Calcul des probabilités Conditionnement & indépendance
|
|
|
- Eliane Guérin
- il y a 9 ans
- Total affichages :
Transcription
1 Chapitre 8 Calcul des probabilités Conditionnement & indépendance Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Conditionnement Conditionnement par un événement de probabilité non nulle. Notation P A (B). Construire un arbre pondéré en lien avec une situation donnée. Exploiter la lecture d un arbre pondéré pour déterminer des probabilités. Calculer la probabilité d un événement connaissant ses probabilités conditionnelles relatives à une partition de l univers. On représente une situation à l aide d un arbre pondéré ou d un tableau. On énonce et on justifie les règles de construction et d utilisation des arbres pondérés. Un arbre pondéré correctement construit constitue une preuve. Le vocabulaire lié à la formule des probabilités totales n est pas un attendu du programme, mais la mise en oeuvre de cette formule doit être maîtrisée. Cette partie du programme se prête particulièrement à l étude de situations concrètes. I. Probabilités conditionnelles 1.1) Étude d'un exemple. On considère l'univers Ω formé des trente élèves de la classe de Terminale S. L'expérience aléatoire consiste à choisir un élève au hasard dans cette classe. On considère les deux événements suivants : A = «l'élève choisi fait de l'allemand en LV1» ; A est l'événement contraire. F = «l'élève choisi est une fille» ; F est l'événement contraire. Chacun de ces deux caractères partage Ω en deux parties : A et A ainsi que F et F. On obtient le tableau des effectifs suivants : F F Totaux A A Totaux Chaque élève a exactement la même chance d'être choisi. Nous sommes donc en situation d'équiprobabilité : La probabilité que l'élève choisi fasse de l'allemand est donnée par : Nombre d ' issues favorables P (A)= Nombre d ' issues possibles = card A card Ω =17 30 La probabilité que l'élève choisi soit une fille est donnée par : Nombre d ' issues favorables P (F )= Nombre d ' issues possibles = card F card Ω =14 30 Maintenant, On choisit au hasard un élève qui fait allemand en LV1. Calculer la probabilité que ce soit une fille. Term.ES Ch.5 Proba. et conditionnement Abdellatif ABOUHAZIM. Lycée Fustel de Coulanges - Massy Page 1/14
2 On change d'univers : Le nouvel univers est A. L'élève choisi est donc dans A F F F Totaux A A Totaux «On choisit un élève qui fait allemand en LV1», la probabilité que cet élève soit une fille, notée P A (F), est donnée par : Nombre d ' issues favorables card A F P A ( F )= = Nombre d ' issues possibles card A = On peut encore écrire P A (F), de la façon suivante : card A F P A (F )= card Ω card Ω 1 =P (A F ) card A P (A) ou encore : P A (F )= P (A F ) P (A) Conclusion : On peut exprimer «la probabilité de F, sachant que A est réalisé» comme quotient de P ( A F ) et de P ( A). 1.2) Définition de la probabilité conditionnelle Définition : Soit Ω un ensemble fini et P une loi de probabilité sur l'univers Ω liée à une expérience aléatoire. Soit A et B deux événements de Ω tels que P (B) 0. On définit la probabilité que «A soit réalisé sachant que B est réalisé» de la manière suivante : P B ( A)= P ( A B) où P B (A) se lit «P-B-de-A» P( B) P B (A) se notait anciennement P(A / B) et se lisait «P-de-A-sachant-B». En effet, dans cette définition, «l'univers est restreint à B». L'ensemble de toutes les issues possibles est égal à B L'ensemble de toutes les issues favorables est égal à A B. Conséquences immédiates : Soit A et B deux événements de Ω tels que P (B) 0. i) On peut écrire toutes les probabilités comme des probabilités conditionnelles. P (Ω)=1. Donc pour tout événement A : P ( A)=P Ω ( A). Term.ES Ch.5 Proba. et conditionnement Abdellatif ABOUHAZIM. Lycée Fustel de Coulanges - Massy Page 2/14
