. x. omme indiqué au point vii., pour vérifier que la conditionω > 4α est suffisante pour permettre à la voiture de quitter la courbe, il faut vérifier que le point θ=+π/8 est accessible si la voiture est abandonnée sans vitesse en θ= π/4. ette étude peut être réalisée en étudiant le mouvement sur un diagramme de potentiel pour les différentes valeurs des paramètres. Le diagramme de potentiel peut être esquissé en tenant compte des informations obtenues en vi. sur les points stationnaires de V, de l existence d asymptotes verticales en ±π/ sauf si α = 0 et en utilisant le fait quev est une fonction paire. α>0 α=0 ω 4 < α<0 Dans tous les cas où la condition nécessaire ω > 4α est vérifiée, la voiture atteint le point B avec une vitesse non nulle si elle est abandonnée sans vitesse au point A. La condition est donc également suffisante. 5

6 Pour être complet, remarquons que, si la condition ω > 4α n est pas vérifiée, le diagramme de potentiel peut être esquissé comme ci-dessous. Dans toutes ces situations, la voiture est soit immobile en A, si α= ω /4, soit vient se coller sur l électro-aimant situé en O sans quitter la courbe de guidage. ω 4 = α<0 ω < α< ω 4 < 0 α ω < 0 6

1 Présentation du moulin. 2 Modélisation mathématique. 2.1 Modélisation statique. Don Quichotte de l Atlantique

1 Présentation du moulin. 2 Modélisation mathématique. 2.1 Modélisation statique. Don Quichotte de l Atlantique 1 Présentation du moulin Il s agit d une roue tournant autour d un axe. Sur l extérieur de la roue sont fixées des tiges et sur les tiges sont accrochés des récipients. Ces récipients sont ouverts en haut

Plus en détail

La dynamique du système est donnée par (1)

La dynamique du système est donnée par (1) Master d Ingénierie Mathématique Contrôle des systèmes non-linéaires Examen, durée 3h Sujet donné par Pierre Rouchon, tous les documents sont autorisés. Comme le montre la figure ci-contre, ce robot marcheur

Plus en détail

Cours de mécanique M14-travail-énergies

Cours de mécanique M14-travail-énergies Cours de mécanique M14-travail-énergies 1 Introduction L objectif de ce chapitre est de présenter les outils énergétiques utilisés en mécanique pour résoudre des problèmes. En effet, parfois le principe

Plus en détail

Corrigé des exercices «Principe fondamental de la dynamique»

Corrigé des exercices «Principe fondamental de la dynamique» «Principe fondamental de la dynamique» Exercice 1 a. Un véhicule parcourt 72 km en 50 minutes. Calculer sa vitesse moyenne et donner le résultat en km/h puis en m/s. La vitesse v est donnée en fonction

Plus en détail

Corps remorqué dans l eau

Corps remorqué dans l eau ACCUEIL Corps remorqué dans l eau Frédéric Elie, août 2007 La reproduction des articles, images ou graphiques de ce site, pour usage collectif, y compris dans le cadre des études scolaires et supérieures,

Plus en détail

TD Dérivation n 2 : étude des variations de fonctions

TD Dérivation n 2 : étude des variations de fonctions 1) f (x) = 7x+3 TD Dérivation n : étude des variations de fonctions Étude de variations f est une fonction affine, de coefficient directeur négatif, on sait donc qu elle est décroissante surê. Le calcul

Plus en détail

Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 24 : Travail d une force-energies

Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 24 : Travail d une force-energies 1 Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 24 : Travail d une force-energies I. Les forces travaillent. 1. Effets d une force. Les forces appliquées à un système peut : - Déformer

Plus en détail

1 Cinématique du solide

1 Cinématique du solide TBLE DES MTIÈRES 1 Cinématique du solide 1 1.1 Coordonnées d un point dans l espace......................... 1 1.1.1 Repère et référentiel................................ 1 1.1.2 Sens trigonométrique...............................

