Université Joseph Fourier Premier semestre 2009/10. Licence première année - MAT11a - Groupe CHB-1. Contrôle Continu 1, le 9/10/2009

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Université Joseph Fourier Premier semestre 2009/10. Licence première année - MAT11a - Groupe CHB-1. Contrôle Continu 1, le 9/10/2009"

Transcription

1 Université Joseph Fourier Premier semestre 9/ Licence première année - MATa - Groupe CHB- Contrôle Continu, le 9//9 Le contrôle dure heure. Questions de cours. ) Soit f :]a, b[ ]c, d[ unefonctionbijectiveetdérivabletelleque,pourtoutx ]a, b[, f (x).onnoteg :]c, d[ ]a, b[ lafonctionréciproquedef. Onadmetqueg est dérivable sur ]c, d[. Montrer que la dérivée de g s écrit : g (x) = f (g(x)) ) Utiliser cette formule pour montrer que la dérivée de arctan : R ] π ; π [est: arctan (x) = +x Exercice. Montrer par récurrence l identité suivante : n N\{} +3+ +(n ) = n Exercice. Calculer la dérivée des fonctions suivantes : ) f(x) =ln(+e x ) ) g(x) = (sin(x)) 3) h(x) = x +4x+ +x 4) k(x) =x e x sin(x) Exercice 3. Soit f : R R une fonction. Pour chacune des propositions suivantes, écrire sa négation : ) x R y R f(x) f(y) ) x R f(x) > OUf(x) = 3) x R y R x y f(x) f(y) 4) x R f(x) = Dire laquelle des propositions précédentes signifie que : a) f est une fonction croissante. b) f admet un maximum en x. c) L équation f(x) = a au moins une solution dans R. d) f est une fonction positive.

2 Exercice 4. Le gardien du phare P doit rejoindre la ville V.Ilvoyageenbarquedu phare au point M àunevitessede4km.h,puisrejointlavilleàpiedàunevitessede 5 km.h.onnotex la distance OM en km. (Voirfigure.) Terre 5 km O x M V 3 km Mer P ) Montrer que le temps mis par le gardien pour se rendre du phare à la ville est donné par la formule : x +9 T (x) = + 5 x 4 5 ) Résoudre dans R + l inéquation : 5x 4 x +9> 3) Établir le tableau de variation de la fonction x T (x) surl intervalle[, 5]. 4) Où le gardien doit-il accoster pour que son voyage dure le moins longtemps possible?

3 Université Joseph Fourier Premier semestre 9/ Licence première année - MATa - Groupe CHB- Contrôle Continu, le //9 Le contrôle dure heure. Questions de cours. ) Donner les définitions de valeur propre d une matrice et vecteur propre d une matrice. ) Soit P œm n,n (R) une matrice inversible et A œm n,n (R). Montrer par récurrence que (P AP ) n = PA n P. Exercice. Soit la matrice M : Q R 5 c d M = a4 5 b 6 7 ) Soit les matrices : Q R Q R 5 c d c d U = a 3b L = a b œ R 3 Pour quelles valeurs de a-t-on M = L U? ) Calculer le déterminant de M. 3) Soit Y œ R 3 un vecteur quelconque fixé. Combien de solutions a le système linéaire MX = Y où l inconnue X est un vecteur de R 3? (On ne demande pas de calculer ces solutions.) Exercice. Soit le système linéaire : Y _] x y + z = (S) y z = _[ x + y z = ) Écrire le système sous la forme AX = B ou A est une matrice et X et B sont des vecteurs. ) Montrer que A est inversible et calculer son inverse. 3) En déduire les solutions de (S).

4 Exercice 3. Déterminer les valeurs propres et les vecteurs propres des matrices suivantes : A B A B , Exercice 4. Soit la fonction f : R æ R définie par : f(x, y) = sin(x)cos(y). On rappelle que le laplacien d une fonction de deux variables est défini par f = ˆf + ˆf. ˆx ˆy Montrer que la fonction f considérée vérifie f = f.