3 ii) P B (B)=1 ; P B (Ω)=1 ; P B ( )=0. iii) L'événement contraire de «A est réalisé sachant que B est réalisé» est «A est réalisé sachant que B est réalisé». En effet, B=(B A) (B A) : P B ( A)+P B ( A)=1 ou encore P B ( A)=1 P B ( A) iv) Si A et C sont deux événements quelconques, on peut étendre la formule vue en Seconde aux probabilités conditionnelles : P B ( A C)=P B ( A)+P B (C ) P B ( A C ) v) Si A et C sont deux événements incompatibles, on a : P B ( A C)=P B ( A)+P B (C ) Conséquence très importante : (en écrivant l'égalité des produits en croix) : Pour tous événements A et B de Ω tels que P (B) 0, on obtient la formule des probabilités composées : P ( A B)=P B ( A) P (B) Exemple : Dans notre exemple ci-dessus, nous avons déjà calculé : P A (F )= et P (A)= On choisit un élève au hasard dans la classe de TS2. Calculer la probabilité que ce soit une fille qui fait de l'allemand. Ce qui correspond à l'événement A F. Nous avons deux méthodes d'aborder cette question : 1ère méthode : Nous connaissons déjà les effectifs. Donc Nombre d ' issues favorables card A F P (A F )= = Nombre d ' issues possibles card Ω = ème méthode : Nous appliquons la formule ci-dessus : P (A F )=P A (F ) P( A)= = 10 qu'on peut naturellement simplifier ) Des probabilités dans un tableau à double entrée. On pourrait présenter les données de notre exemple sous la forme de tableau de fréquences ou de proportions ou de probabilités des différents événements : F F Totaux F F Totaux A 0,33 0,23 0,56 A P (A F ) P (A F ) P (A) A 0,14 0,3 0,44 A P (A F ) P (A F ) P (A) Totaux 0,47 0,53 1 Totaux P (F ) P (F ) P (Ω) On utilise donc la formule des probabilités conditionnelles pour calculer P A (F ) comme suit P A ( F )= P (A F ) = 0,33 P (A) 0,56 0,59 et on avait déjà calculé P A ( F )= ,59. Term.ES Ch.5 Proba. et conditionnement Abdellatif ABOUHAZIM. Lycée Fustel de Coulanges - Massy Page 3/14
4 II. Partition de l'univers Définition : Soit Ω un ensemble fini et A, B et C trois événements de Ω. On dit que les événements A, B et C forment ou réalisent une partition de Ω si et seulement si les 3 conditions suivantes sont satisfaites : i) A, B et C sont non vides, (cette condition n'est pas toujours vérifiée dans certaines démonstrations) ; ii) Ces 3 événements sont deux à deux incompatibles, c'est-à-dire : A B= ; B C = et A C= ; iii) La réunion de ces 3 événements est égale à Ω ; c'est-à-dire : A B C =Ω. On peut généraliser cette définition à 2 ou plusieurs événements. Exemple : Soit Ω = l'ensemble des élèves du lycée. On choisit un élève au hasard et on lui demande sa classe. On pose B 1 = «l'élève est en seconde», B 2 = «l'élève est en première», B 3 = «l'élève est en Terminale» et B 4 = «l'élève est en BTS», alors B 1, B 2, B 3 et B 4 forment une partition de Ω. Un cas particulier très important : Soit B un événement de Ω tel que P (B) 0. Alors B et B forment une partition de l'univers Ω (n=2). Exemple : Au lycée, si on pose B = «l'élève fait de l'allemand». Alors B et B forment une partition de Ω Théorème des probabilités totales : Théorème 1. : Soit Ω un ensemble fini et A, B et C trois événements qui forment une partition de Ω. Soit E un événement quelconque de Ω. Alors P (E)=P(E A)+P (E B)+P(E C ) P (E)=P A (E) P( A)+P B (E ) P (B)+P C ( E) P (C) En effet Soit E un événement quelconque de Ω. Alors E A, E B et E C forment une partition de E. Ces 3 événements ne sont pas tous (forcément) non vides. Term.ES Ch.5 Proba. et conditionnement Abdellatif ABOUHAZIM. Lycée Fustel de Coulanges - Massy Page 4/14