Plus en détail

Travail d une force Correction

Travail d une force Correction Travail d une force Exercice 1 : Deux jumeaux de même masse m=75,0 kg montent au 5ème étage d'un immeuble en partant du rez-de-chaussée. Le jumeau A emprunte l'ascenseur et le jumeau B l'escalier. La distance

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. (a, b) + (c, d) = (a + c, b + d) (a, b) (c, d) = (ac bd, ad + bc) (a, 0) (b, 0) = (ab, 0)

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. (a, b) + (c, d) = (a + c, b + d) (a, b) (c, d) = (ac bd, ad + bc) (a, 0) (b, 0) = (ab, 0) NOMBRES COMPLEXES 1 Corps C des nombres complexes 1.1 Construction de C Construction de C On munit R de deux lois internes + et de la manière suivante. Pour (a, b, c, d) R 4, on pose (a, b) + (c, d) =

Plus en détail

ET - FONCTIONS D ONDE DANS LES ETATS LIES D UN PUITS DE POTENTIEL

ET - FONCTIONS D ONDE DANS LES ETATS LIES D UN PUITS DE POTENTIEL ET - FONCTIONS D ONDE DANS LES ETATS LIES D UN PUITS DE POTENTIEL Dans ce qui suit on adopte les notations suivantes : désigne une constante universelle h = π = 6,60 34 Joules par seconde est la constante

Plus en détail

Problème 1. Problème 2 OPTIQUE MÉCANIQUE CHIMIE. DM 3 pour le 14 novembre

Problème 1. Problème 2 OPTIQUE MÉCANIQUE CHIMIE. DM 3 pour le 14 novembre DM 3 pour le novembre OPTIQUE MÉCANIQUE CHIMIE Problème On considère un œil modélisé par une lentille convergente (le cristallin et un écran (la rétine tel que la distance lentille-écran soit égale à 5

Plus en détail

Équations différentielles en physique

Équations différentielles en physique Fiche Mathématiques pour la Physique - Équations différentielles en physique - MPSI 1 Lycée Chaptal - 2012 Équations différentielles en physique On ne considère en physique en prépa (quasiment) que des

Plus en détail

ETUDE DES E VI V B I RATIO I N O S

ETUDE DES E VI V B I RATIO I N O S ETUDE DES VIBRATIONS 1 Chapitre I - Présentation et définitions 2 Les objectifs à atteindre: 1) Savoir décrire le modèle de l'oscillateur harmonique et savoir l'appliquer à l'étude des systèmes physiques

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

2 Le champ électrostatique E

2 Le champ électrostatique E Licence 3 Sciences de la Terre, de l Univers et de l Environnement Université Joseph-Fourier : Outil Physique et Géophysique 2 Le champ électrostatique E k Daniel.Brito@ujf-grenoble.fr E MAISON DES GÉOSCIENCES

Plus en détail

1.1. Le moment cinétique en mécanique classique

1.1. Le moment cinétique en mécanique classique c M Dunseath-Terao - Master 1 de Physique UR1 2006 2007 1 Complément 1 Le moment cinétique 1.1. Le moment cinétique en mécanique classique L équation du mouvement d un corps en rotation en mécanique classique

Plus en détail

Applications mathématiques à la physique

Applications mathématiques à la physique Applications mathématiques à la physique Serge Robert cégep Saint-Jean-sur-Richelieu RÉSUMÉ Je vais présenter quelques problèmes qui sont traités dans le cours Intégration des apprentissages en Sciences

Plus en détail

Volume et température d un gaz

Volume et température d un gaz Volume et température d un gaz Par Pascal Rebetez Janvier 7 Introduction Après avoir étudié expérimentalement la relation entre le volume et la température d un gaz (de l air), nous comparons les données

Plus en détail

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 14 Janvier 2015 2 Il est impossible d envisager l étude des méthodes

Plus en détail

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin.

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin. Exo7 Développements ités Corrections d Arnaud Bodin. Calculs Exercice Donner le développement ité en 0 des fonctions :. cosx expx à l ordre 2. ln + x)) 2 à l ordre 4 shx x. x à l ordre 6 4. exp sinx) )

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

S2I 1. Modélisation d un hayon de coffre électrique

S2I 1. Modélisation d un hayon de coffre électrique S2I 1 TSI 4 heures Calculatrices autorisées Modélisation d un hayon de coffre électrique 213 L industrie automobile propose sur les véhicules modernes de plus en plus de systèmes d aide à l utilisateur,

Plus en détail

15 Notions sur les turbomachines

15 Notions sur les turbomachines 16 avril 2004 429 15 Au cours des chapitres précédents, on a maintes fois considéré des machines au sein desquelles s opérait un échange de travail avec le milieu extérieur (compresseurs, turbines). Parmi

Plus en détail

Systèmes dynamiques. Chapitre 1

Systèmes dynamiques. Chapitre 1 Chapitre 1 Systèmes dynamiques 1) Placement financier On dépose une quantité d argent u 0 à la banque à l instant t 0 = 0 et on place cet argent à un taux r > 0. On sait qu en vertu de la loi des intérêts

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S ÉPREUVE DU JEUDI 19 JUIN 2014 Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont

Plus en détail

concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP)

concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP) SESSION DE 2005 concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP) section : mathématiques deuxième composition de mathématiques (épreuve de remplacement)

Plus en détail

III.1 Quelques rappels théoriques sur les interférences à 2 ondes.