5 Université Joseph Fourier Premier semestre 9/ Licence première année - MATa - Groupe CHB- Contrôle Continu 3, le //9 Le contrôle dure heure. Attention : Les intégrales I 3 et J 3 sont un peu plus dures et hors-barème. Questions de cours. ) En utilisant les formules d Euler ou les formules usuelles de trigonométrie, linéariser cos (t), en déduire que π/ cos (t)dt = π. 4 ) Soit α un réel positif, donner une primitive de. x +α Exercice. Calculer les intégrales suivantes avec une intégration par parties (ou plusieurs) : I = te t dt I = t cos(t)dt I 3 = π/ e t cos(t)dt Exercice. En utilisant le changement de variable indiqué, calculer : J = J = J 3 = dx e x + e t = x ex x dx x =sin(t) x dx t = e x +e x Exercice 3. Soit la fonction f : R\{} R définie par : f(x) = 5x x + x(x +) ) Trouver trois réels A, B et C tels que, pour tout x R : ) Donner une primitive de f. f(x) = A x + Bx + C x + 3) À l aide d un changement de variable, calculer : ln() 5e t e t + dt e t +

6 Université Joseph Fourier Premier semestre / Licence première année - MATa - Groupe GSC- Contrôle Continu, le 5// Le contrôle dure heure 3. Questions de cours.. Soient f et g deux fonctions de R dans R, quelleestla formule donnant la dérivée de la fonction composée f g?. Quelle est la dérivée de la fonction arctan? Exercice. On considère les quatre propostions suivantes :. 8a R 8b R 8c R (a <bet b<c) ) a<c. 8a R9x R x a 3. 8a R8b R a b ) a b Pour chacune d entre elles, en donner le sens en français, dire si elle est vraie ou fausse et écrire sa négation. Exercice. Lors d une réunion, chaque participant qui arrive serre la main de tout les participants déjà arrivés. On note u n le nombre total de poignées de mains échangées quand n personnes sont arrivées.. Calculer u,u,u 3 et u 4.. Parmi les propositions suivantes, dire lesquelles sont plausibles : u n = n u n = n(n+) u u = n(n ) 3. On suppose que n personnes sont déjà arrivées, une (n + )-ième personne arrive, combien de mains serre-t-elle? En déduire que u n+ = u n + n. 4. Montrer par récurrence que l expression de u n choisie à la deuxième question est correcte. Exercice 3. Calculer la dérivée des fonctions suivantes :. f(x) =ln(+x). g(x) = sin(x) 3. h(x) = x +4x+ +x 4. k(x) =x e x sin(x)

7 Exercice 4. Le rectagle ABCD représente un mur. En B et C sont positionnées des arrivées d eaux pluviales (par des gouttières). L évacuation de ces eaux se trouve en I au milieu de [AD]. On doit relier B et C à I. On reli d abord I à M par un tuyau vertical de longueur x puis on M à B et C par deux tuyaux obliques. (voir figure). En fonction de la hauteur x à laquelle se trouve le point M calculer la longueur totale de tuyau nécessaire. On notera cette fonction L(x).. À quel intervalle intervalle est il raisonnable de restreindre la variable x si on tient compte de l origine pratique du problème? 3. Dresser le tableau de variation de L(x) sur l intervalle choisi à la question précédente. 4. En quel position faut il placer M pour utiliser le moins de tuyau possible. B C M x 6 A I D

8 Université Joseph Fourier Premier semestre / Licence première année - MATa - Groupe GSC- Contrôle Continu, le 7// Le contrôle dure heure. Questions de cours. ) On pose : A B M = V = A B Montrer que MV =. Sans e ectuer de calcul supplémentaire, dire si les a rmations suivantes sont vraies ou fausses, (justifier grâce à un résultat du cours) : (i) M est inversible. (ii) est valeur propre de M. (iii) Le système linéaire M ( x y )=( ) a une unique solution. (iv) V est un vecteur propre de M. ) Soit A œm n n (R) une matrice inversible. En utilisant la définition de l inverse et les propriétés du déterminant, montrer que det(a )= det(a). Exercice. Soit la matrice M : Q R 5 c d M = a4 5 b 6 7 ) Soit les matrices : Q R Q R 5 c d c d U = a 3b L = a b œ R 3 Pour quelles valeurs de a-t-on M = L U? ) Calculer les déterminants de L et de U (pour le trouvé à la question précédente). 3) Calculer le déterminant de M (bonus si vous arrivez à le faire avec une seule multiplication). 4) Soit Y œ R 3 un vecteur quelconque fixé. Combien de solutions a le système linéaire MX = Y où l inconnue X est un vecteur de R 3? (On ne demande pas de calculer ces solutions.)