5 Ces 3 événements sont deux à deux incompatibles et leur réunion est égale à E. Par conséquent, E=(E A) (E B) (E C ). Donc P (E )=P ((E A) (E B) (E C)) donc P (E )=P (E A)+ P(E B)+P (E B) Et par d'après la propriété des probabilités composées, on obtient : P (E)=P A (E) P( A)+P B (E ) P (B)+P C ( E) P (C) CQFD. Un cas particulier très important : Théorème 2. : Soit B un événement de Ω tel que P (B) 0. Alors B et B forment une partition de l'univers Ω. (n=2). Donc, pour tout événement A de Ω, on a : Exemple : P ( A)=P( A B)+P ( A B) P ( A)=P B ( A) P (B)+P B (A) P (B) Soit A et B deux événements de Ω tels que P (A B)=0,2, P (B)=0,4 et P B (A)=0,3. i) Calculer P(A). ii) En déduire P ( A B). iii) Calculer P A (B), P (A B),... i) Pour calculer P(A), nous avons besoin de calculer d'abord P ( A B). Et pour calculer P ( A B), nous avons besoin de calculer P (B). Or, B et B sont deux événements contraires, donc P (B)=1 P ( B), donc P (B)=1 0,4 donc P (B)=0,6. D'autre part, on sait que : P B ( A)=0,3, donc P ( A B)=P B ( A) P( B), donc P ( A B)=0,3 0,6, donc P ( A B)=0,18. Maintenant, nous pouvons appliquer le théorème des probabilités totales (n=2) : B et B forment une partition de Ω, donc : ( A B) et ( A B) forment une partition de A. Donc : P ( A)=P( A B)+P( A B)=0,2+0,18=0,38. Conclusion 1. : P ( A)=0,38 (OUF!!) ii) On sait que P ( A B)=P ( A)+ P( B) P ( A B)=0,38+0,4 0,2=0,58 Conclusion 2. : P ( A B)=0,58 (C'est plus simple! Non!) iii) Amusez-vous à calculer P A (B), P (A B),... Term.ES Ch.5 Proba. et conditionnement Abdellatif ABOUHAZIM. Lycée Fustel de Coulanges - Massy Page 5/14
6 III. Arbres «des possibles» et arbres pondérés de probabilités Nous avons déjà rencontré en classes de Seconde et en 1ère, la notion d'«arbres des possibles» et d'«arbres pondérés de probabilités». i) On utilise un arbre simple ou arbre des possibles pour dénombrer toutes les issues possibles, en général, dans des situations d'équiprobabilité. On calcule les probabilités comme le quotient des nombres d'issues favorables par le nombre de cas possibles. ii) On utilise un arbre pondéré des probabilités pour dénombrer toutes les issues possibles, en précisant la probabilité de réalisation de chaque issue. Exemple 1. Une famille a deux enfants. On suppose qu'il y a autant de chances d'obtenir un garçon qu'une fille. Calculer la probabilité des événements "obtenir deux filles" puis "obtenir deux enfants de sexes différents". (On suppose qu'il n'y a pas de jumeaux). On appelle F l'événement "obtenir une fille" et G l'événement "obtenir un garçon" à chaque naissance : 1er enfant 2ème enfant issues possibles Ω F G F G F G FF FG GF GG Un arbre permet de distinguer tous les cas possibles, donc toutes les issues possibles. Une branche = Une issue L'univers associé à cette situation comporte quatre issues possibles. Donc : Ω ={FF ; FG ; GF ; GG }. Ainsi, si l'événement A = «obtenir deux filles», alors : P(A) = nombre d ' issues favorables nombre d ' issues possibles = 1 4 Et si on appelle B = «obtenir deux enfants de sexes différents», on a B = {FG ; GF} et card(b) = 2. Donc P(B) = 2 4 = 1 2. Remarque : Pour trois enfants, faites un arbre et montrer qu'il y a 8 issues possibles! Arbre pondéré pour calculer des probabilités Définition. Dans une expérience aléatoire sur un univers Ω, on considère deux événements A et B. On dit qu'un arbre est pondéré lorsque, sur chaque branche, on indique la probabilité d'obtenir l'événement suivant. Term.ES Ch.5 Proba. et conditionnement Abdellatif ABOUHAZIM. Lycée Fustel de Coulanges - Massy Page 6/14