III.1 Quelques rappels théoriques sur les interférences à 2 ondes. III TP 3 : Intérférences à deux ondes dans le domaine hyperfréquence. 22 Introduction Le but de ce TP est d étudier le phénomène d interférences dans le domaine des ondes hyperfréquences 2. Il s agit donc

Plus en détail

Théorème de Rolle et égalité des accroissements finis. Applications

Théorème de Rolle et égalité des accroissements finis. Applications 0 Théorème de Rolle et égalité des accroissements finis. Applications 0. Le théorème de Rolle sur un espace vectoriel normé Pour ce paragraphe, on se donne un espace vectoriel normé (E, ). Le théorème

Plus en détail

Les calculatrices sont interdites

Les calculatrices sont interdites Les calculatrices sont interdites Ce sujet coporte deux problèes indépendants qui portent sur des thèes différents. Chaque problèe coporte plusieurs parties qui sont le plus souvent indépendantes les unes

Plus en détail

Synthèse d analyse Avril 2011

Synthèse d analyse Avril 2011 Snthèse d analse Avril 20 Cette snthèse d analse a été rédigée suite à une suggestion de M le Professeur E Delhez Elle est destinée à aider les étudiants à préparer l eamen d admission au études d ingénieur

Plus en détail

Corrigés de la séance 5 Chap 5 et 7: Gravitation et frottements

Corrigés de la séance 5 Chap 5 et 7: Gravitation et frottements Corrigés de la séance 5 Chap 5 et 7: Gravitation et frottements Questions pour réfléchir Q4. p.262. Jupiter a une masse 318 fois plus grande que celle de la Terre. Pourtant, l accélération de la pesanteur

Plus en détail

Exercices de rentrée MPSI-PCSI

Exercices de rentrée MPSI-PCSI Exercices de rentrée MPSI-PCSI Lycée Saint-Louis 015-016 Introduction Cette feuille d exercices s adresse aux élèves rentrant en MPSI ou en PCSI au lycée Saint- Louis Il s agit d exercices qui sont entièrement

Plus en détail

Devoir de Sciences Physiques n 1 pour le 09-09-2015

Devoir de Sciences Physiques n 1 pour le 09-09-2015 1 DM1 Sciences Physiques MP 20152016 Devoir de Sciences Physiques n 1 pour le 09092015 Problème n o 1 Capteurs de proximité E3A PSI 2013 Les capteurs de proximité sont caractérisés par l absence de liaison

Plus en détail

TD Thermodynamique. Diffusion de particules

TD Thermodynamique. Diffusion de particules TPC2 TD Thermodynamique Diffusion de particules Exercice n o 1 : Diffusion du CO 2 On observe la diffusion du CO 2 dans l air, en régime stationnaire, à l intérieur d un tube de longueur L = 0, 25 m et

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

1 Réflexion et réfraction

1 Réflexion et réfraction 1 Réflexion et réfraction 1.1 Rappel sur la propagation dans les milieux linéaires isotropes Equations de Maxwell dans les milieux Dans un milieu diélectrique sans charges libres (ni courants libres) les

Plus en détail

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année Programme de Mathématique Préparation Maths-Physique Analyse et Géométrie Différentielle Première Année I NOMBRES REELS ET COMPLEXES, SUITES ET FONCTIONS 1 Nombres réels et complexes 2 Suites de nombres

Plus en détail

Etude de la période d un pendule simple

Etude de la période d un pendule simple Etude de la période d un pendule simple Préparation à l Agrégation de Physique ENS Cachan June 3, Figure 1: Photographie du dispositif expérimental pour étudier la variation de la période d un pendule

Plus en détail

M5 Oscillateur harmonique et régime forcé

M5 Oscillateur harmonique et régime forcé M5 Oscillateur harmonique et régime forcé Rappels des épisodes précédents... Au cours de la première période, nous avons rencontré le modèle de l Oscillateur Harmonique Amorti Cf Cours M4). Nous allons