9 Exercice. Soit le système linéaire : Y _] x y + z = (S) y z = _[ x + y z = ) Écrire le système sous la forme AX = B ou A est une matrice et X et B sont des vecteurs. ) Montrer que A est inversible et calculer son inverse. 3) En déduire les solutions de (S). Exercice 3. On considère les trois matrices suivantes : Q R A B A B c d A = B = C = a 3 b ) Déterminer les valeurs propres et les vecteurs propres de A, B et C. ) Bonus : Calculer A.

10 Université Joseph Fourier Premier semestre / Licence première année - MATa - Groupe GSC- Contrôle Continu 3, le 3// Le contrôle dure heure 5. Questions de cours. ) Énoncer la formule d intégration par partie et s en servir pour calculer s tet dt. ) Donner une primitive de f(t) = +t 3) Parmi les équations di érentielles suivantes, lesquelles sont linéaires? Pour les équations linéaires, donner l équation homogène associée. (E ) u Õ = sin(t)u (E ) u Õ =/t (E 3 ) u Õ = sin(u) (E 4 ) u Õ +u = (E 5 ) u =(u Õ ) Exercice. ) Calculer les intégrales suivantes à l aide d une intégration par partie : I = e ln(t)dt I = Astuce : pour I 3, monter que I 3 =(fi/) I 3. t cos(fit) I 3 = ) Utiliser le changement de variable indiqué pour calculer : fi/ cos (t)dt Exercice. On pose : I 4 = I 6 = I 5 = 4 cos(fi Ô t) Ô t dt u = Ô t e t dt +et u = et Ô x dx x = sin(t) f(t) = t t 3 + t

11 ) Trouver trois réels abet c tels que : ) En déduire une primitive de f. f(t) = a t + bt + c t + 3) On considère l équation di érentielle homogène : Donner toutes les solutions de (EH). (EH) u Õ + t u = 4) En utilisant la méthode de varition de la constante, trouver une solution particulière de : (E) u Õ + t u = t t + On pourra s aider de la deuxième question. 5) Donner toutes les solutions de (E). Exercice 3. Dans cette exercie, on se propose d étudier l équation di érentielle non linéaire : (E) v Õ =v 4v qui modélise l évolution dans le temps d une population v(t) dans un milieu aux ressources limitées. ) On pose u(t) =/v(t). Montrer que v est solution de (E) si et seulement si u est solution de : (E Õ ) u Õ = u +4 ) Écrire l équation homogène associée à (E Õ ) et déterminer ses solutions. 3) Trouver une solution particulière de (E Õ ) sous la forme u (t) = où est une constante à déterminer. 4) En déduire toutes les solutions de (E Õ ). 5) En déduire toutes les solutions de (E). 6) Déterminer la solution v(t) de (E) telle que u() =.

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7.

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7. Mathématiques pour l informatique IMAC première année - Soutien - Nombres complexes Rappels. Un nombre complexe z admet plusieurs représentations : représentation vectorielle z = (a, b) où a, b R représentation

Plus en détail

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme Cahier de vacances Exercices PCSI - PC, Lycée Dupuy de Lôme Votre année de PCSI a été bien remplie et il est peu probable que l année de PC qui arrive vous paraisse plus facile. C est pourquoi, je vous

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

Dérivation Primitives

Dérivation Primitives Cours de Terminale STI2D Giorgio Chuck VISCA 27 septembre 203 Dérivation Primitives Table des matières I La dérivation 3 I Rappels 3 I. exemple graphique............................................. 3

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

Mathématiques Exercices pour le soutien

Mathématiques Exercices pour le soutien Mathématiques 5-6 Exercices pour le soutien Ma9 UVSQ Exercice. Exercice 6. Calculer les dérivées des fonctions suivantes : f : x 3x g : x 4 x +x h : x x x+ k : x (3x +) 9 m : x 3 x +4 j : x 5(x )(x ) l