7 Méthodes de calcul : Règle 1 : La probabilité de la branche partant de A vers B est égale à «la probabilité de B sachant A». A P A (B) B. En particulier : la probabilité de la branche partant Ω vers A est égale à P(A). Ω P(A) A. Règle 2 : La somme des probabilités des branches partant d'une même racine est toujours égale à 1 : P A (B 1 )+P A (B 2 )+P A (B 3 )=1 P A (B 1 ) B 1 A P A (B 2 ) B 2 P A (B 3 ) B 3 Règle 3 : La probabilité d'un chemin est égale au produit des probabilités des branches de ce chemin et représente la probabilité de l'intersection des événements sur ce chemin : P ( A) P A ( B) P B (C)=P ( A B C ). Ω P(A) A P A (B) B P B (C) C Règle 4 : La probabilité d'un événement est la somme des probabilités de tous les chemins correspondant à cet événement. L'exemple suivant illustre cette situation (question 3 ). Exemple (Extrait Ex n 1 BAC S 1996) Un club sportif compte 80 inscrits en natation, 95 en athlétisme et 125 en gymnastique. Chaque inscrit pratique un seul sport. N.B. - Si E est un évènement, on notera P(E) sa probabilité et E l évènement contraire. Si E et F sont deux évènements, P F (E) est la probabilité de «E sachant que F est réalisé». On donnera les valeurs exactes puis une valeur approchée arrondie au millième près. Parmi les inscrits en natation, 45% sont des filles. De même 20% des inscrits en atlùétisme et 68% des inscrits en gymnastique sont des filles. 1 )Construire un arbre pondéré illustrant la situation. 2 )On choisit un inscrit au hasard. Quelle est la probabilité p 1 que l inscrit choisi soit une fille pratiquant l athlétisme? 3 )On choisit un inscrit au hasard. Quelle est la probabilité p 2 que ce soit une fille? 4 )Si on choisit au hasard une fille, quelle est la probabilité p 3 qu elle pratique l athlétisme? Term.ES Ch.5 Proba. et conditionnement Abdellatif ABOUHAZIM. Lycée Fustel de Coulanges - Massy Page 7/14
8 1 ) Construction d'un arbre pondéré. Choix du sport Fille ou Garçon Probabilité de chaque chemin Ω N A G 0,45 F P (N F ) = = ,55 F 0,20 F P (A F ) = = ,80 F 0,68 F P (G F ) = = ,32 F 2 ) On choisit un inscrit au hasard (sous entendu «dans tout le club»). On appelle E l'événement : E =«l inscrit choisi est une fille pratiquant l athlétisme», ce qui signifie «l inscrit choisi est une fille et qui pratique l athlétisme». Donc E=( A F ). On applique la règle n 3. Par suite, la probabilité de E est égale au produit de toutes les probabilités des branches de ce chemin : p 1 =P (E)=P (A F ) p 1 =P ( A) P A (F ) p 1 = = 19 valeur exacte 300 p 1 0,633 valeur approchée 3 ) On choisit un inscrit au hasard (sous entendu «dans tout le club»). F est l'événement : F = «l inscrit choisi est une fille». On applique la règle n 4. Par suite, La probabilité de F est la somme des probabilités des chemins (en couleur) correspondant à cet événement. Il y en a trois. Il y a des filles dans chaque groupe. En réalité, c'est une application directe du théorème des probabilités totales : N, A et G sont deux à 2 incompatibles et forment une partition de Ω. Donc (F N ), (F A) et (F G) forment une partition de F. Par suite : p 2 =P (F )=P (F N )+P (F A)+P (F G) p 2 =P N (F ) P(N )+P A ( F ) P (A)+P G (F ) P(G) p 2 = p 2 = 7 15 valeur exacte. Donc p 2 0,467 valeur approchée. Term.ES Ch.5 Proba. et conditionnement Abdellatif ABOUHAZIM. Lycée Fustel de Coulanges - Massy Page 8/14