Plus en détail

Baccalauréat Série S Métropole, juin 2014

Baccalauréat Série S Métropole, juin 2014 Baccalauréat Série S Métropole, juin 4 Sujet et Corrigé Stéphane PASQUET Disponible sur http://www.mathweb.fr juin 4 Exercice (5 points) - Commun à tous les candidats Partie A Dans le plan muni d un repère

Plus en détail

4) On suppose que l on utilise une lentille biconvexe faite d un verre d indice n, dont les deux faces (1) et (2) ont le R

4) On suppose que l on utilise une lentille biconvexe faite d un verre d indice n, dont les deux faces (1) et (2) ont le R Optique géométrique ) appeler le principe de la mesure de la distance focale d une lentille mince convergente par la méthode d autocollimation. Vérifier une des propriétés de cette méthode à l aide du

Plus en détail

Introduction au cours de physique (1)

Introduction au cours de physique (1) Introduction au cours de physique () Exercices : Petites variations, valeurs moyennes Calculs de petites variations Méthode De manière générale : il est souvent plus simple de faire une différentiation

Plus en détail

E c (t 0 ) = ½ m v 0. E pp (t 0 ) = mgh. Séance n 12 Conservation de l énergie. E c (t 0 ) = 30,1 J. E pp (t 0 ) = 1,4 J.

E c (t 0 ) = ½ m v 0. E pp (t 0 ) = mgh. Séance n 12 Conservation de l énergie. E c (t 0 ) = 30,1 J. E pp (t 0 ) = 1,4 J. Séance n 12 Conservation de l énergie Exercice n 1 Au service Au service, un joueur de tennis frappe, à l instant de date t 0 = 0 s, une balle de masse m = 58,0 g à une hauteur h = 2,4 m au dessus du sol

Plus en détail

En voiture! I. Détection des chocs frontaux et protection des passagers : l airbag

En voiture! I. Détection des chocs frontaux et protection des passagers : l airbag En voiture! Ce problème propose d étudier plusieurs phénomènes physiques mis en oeuvre dans un véhicule automobile. La première partie étudie la détection de chocs frontaux pour déclencher l ouverture

Plus en détail

CHAPITRE 1 CINÉTIQUE. 1.1 Masse et inertie. 1.1.1 Notions d inertie

CHAPITRE 1 CINÉTIQUE. 1.1 Masse et inertie. 1.1.1 Notions d inertie TABLE DE MATIÈRE 1 Cinétique 1 1.1 Masse et inertie................................ 1 1.1.1 Notions d inertie........................... 1 1.1.2 Masse.................................. 2 1.1.3 Centre d

Plus en détail

Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016

Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016 Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 0 A. P. M. E. P. EXERCICE Commun à tous les candidats points Partie A Une boite contient 00 médailles souvenir dont 50 sont argentées, les autres dorées.

Plus en détail

point d application F r intensité: 4 unités

point d application F r intensité: 4 unités A. MÉCANIQUE A1. Forces I) appels 1) Effets d une force: définition Une force est une grandeur physique qui se manifeste par ses effets a) effet dynamique : Une force est une cause capable de produire

Plus en détail

Suites et Convergence

Suites et Convergence Suites et Convergence Une suite c est se donner une valeur (sans ambigüité) pour chaque N sauf peutêtre les premiers n. Donc une suite est une fonction : I R où I = N: = N. Notation : On note ( ) I R pour

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1. Durée : 4 heures ***

EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1. Durée : 4 heures *** SESSION 003 PCP1006 EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1 Durée : 4 heures L'utilisation des calculatrices est autorisée. Les deux problèmes sont indépendants Une feuille de papier millimétré devra

Plus en détail

Questionnaire à choix multiple : Théorie générale des convertisseurs électromagnétiques

Questionnaire à choix multiple : Théorie générale des convertisseurs électromagnétiques Chapitre 2 : Théorie générale des convertisseurs électromagnétiques Questionnaire à choix multiple : Théorie générale des convertisseurs électromagnétiques Corrigé 1. Compléter la phrase : Le couple électromagnétique

Plus en détail

Les calculatrices sont interdites.

Les calculatrices sont interdites. Les calculatrices sont interdites. NB. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui

Plus en détail

EVALUATION DIAGNOSTIQUE : - 1- L énergie cinétique d un solide est proportionnelle à sa masse proportionnelle à sa vitesse toujours constante.