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 Durée : 3h Calculatrice autorisée NOM : Prénom : Sauf mention du contraire, tous les résultats doivent être soigneusement justifiés. La précision et la clarté de

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Mathématiques I Section Architecture, EPFL

Mathématiques I Section Architecture, EPFL Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton BTS MCI Lycée Vauban, Brest 4 mai 06 André Breton Table des matières I Compléments pour les bac pro 8 ÉquationsFactorisationsInéquations 9. Identités remarquables................................ 9. Le

Plus en détail

Cours fonctions, expressions algébriques

Cours fonctions, expressions algébriques I. Expressions algébriques, équations a) Développement factorisation Développer Développer un produit, c est l écrire sous forme d une somme. Réduire une somme, c est l écrire avec le moins de termes possibles.

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Terminale ES Correction du bac blanc de Mathématiques (version spécialité).

Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Lycée Jacques Monod février 05 Exercice : Voici les graphiques des questions. et.. A 4 A Graphique Question. Graphique Question..

Plus en détail

Département Licence Sciences et Technologies Année 2013-2014. Exercices MAT11a: analyse mathématique pour les sciences

Département Licence Sciences et Technologies Année 2013-2014. Exercices MAT11a: analyse mathématique pour les sciences Université Joseph Fourier, Parcours BIO, CHB, SVT Département Licence Sciences et Technologies Année 23-24 Exercices MATa: analyse mathématique pour les sciences Chapitre A Fondements Exercice On se donne

Plus en détail

Equations différentielles

Equations différentielles Equations différentielles Mathématiques Martine Arrrou-Vignod FORMAV 2009 I Equations différentielles linéaires à coefficients constants du premier ordre 3 I.1 Vocabulaire Définitions......................

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES «L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES LIBAN 2015 Une entreprise artisanale produit des parasols. Elle en fabrique

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Exercices sur les équations différentielles :

Exercices sur les équations différentielles : Université de Rennes 200-20 Licence de mathématiques L2-ED Exercices sur les équations différentielles : Une mise en jambes Exercice. Parmi les espaces suivants, lesquels sont des espaces vectoriels sur

Plus en détail

Département Licence Sciences et Technologies Année 2013-2014. Exercices MAT11a: analyse mathématique pour les sciences

Département Licence Sciences et Technologies Année 2013-2014. Exercices MAT11a: analyse mathématique pour les sciences Université Joseph Fourier, Parcours BIO, CHB, SVT Département Licence Sciences et Technologies Année 3-4 Exercices MATa: analyse mathématique pour les sciences Chapitre Manipulations algébriques et logiques

Plus en détail

Exercices classés par thèmes

Exercices classés par thèmes Hypokhâgne B/L 0/0 Exercices classés par thèmes Avec extraits de sujets et quelques corrigés... Introduction Table des matières Fonctionnement du document III Fonctions de R dans R 4 Table des matières

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

Exercices de mathématiques MPSI et PCSI

Exercices de mathématiques MPSI et PCSI Exercices de mathématiques MPSI et PCSI par Abdellah BECHATA www.mathematiques.ht.st Table des matières Généralités sur les fonctions 2 2 Continuité 3 3 Dérivabilité 4 4 Fonctions de classes C k 5 5 Bijections

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Devoir surveillé n 1 : correction

Devoir surveillé n 1 : correction E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE

CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE ÉCOLE NATIONALE DE L AVIATION CIVILE ANNÉE 2006 CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE ÉPREUVE DE MATHÉMATIQUES Durée : 2 Heures Coefficient : 1 Ce sujet comporte (dans l énoncé d origine, pas

Plus en détail

Nombre dérivé, interprétations géométrique et cinématique

Nombre dérivé, interprétations géométrique et cinématique CHAPITRE 4 DÉRIVATION ET PRIMITIVATION Nombre dérivé, interprétations géométrique et cinématique 08. Nombre dérivé Soit f une fonction numérique, définie sur un intervalle ou une réunion d intervalles,

Plus en détail

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 Voici une fiche contenant 100 exercices de difficulté raisonable, plutôt techniques, qui recouvrent l ensemble du programme étudié cette année. A raison

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES RAPPELS DE MATHEMATIQUES ORTHOPHONIE Première année 27 28 Dr MF DAURES 1 RAPPELS DE MATHEMATIQUES I - LES FONCTIONS A - Caractéristiques générales des fonctions B - La fonction dérivée C - La fonction

Plus en détail

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7.