9 4 ) On choisit au hasard une fille. On restreint l'univers à F. Donc on sait déjà que l'inscrit choisi est une fille, et on veut calculer la probabilité p 3 qu elle pratique l athlétisme. Donc : p 3 = P F (A). On revient à la définition : p 3 =P F ( A)= P( F A) P (F ) p 3 = (pour diviser par une fraction, on multiplie par son inverse) p 3 = valeur exacte p 3 0,136 valeur approchée. CQFD IV. Épreuve de Bernoulli. Loi binomiale. (Rappels de 1ère ES) 4.1) Épreuve de Bernoulli On appelle épreuve de Bernoulli une expérience aléatoire à deux issues : l'une qu'on appelle S pour «Succès» avec une probabilité p = P(S) ; et l'autre, l'événement contraire noté S, qu'on appelle «Échec» avec une probabilité 1 p. On dit «épreuve de Bernoulli de paramètre p» p = probabilité du succès. p S 1 p S On définit la variable aléatoire X qui prend la valeur 1 pour Succès et 0 pour Échec. On a alors : S = «X = 1» et S = «X = 0». X ainsi définie, donne «le nombre de succès» dans l'expérience. X s'appelle une loi de Bernoulli B(1, p) de paramètre p. La loi de probabilité de la v.a. X est donnée par : Valeurs x k 1 0 p k = P(X= x k ) p 1 p L'espérance mathématique [la valeur moyenne] de X est donnée par : E(X) = p 1 x p n x n. Donc E ( X )= p 1+(1 p) 0. D'où : E(X) = p 4.1) Schéma de Bernoulli Loi binomiale On recommence n fois une épreuve de Bernoulli de paramètre p, dans les mêmes conditions et de façon indépendante c'est-à-dire avec remise. On fait un arbre pondéré et obtient un schéma de Bernoulli. On appelle X la variable aléatoire qui compte le nombre de succès sur les n épreuves. On obtient alors 0 succès, 1 succès,... ou n succès. Donc X prend les valeurs : 0;1 ; 2 ;...n. On écrit : X (Ω)={0 ;1 ;2 ; ;n}. On dit alors que X suit une loi binomiale B (n, p) de paramètres n et p. Term.ES Ch.5 Proba. et conditionnement Abdellatif ABOUHAZIM. Lycée Fustel de Coulanges - Massy Page 9/14
10 La loi de probabilité de X est donnée par : Valeurs de k n p k = P(X = k) P(X =0) P(X = 1) P(X = 2)... P(X = n) Recherchons d'abord sur un exemple, comment trouver ces valeurs. 4.3) Étude d'un exemple modèle On considère un vivier (grand aquarium) de 100 poissons dont 10 brochets. Avec une épuisette, on prélève un (seul) poisson. On définit le succès S = «le poisson prélevé est un brochet». P (S)= =0,1. Ainsi, l'échec S = «le poisson prélevé n'est pas un brochet». P (S )=1 0,1=0,9. On obtient une épreuve de Bernoulli de paramètre p = 0,1. On recommence 3 fois cette épreuve, dans les mêmes conditions et de façon indépendante c'est-à-dire avec remise. On appelle X la variable aléatoire qui compte le nombre de succès sur les 3 épreuves. X suit la loi binomiale de paramètres n = 3 et p = 0,1. Calculer les probabilités des événements suivants : 1 ) E 3 = "X=3" = "obtenir 3 succès" ; 2 ) E 1 = "X=1" = "obtenir 1 succès" ; 3 ) E 2 = "X=2" = "obtenir 2 succès" ; 4 ) E 0 = "X=0" = "obtenir 0 succès" On construit un arbre pondéré. On obtient un schéma de Bernoulli. Issues 0,1 S SSS S 0,1 0,9 S SS S S 0,9 0,1 S S S S 0,1 S 0,9 S S S S 0,1 S S SS 0,9 S 0,1 0,9 S S S S S 0,9 0,1 S S S S S 0,9 S S S S Term.ES Ch.5 Proba. et conditionnement Abdellatif ABOUHAZIM. Lycée Fustel de Coulanges - Massy Page 10/14