EVALUATION DIAGNOSTIQUE : - 1- L énergie cinétique d un solide est proportionnelle à sa masse proportionnelle à sa vitesse toujours constante. EVALUATION DIAGNOSTIQUE : - 1- L énergie cinétique d un solide est proportionnelle à sa masse proportionnelle à sa vitesse toujours constante - 2- L énergie potentielle de pesanteur du wagon dépend : du

Plus en détail

CH12 : Solide en mouvement de translation

CH12 : Solide en mouvement de translation BTS électrotechnique 1 ère année - Sciences physiques appliquées CH12 : Solide en mouvement de translation Motorisation des systèmes Enjeu : Problématique : En tant que technicien supérieur, il vous revient

Plus en détail

COMPOSITION DE PHYSIQUE (XULCR) (Durée : 4 heures)

COMPOSITION DE PHYSIQUE (XULCR) (Durée : 4 heures) ÉCOLE POLYTECHNIQUE ÉCOLES NORMALES SUPÉRIEURES CONCOURS D ADMISSION 2014 FILIÈRE MP COMPOSITION DE PHYSIQUE (XULCR) (Durée : 4 heures) L utilisation des calculatrices n est pas autorisée pour cette épreuve.

Plus en détail

Intégrales curvilignes et de surfaces

Intégrales curvilignes et de surfaces Intégrales curvilignes et de surfaces Fabrice Dodu FORMATION CONTINUE : DUT+3 DÉPARTEMENT DE MATHÉMATIQUES : INSA TOULOUSE 2-21 Version 1. Sommaire I Le cours 6 1 Intégrales curvilignes 8 1.1 Notions sur

Plus en détail

Chapitre 5. Le monopole

Chapitre 5. Le monopole Chapitre 5. Le monopole 5.1. Présentation. Une entreprise est dite en situation de monopole lorsqu elle est l unique offreur sur le marché d un bien, si le nombre de demandeurs sur le marché est grand

Plus en détail

12 Mélanges de gaz. m = m 1 + m 2 +... + m ns = m i. n = n 1 + n 2 +... + n ns = n i. 20 mars 2003 Généralités et mélanges de gaz parfaits 320

12 Mélanges de gaz. m = m 1 + m 2 +... + m ns = m i. n = n 1 + n 2 +... + n ns = n i. 20 mars 2003 Généralités et mélanges de gaz parfaits 320 20 mars 2003 Généralités et mélanges de gaz parfaits 320 12 On s est principalement limité jusqu à présent à l étude des substances pures. Or, bon nombre de problèmes thermodynamiques font intervenir des

Plus en détail

CH2 : Les mécanismes de transmission du mouvement

CH2 : Les mécanismes de transmission du mouvement BTS électrotechnique 2 ème année - Sciences physiques appliquées CH2 : Les mécanismes de transmission du mouvement Motorisation des systèmes. Problématique : En tant que technicien supérieur il vous revient

Plus en détail

(Un) Corrigé du partiel Lundi 19 mars 2007. u u1 = Au = 1 2) 1 t forment une base des solutions de ce système,

(Un) Corrigé du partiel Lundi 19 mars 2007. u u1 = Au = 1 2) 1 t forment une base des solutions de ce système, Université Paris 7 Denis Diderot UFR de Mathématiques Licence L3 Equations différentielles 2006-2007 P. Perrin (Un) Corrigé du partiel Lundi 9 mars 2007 Eercice. On considère le système différentiel linéaire

Plus en détail

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I ÉLÉMENTS D OPTIMISATION Complément au cours et au livre de MTH 1101 - CALCUL I CHARLES AUDET DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Hiver 2011 1 Introduction

Plus en détail

Institut de Biologie Fondamentale et Appliquée. M A T H E M A T I Q U E S pour SV 105

Institut de Biologie Fondamentale et Appliquée. M A T H E M A T I Q U E S pour SV 105 U N I V E R S I T E de C A E N Institut de Biologie Fondamentale et Appliquée M A T H E M A T I Q U E S pour SV 05 0 - Présentation - Bibliographie. - Trigonométrie - Fonctions réciproques - Nombres complees

Plus en détail

COURBES PARAMÉTRÉES. t + 1. c ex :]0, [ R n, t + Γ ex := c ex (I). c est une courbe paramétrée de classe C 2.