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7. BACCALAURÉAT GENÉRAL Session 2011 MATHÉMATIQUES Série ES Enseignement de Spécialité Durée de l épreuve : 3 heures Coefficient : 7 Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mathématiques Lycee Gustave Eiffel PTSI 02/03 Chapitre 3 Fonctions usuelles 3.1 Théorème de la bijection Une fonction dérivable sur un intervalle I, strictement monotone déþnit une bijection.

Plus en détail

Devoir Commun : 3 heures -27.01.10- Terminales ES - Lycée Newton - Y. Angeli et L. Arab

Devoir Commun : 3 heures -27.01.10- Terminales ES - Lycée Newton - Y. Angeli et L. Arab Exercice Devoir Commun : 3 heures -7..- Terminales ES - Lycée Newton - Y. Angeli et L. Arab Soient f : R { } R, x x3 + x + x + (x + ), et C la courbe de f dans un repère orthonormé d unité, 5cm.. Limites.

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

La réciproque est fausse : les droites parallèles à l axe des ordonnées ne sont pas des représentations graphiques de fonction

La réciproque est fausse : les droites parallèles à l axe des ordonnées ne sont pas des représentations graphiques de fonction S Cours Les fonctions affines Par cœur : définition d une fonction affine Soit a et b deux réels. Une fonction définie sur R par : f(x) = ax + b est appelée fonction affine. De plus, a = Variation des

Plus en détail

Exercices de rentrée MPSI-PCSI

Exercices de rentrée MPSI-PCSI Exercices de rentrée MPSI-PCSI Lycée Saint-Louis 015-016 Introduction Cette feuille d exercices s adresse aux élèves rentrant en MPSI ou en PCSI au lycée Saint- Louis Il s agit d exercices qui sont entièrement

Plus en détail

COURS L1 PREPA AGRO VETO 2012. Claire CHRISTOPHE

COURS L1 PREPA AGRO VETO 2012. Claire CHRISTOPHE COURS L PREPA AGRO VETO 202 Claire CHRISTOPHE 8 avril 203 2 Table des matières I ANALYSE 5 Fonctions numériques de la variable réelle 7. Complément sur l étude des fonctions..................................

Plus en détail

Equations dierentielles

Equations dierentielles Equations dierentielles Université Mohammed I Faculté des Sciences Département de Mathématiques Oujda. Plan 1 Introduction 2 3 Résponsable du cours : Pr. NAJIB TSOULI. 1 Introduction 2 3 Introduction Une

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Exercice 1 : 5 points Sur le site http: //www.agencebio.org, on a extrait des informations concernant l agriculture en France métropolitaine.

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mathématiques 2 première partie : Analyse 2 DEUG MIAS 1 e année, 2 e semestre. Maximilian F. Hasler Département Scientifique Interfacultaire B.P. 7209 F 97275 SCHOELCHER CEDEX Fax : 0596 72 73

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

BACCALAURÉAT LIBANAIS - SG Énoncé

BACCALAURÉAT LIBANAIS - SG Énoncé CONSIGNES À SUIVRE PENDANT L EXAMEN. DURÉE : 4 heures Il y a 6 exercices obligatoires à résoudre. L exercice est noté sur points, l exercice sur points, l exercice 3 sur 3 points, l exercice 4 sur 3 points,

Plus en détail

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité) BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat

Plus en détail

Sciences Po Paris 2012 Mathématiques Solutions

Sciences Po Paris 2012 Mathématiques Solutions Sciences Po Paris 202 athématiques Solutions Partie : Le modèle de althus odèle discret a Pour tout entier naturel n, on a P n+ P n = P n donc P n+ = +P n Par suite la suite P n est géométrique de raison

Plus en détail

MATHEMATIQUES ECE 1 NOTIONS DE COURS A CONNAITRE PAR COEUR

MATHEMATIQUES ECE 1 NOTIONS DE COURS A CONNAITRE PAR COEUR MATHEMATIQUES ECE NOTIONS DE COURS A CONNAITRE PAR COEUR CALCULS NUMERIQUES Fractions, puissances, racines carrées, résolution d équations et inéquations GENERALITES SUR LES FONCTIONS ) Nombre dérivé d

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Fiche de révisions de première année pour une rentrée en PSI en toute sérénité!