11 1 ) Calculons la probabilité de "X=3" = "obtenir 3 succès". Il n'y a qu'un seul chemin correspondant à 3 succès. Donc : «SSS» = «S 1» et «S2» et «S3» = «obtenir un succès au premier tirage» et «un succès au 2ème tirage» et «un succès au 3ème tirage». Donc : P(X=3) = P(SSS) = p p p donc : P(X=3) = p 3 = 1p 3 (1 p) 0 1 = nombre de chemins p 3 = proba de 3 succès (1 p) 0 = probabilité de 0 échecs. 2 ) Calculons la probabilité de "X=1" = "obtenir 1 succès". Il y a trois chemins correspondant à 1 succès (= 2 échecs). [Le succès peut se positionner en premier, au milieu ou en 3ème position]. Donc : P(X=1) = P( S S S ou S S S ou S S S ) = p (1 p) (1 p) + (1 p) p (1 p) + (1 p) (1 p) p P(X=1) = 3 p(1 p) 2. 1 = nombre de chemins p 1 = proba de 1 succès (1 p) 2 = probabilité de 2 échecs. 3 ) Calculons la probabilité de "X=2"= "obtenir 2 succès". Il y a aussi trois chemins correspondant à 2 succès (= 1 échec). [L'échec peut se positionner en premier, au milieu ou en 3ème position]. Donc : Donc : P(X=2) = 3 p 2 (1 p). 1 = nombre de chemins p 2 = proba de 2 succès (1 p) = (1 p) 1 = probabilité de 1 échec. 4 ) Calculons la probabilité de "X=0" = "obtenir 0 succès". Il n'y a qu'un seul chemin correspondant à 0 succès (= 3 échecs). Donc : P(X=0) = (1 p) 3 = 1p 0 (1 p) 3. 1 = nombre de chemins p 0 = proba de 0 succès (1 p) 3 = probabilité de 3 échecs. Conclusion : P(k succès) = Nombre de chemins p k (1 p) n k. Le nombre de chemins qui aboutissent à k succès, se note ( n et s'appelle le coefficient binomial «k parmi n». Ce qui donne : k) Term.ES Ch.5 Proba. et conditionnement Abdellatif ABOUHAZIM. Lycée Fustel de Coulanges - Massy Page 11/14
12 P("k succès") = P(X=k) = ( n k) pk (1 p) n k On revient à notre exemple. Si n = 3 et p = 0,1, on obtient la loi de probabilité de X : Valeurs de k p k = P(X = k) 0,729 0,243 0,027 0, ) Éspérance de la loi binomiale Soit X une variable aléatoire qui suit la loi binomiale de paramètres n et p. Alors : L'espérance mathématique [la valeur moyenne] de X est donnée par : E(X) = np 4.5) Utilisation de la calculatrice a) Calcul d'une probabilité "ponctuelle" Toutes ces valeurs sont données par les calculatrices avec les instructions BinomFdp ou Binompdf ou Bpd ou Binomial pdf ou encore Binomiale DdP...voir ci-dessous. Exemple : Nous choisissons ici une v.a. X qui suit la loi binomiale B(10 ; 0.3). Casio : Graph 35+ et modèles sup. Calcul des probabilités P (X=k) Menu STAT DIST BINM BPD Pour calculer P (X=2) Binomial P.D. Data : Variable Choisir ici «Variable» x : 2 Placer ici la valeur de k Numtrial : 10 Placer ici la valeur de n P : 0.3 Placer ici la valeur de p Save Res :None Execute CALC Pour calculer, appuyer sur F1 Après exécution on obtient : Binomial P.D P= Texas : TI82 Stats et modèles sup. Calcul des probabilités P (X=k) Menu 2nd DISTR (ou Distrib) Pour calculer P (X=2) Menu 2nd DISTR Binompdf ou BinomFdp (version fr) Compléter les paramètres : n, p, k Binompdf(10,0.3, 2) Après exécution on obtient : Term.ES Ch.5 Proba. et conditionnement Abdellatif ABOUHAZIM. Lycée Fustel de Coulanges - Massy Page 12/14