COURBES PARAMÉTRÉES. t + 1. c ex :]0, [ R n, t + Γ ex := c ex (I). c est une courbe paramétrée de classe C 2. COUBES PAAMÉTÉES 1 Propriétés géométriques des courbes paramétrées Soit n = 2 ou 3 et E n un espace ane associé à l'espace vectoriel n Soit une norme sur n Dénition 11 Une courbe paramétrée est une application

Plus en détail

Les calculatrices sont autoris ees I.1 Traitement classique de la rotation d une mol ecule d eau Figure I.1 1/10

Les calculatrices sont autoris ees I.1 Traitement classique de la rotation d une mol ecule d eau Figure I.1 1/10 Les calculatrices sont autorisées Les deux problèmes sont indépendants. On fera l application numérique chaque fois que cela est possible, en veillant à préciser l unité et à ne donner que les chiffres

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année.

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année. MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polcopié conforme au programme 00, regroupe les documents distribués au élèves en cours d année. Année 0-0 Année 0-0 T le ES A. YALLOUZ (MATH@ES) TABLE DES MATIÈRES

Plus en détail

119 exercices de mathématiques pour 1 re S

119 exercices de mathématiques pour 1 re S mai 06 9 exercices de mathématiques pour re S Stéphane PASQUET Sommaire Disponible sur http: // www. mathweb. fr mai 06 I Le second degré.................................. I. Calcul de discriminant et

Plus en détail

Équations différentielles

Équations différentielles 1 Équations différentielles Compléments de Calculus Math 152 18 janvier 2006 1 Généralités Qu est-ce qu une équation? C est une égalité comportant une (ou plusieurs) inconnue(s) : Résoudre l équation 2x

Plus en détail

PHYSIQUE. n + 1. 1 z = = ---------------------

PHYSIQUE. n + 1. 1 z = = --------------------- PHYSIQUE j est le nombre complexe de module 1 et d argument + π 2 et donc j 2 = 1 Rappel mathématique : z étant un nombre complexe et n un entier naturel, on a pour z 1 l égalité : 1 z z 2 z n n + + +

Plus en détail

Devoir Surveillé n 2

Devoir Surveillé n 2 Devoir Surveillé n 2 Les candidat(e)s veilleront à exposer leurs réponses avec clarté et rigueur, rédiger avec soin dans un français correct et reporter dans la marge les numéros des questions traitées.

Plus en détail

TD de Physique n o 10 : Interférences et cohérences

TD de Physique n o 10 : Interférences et cohérences E.N.S. de Cachan Département E.E.A. M2 FE 3 e année Physique appliquée 2011-2012 TD de Physique n o 10 : Interférences et cohérences Exercice n o 1 : Interférences à deux ondes, conditions de cohérence

Plus en détail

I. ÉTUDE DES FONCTIONS SIN ET COS

I. ÉTUDE DES FONCTIONS SIN ET COS I. ÉTUDE DES FONCTIONS SIN ET COS Les propriétés mises en évidence au thème précédent vont permettre d étudier les fonctions trigonométriques { { R R R R cos : et sin : x cosx) x sinx). On fixe un repère

Plus en détail

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton BTS MCI Lycée Vauban, Brest 4 mai 06 André Breton Table des matières I Compléments pour les bac pro 8 ÉquationsFactorisationsInéquations 9. Identités remarquables................................ 9. Le

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1. Durée : 4 heures

EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1. Durée : 4 heures SESSION 2013 PCP1003 EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1 Durée : 4 heures N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si

Plus en détail

Cours de Mathématiques. ISA BTP, 2 année

Cours de Mathématiques. ISA BTP, 2 année Cours de Mathématiques ISA BTP, 2 année 15 janvier 2013 2 Table des matières 1 Équations différentielles 7 Introduction...................................... 7 1.1 Équations différentielles linéaires........................

Plus en détail

Le second degré. Table des matières

Le second degré. Table des matières Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré......................... 1. Quelques exemples de formes canoniques................. 1.3 Forme canonique

Plus en détail

Éléments de correction du TD

Éléments de correction du TD Septembre 011 Éléments de correction du TD Stéphane Blin Introduction Je donne ici les éléments de correction de la question - de la marche de potentiel, ainsi que les éléments de corrections pour les

Plus en détail

avec τ = 1. A la fermeture du circuit, on visualise à l aide d un oscilloscope à mémoire la tension UBA

avec τ = 1. A la fermeture du circuit, on visualise à l aide d un oscilloscope à mémoire la tension UBA Classe: 4 ème ath.s. : 2015/2016 ycée de Cebbala Sidi Bouzid Prof : Barhoumi zzedine e dipôle xercice n 1: e circuit de la figure 1 comporte en série : un générateur de tension idéal de fém, un résistor