Fiche de révisions de première année pour une rentrée en PSI en toute sérénité! PSI Septembre 0 MATHEMATIQUES Fiche de révisions de première année pour une rentrée en PSI en toute sérénité! Table des matières Nombres complexes 3. Cours...................................... 3. Exercices

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Terminale S3 Année 2009-2010 Table des matières I Les fonctions. 4 1 Les limites (suite du cours) 5 IV Limites par comparaison....................................... 5 V Fonctions

Plus en détail

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Contrôle commun : 4 heures

Contrôle commun : 4 heures Exercice 1 (5 points) Contrôle commun : 4 heures PARTIE A On considère la fonction f définie sur l intervalle ]0 ; + [ par f(x) = ln x + x. 1. Déterminer les limites de la fonction f en 0 et en +.. Étudier

Plus en détail

Série n 5 : Optimisation non linéaire

Série n 5 : Optimisation non linéaire Université Claude Bernard, Lyon I Licence Sciences & Technologies 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France Option: M2AO 2007-2008 Série n 5 : Optimisation

Plus en détail

147 exercices de mathématiques pour Terminale S

147 exercices de mathématiques pour Terminale S 5 décembre 05 47 exercices de mathématiques pour Terminale S Stéphane PASQUET Sommaire Disponible sur http: // www. mathweb. fr 5 décembre 05 I Continuité & dérivabilité............................. I.

Plus en détail

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien TRAVAUX DIRIGÉS DE l UE MNBif Informatique 3A MÉTHODES NUMÉRIQUES DE BASE 2015-2016, Automne N. Débit & J. Bastien Document compilé le 13 novembre 2015 Liste des Travaux Dirigés Avant-propos iii Travaux

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Baccalauréat Série S Métropole, juin 2014

Baccalauréat Série S Métropole, juin 2014 Baccalauréat Série S Métropole, juin 4 Sujet et Corrigé Stéphane PASQUET Disponible sur http://www.mathweb.fr juin 4 Exercice (5 points) - Commun à tous les candidats Partie A Dans le plan muni d un repère

Plus en détail

Equations Différentielles

Equations Différentielles Cours optionnel S4 - Maths Renforcées 1 Equations Différentielles I- Définitions élémentaires. On appelle Equation Différentielle Ordinaire (EDO) toute équation (E) du type (E) : y (n) (t) = F (t; y(t);

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012

Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012 Lycée Marlioz - Aix les Bains Bac Blanc 2012 Mathématiques - Terminale E Candidats n ayant pas choisi la spécialité maths 16 mai 2012 Pour cette épreuve, la rédaction, la clarté et la précision des explications

Plus en détail

Chapitre 6 La dérivation

Chapitre 6 La dérivation Capitre 6 La dérivation A) Nombre dérivé et tangente 1) Tangente en un point à une courbe et nombre dérivé Soit f(x) la fonction dont la courbe est représentée ci-dessus, et prenons deux points A et B

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h A. P. M. E. P. Le problème se compose de 4 parties. La dernière page sera à rendre avec

Plus en détail

CENTRALE PC 2000 ÉPREUVE DE MATH 2. Première partie

CENTRALE PC 2000 ÉPREUVE DE MATH 2. Première partie CENTRALE PC 2000 ÉPREUVE DE MATH 2 Première partie I. A. 1. La fonction x px kx 2 = x(p kx) présente un maximum pour toute valeur de p au point d abscisse x = p p2 et il vaut 2k 2k. Conclusion : J(f) =

Plus en détail

Chapitre 9 Les équations différentielles

Chapitre 9 Les équations différentielles Chapitre 9 Les équations différentielles A) Généralités Une équation différentielle est une équation dont l inconnue est une fonction et dans laquelle apparaissent une ou plusieurs dérivées de cette fonction.