Plus en détail

Accompagnement personnalisé

Accompagnement personnalisé 1 Les fractions Accompagnement personnalisé O. Lader Propriété 1.1. Simplification dans une fraction : a x b x = a b Exemples. 4 6 = 3 = 3, 15 5 = 3 5, 1x x = 1 x. Propriété 1.. Pour tous nombres a, b,

Plus en détail

Principe de fonctionnement d un véhicule à roues

Principe de fonctionnement d un véhicule à roues Mécanique «Chapitre» 4 Principe de fonctionnement d un véhicule à roues Parties du programme de PCSI à revoir Notions et contenus Lois de Coulomb du frottement de glissement dans le seul cas d un solide

Plus en détail

Récupération d énergie

Récupération d énergie Récupération d énergie Le sujet propose d étudier deux dispositifs de récupération d énergie soit thermique (problème 1) soit mécanique (problème 2) afin de produire une énergie électrique. Chaque problème

Plus en détail

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé)

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des questions posées, une seule des quatre réponses

Plus en détail

COURS M2 GÉOMÉTRIE ET TOPOLOGIE DIFFÉRENTIELLES 2013-2014 FEUILLE D EXERCICES NO. 2 : CHAMPS DE VECTEURS, COMPLÉMENT DE COURS : FIBRÉS VECTORIELS

COURS M2 GÉOMÉTRIE ET TOPOLOGIE DIFFÉRENTIELLES 2013-2014 FEUILLE D EXERCICES NO. 2 : CHAMPS DE VECTEURS, COMPLÉMENT DE COURS : FIBRÉS VECTORIELS COURS M2 GÉOMÉTRIE ET TOPOLOGIE DIFFÉRENTIELLES 203-204 FEUILLE D EXERCICES NO. 2 : CHAMPS DE VECTEURS, DÉRIVÉE DE LIE COMPLÉMENT DE COURS : FIBRÉS VECTORIELS ALEXANDRU OANCEA Exercice. (crochet, flots,

Plus en détail

Feuille d'exercices : Diusion thermique

Feuille d'exercices : Diusion thermique Feuille d'exercices : Diusion thermique P Colin 2014/2015 1 Diusion thermique dans une barre * On considère une barre cylindrique de longueur l et de section S constituée d un matériau de conductivité

Plus en détail

L3 Mathématique pour la physique Examen final 4 janvier 2011 : CORRIGE

L3 Mathématique pour la physique Examen final 4 janvier 2011 : CORRIGE Université Joseph Fourier L3 Physique Julia Meyer julia.meyer@ujf-grenoble.fr L3 Mathématique pour la physique Examen final 4 janvier 20 : CORRIGE Modalités : Notes de cours et TDs permis. NOTE IMPORTANTE

Plus en détail

Cours de physique. Classes 1B et 1C. Athénée de Luxembourg

Cours de physique. Classes 1B et 1C. Athénée de Luxembourg Cours de physique Classes 1B et 1C Athénée de Luxembourg Table des matières 1 Cinématique et Dynamique 5 1.1 Grandeurs cinématiques.............................. 5 1.1.1 Base cartésienne..............................

Plus en détail

Fonctions à deux variables

Fonctions à deux variables Fonctions à deux variables ECE Lcée Carnot 5 janvier Aspect graphique Définition. Une fonction à deux variables est une application f : D R, où D est une sous-ensemble du plan R appelé domaine de définition

Plus en détail

Modélisation et Simulation

Modélisation et Simulation Cours de modélisation et simulation p. 1/77 Modélisation et Simulation G. Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Cours de modélisation et simulation

Plus en détail

3 Le champ de gravité g Page 1 de 24

3 Le champ de gravité g Page 1 de 24 Licence 3 Sciences de la Terre, de l Univers et de l Environnement Université Joseph-Fourier : Outil Physique et Géophysique 3 Le champ de gravité g Page 1 de 24 k Daniel.Brito@ujf-grenoble.fr E MAISON

Plus en détail

Superposition de signaux sinusoïdaux

Superposition de signaux sinusoïdaux Superposition de signaux sinusoïdaux I TP interférences obtenues par la superposition de deux ondes ultrasonores...3 1 Modélisation d une courbe sous Regressi...3 2 Mesure de l amplitude de l onde résultant