Plus en détail

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 Durée : 3h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA

Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA Exercice 1 (4 points) Dans une classe de terminale STAV de 5 élèves, chaque élève possède une

Plus en détail

Agrégation interne de Sciences économiques et sociales - Session 2008 Épreuve de Mathématiques - sujet A

Agrégation interne de Sciences économiques et sociales - Session 2008 Épreuve de Mathématiques - sujet A Épreuve de Mathématiques - sujet A Exercice Une société de location de voitures possède trois agences, une à Rennes, une à Lyon, une à Marseille. Lorsqu un client loue une voiture, un jour donné, dans

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Introduction Pré-requis : Etude de fonctions dérivées logarithmes et exponentielles continuité Plan du cours 1. Intégrales 2. Primitives 1. Intégrales A. Aire sous la courbe Méthode des rectangles : Pour

Plus en détail

Examen blanc pour le cours MATH-G-101, avril 2013

Examen blanc pour le cours MATH-G-101, avril 2013 Examen blanc pour le cours MATH-G-101, avril 2013 Question: 1 2 3 4 5 6 7 8 Total Points: 16 12 19 9 9 9 16 10 100 Score: Nom: Prénom(s): Section: Matricule: Instructions Vous avez 2 heures 30 minutes

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

9. Équations différentielles

9. Équations différentielles 63 9. Équations différentielles 9.1. Introduction Une équation différentielle est une relation entre une ou plusieurs fonctions inconnues et leurs dérivées. L'ordre d'une équation différentielle correspond

Plus en détail

7 FONCTIONS USUELLES. 1 Parité d une fonction. 2 Fonctions affines

7 FONCTIONS USUELLES. 1 Parité d une fonction. 2 Fonctions affines Cours 7 FONCTIONS USUELLES Parité d une fonction Définition Soit f une fonction définie sur un ensemble D. On dit que f est paire si : { D est symétrique par rapport à 0 Pour tout x D, f ( x) = f (x) On

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES Durée de l épreuve : 3 heures Coefficient : 7 (ES) ES : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques de poche sont autorisées conformément

Plus en détail

DÉRIVATION (Partie 1) I. Fonction dérivée d une fonction polynôme du second degré

DÉRIVATION (Partie 1) I. Fonction dérivée d une fonction polynôme du second degré 1 sur 5 DÉRIVATION (Partie 1) Le mot «dérivé» vient du latin «derivare» qui signifiait «détourner un cours d eau». Le mot a été introduit par le mathématicien franco-italien Joseph Louis Lagrange (1736

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

: 3 si x 2 [0; ] 0 sinon

: 3 si x 2 [0; ] 0 sinon Oral HEC 2007 Question de cours : Dé nition d un estimateur ; dé nitions du biais et du risque quadratique d un estimateur. On considère n (n > 2) variables aléatoires réelles indépendantes X 1,..., X

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/200 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 6 : PRIMITIVES ET INTEGRATION - COURS + ENONCE EXERCICE - 39 . Tableau

Plus en détail

Corrigé Bac ES Spécialité Maths Antilles Guyane 2011

Corrigé Bac ES Spécialité Maths Antilles Guyane 2011 Corrigé Bac ES Spécialité Maths Antilles Guyane 2011 Christian CYRILLE A quoi servent les mathématiques? : C est pour l honneur de l esprit humain? Jacobi 1 Exercice 1-5 points - Commun à tous les candidats

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL ACCALAUREAT GENERAL Session 2009 MATHÉMATIQUES - Série ES - Enseignement de Spécialité Liban EXERCICE 1 1) 2) C 3) C 4) A Explication 1. Chacun des logarithmes existe si et seulement si x > 4 et x > 2

Plus en détail

Fonctions affines. 2 Signe d une fonction affine 18 2.1 activité... 19 2.2 corrigé activité... 20

Fonctions affines. 2 Signe d une fonction affine 18 2.1 activité... 19 2.2 corrigé activité... 20 Fonctions affines Table des matières 1 généralités : (images, formule, variations, tableau de valeurs, courbe, équations, inéquations) 2 1.1 activité............................................... 3 1.2

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi avril 014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTRISÉES obligatoire Coefficient : 7 Le

Plus en détail