Plus en détail

DS SCIENCES PHYSIQUES MATHSPÉ

DS SCIENCES PHYSIQUES MATHSPÉ DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Mécanique...2 I.Mise en équations...2 II.Résolution...4 III.Vérifications...4 IV.Aspects énergétiques...4 Optique...5 I.Interférences

Plus en détail

Théorème d Ampère et applications

Théorème d Ampère et applications 6 Théorème d Ampère et applications 1 Théorème d Ampère Equivalent du théorème de Gauss pour l électrostatique. Permet de calculer des champs simplement en utilisant la symétrie des courants. Mais il faut

Plus en détail

Cours de mathématiques pour la Terminale S. Savoir-Faire par chapitre avec corrigé

Cours de mathématiques pour la Terminale S. Savoir-Faire par chapitre avec corrigé Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre avec corrigé Florent Girod Année scolaire 205 / 206. Eternat Notre Dame - Grenoble Table des matières I Savoir-Faire 2 ) Suites numériques.................................

Plus en détail

PROGRAMME DE MATHEMATIQUE 6 ème SCIENTIFIQUE & TECHNIQUE INDUSTRIELLE

PROGRAMME DE MATHEMATIQUE 6 ème SCIENTIFIQUE & TECHNIQUE INDUSTRIELLE PROGRAMME DE MATHEMATIQUE 6 ème SCIENTIFIQUE & TECHNIQUE INDUSTRIELLE Chaque fois que c est nécessaire, il sera fait usage des moyens modernes de calcul. I. ALGEBRE-ANALYSE OBJECTIFS SPECIFIQUES CONTENUS/MATIERES

Plus en détail

Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties

Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties L'objet de cette ressource est l'étude des systèmes physiques, de type mécanique, électrique ou microscopique, se comportant

Plus en détail

Master de Formation des Formateurs Groupe Modélisation. Séance du 19 septembre 2003 Modélisation du trafic routier François Sauvageot

Master de Formation des Formateurs Groupe Modélisation. Séance du 19 septembre 2003 Modélisation du trafic routier François Sauvageot Master de Formation des Formateurs Groupe Modélisation Séance du 19 septembre 2003 Modélisation du trafic routier François Sauvageot Position du problème Modéliser le trafic routier c est tenter de prédire

Plus en détail

Concours AVENIR 8 mai 2011 EPREUVE DE PHYSIQUE. DUREE : 1h30mn Coefficient 5 CONSIGNES SPECIFIQUES

Concours AVENIR 8 mai 2011 EPREUVE DE PHYSIQUE. DUREE : 1h30mn Coefficient 5 CONSIGNES SPECIFIQUES NOM :. PRENOM : NUMERO DE CANDIDAT :... EPREUVE DE PHYSIQUE DUREE : 1h30mn Coefficient 5 CONSIGNES SPECIFIQUES Lire attentivement les consignes afin de vous placer dans les meilleures conditions de réussite

Plus en détail

HYDRODYNAMIQUE. 1.1 Mouvement d'un fluide, écoulement stationnaire et laminaire

HYDRODYNAMIQUE. 1.1 Mouvement d'un fluide, écoulement stationnaire et laminaire MHd 1 HYDRODYNAMIQUE 1 THEORIE 1.1 Mouvement d'un fluide, écoulement stationnaire et laminaire L'écoulement d un fluide est défini si, à un instant t, on donne en tout point x de l espace: v (x,t) la vitesse

Plus en détail

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités Sujet Métropole 01 EXERIE 1. [4 pts] Probabilités Une jardinerie vend de jeunes plants d arbres qui proviennent de trois horticulteurs : 5% des plants proviennent de l horticulteur H 1, 5% de l horticulteur

Plus en détail

Écoulements potentiels

Écoulements potentiels Chapitre 2 Écoulements potentiels O. Thual, 26 juin 21 Sommaire 1 Perte de charge...................... 3 1.1 Équation de Bernoulli................. 3 1.2 Charge moyenne.................... 4 1.3 Loi de

Plus en détail

Chapitre 5 Les lois de la mécanique et ses outils

Chapitre 5 Les lois de la mécanique et ses outils DERNIÈRE IMPRESSION LE 1 er août 2013 à 12:49 Chapitre 5 Les lois de la écanique et ses outils Table des atières 1 Les référentiels et repères 2 2 Les grandeurs de l évolution 2 2.1 Le vecteur de position..........................

Plus en détail