13 b) Calcul des probabilités "cumulées" La probabilité pour «obtenir au plus k succès» = P ( X k ) C'est une «probabilité cumulée croissante», c'est-à-dire : P ( X k)=p ( X =0)+P( X =1)+ +P ( X =k) Cette valeur est aussi donnée directement par les calculatrices avec Binomcdf ou BinomFrép ou Bcd ou Binomial Cdf ou encore Binomiale FdR... voir ci-dessous. Vous remarquerez au passage le "p" pour proba. ponctuelle et le "c" pour probabilité cumulée. c) Calcul direct de toutes les probabilités "ponctuelles" : Loi de probabilité Aller dans f(x) = ou Y = et rentrer directement les fonctions en remplaçant k par X : \Y1= 2nde Distrib Binompdf(n,p,X) fdp ou pdf comme fct de distribution de proba. \Y2 = 2nde Distrib Binomcdf(n,p,X) cdf ou fdc comme fct de distribution cumulée,... ou \Y1= 2nde Distrib BinomFdp(n,p,X) (version fr) et \Y2 = 2nde Distrib BinomFrép(n,p,X) (version fr) avec les valeurs exactes de n et p. Puis 2nde TABLE pour afficher le tableau de valeurs. Y1 et Y2 rentrées P(X=2)=0, P (X 7)=0, Attention! Si la machine affiche ERROR dans Y1, il faut aller dans 2nde TableSet ou 2nde Déf Table pour redéfinir le pas : commencer à 0 et définir un pas égal à 1. Remarques La probabilité «pour obtenir au moins k succès» = P ( X k ), c'est aussi une «probabilité cumulée décroissante», c'est-à-dire : P ( X k)=p ( X =k)+p( X =k+1)+ +P ( X =n) Attention! Ces valeurs cumulées décroissantes ne sont pas données par les calculatrices. Cependant, si on veut utiliser les calculatrices, on peut utiliser l'événement contraire : Donc : P ( X k )=1 P( X <k)=1 P ( X k 1). Attention aux symboles «inférieur» et «inférieur ou égal». Term.ES Ch.5 Proba. et conditionnement Abdellatif ABOUHAZIM. Lycée Fustel de Coulanges - Massy Page 13/14
14 c) Calcul des coefficients binomiaux Nous choisissons ici une v.a. X qui suit la loi binomiale B(10 ; 0.3). Casio : Graph 35+ et modèles sup. Calcul des coefficients binomiaux Dans le Menu RUN, appuyer sur la touche OPTN, puis choisir PROB. Pour calculer ( 10 3 ), taper 10, puis choisir ncr, puis taper 3 et EXE. Texas : TI82 Stats et modèles sup. Calcul des coefficients binomiaux Pour calculer ( 10 3 ), taper 10, puis appuyer sur la touche MATH, choisir le menu PRB, puis choisir ncr ou Combinaison (version fr), puis taper 3 et ENTER. A VOUS DE JOUER Term.ES Ch.5 Proba. et conditionnement Abdellatif ABOUHAZIM. Lycée Fustel de Coulanges - Massy Page 14/14
Probabilités conditionnelles Loi binomiale
Fiche BAC ES 05 Terminale ES Probabilités conditionnelles Loi binomiale Cette fiche sera complétée au fur et à mesure Exercice n 1. BAC ES. Centres étrangers 2012. [RÉSOLU] Un sondage a été effectué auprès
Les suites numériques
Chapitre 3 Term. STMG Les suites numériques Ce que dit le programme : Suites arithmétiques et géométriques CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Suites arithmétiques et géométriques Expression du terme
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
Seconde et première Exercices de révision sur les probabilités Corrigé
I_ L'univers. _ On lance simultanément deux dés indiscernables donc il n'y a pas d'ordre. Il y a répétition, les dbles. On note une issue en écrivant le plus grand chiffre puis le plus petit. 32 signifie
Taux d évolution moyen.
Chapitre 1 Indice Taux d'évolution moyen Terminale STMG Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Indice simple en base 100. Passer de l indice au taux d évolution, et réciproquement.
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2
Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................
Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles
Chapitre 3 Événements indépendants et Probabilités conditionnelles Indépendance Indépendance Probabilité conditionnelle Definition Deux événements A et B sont dits indépendants si P(A B) = P(A).P(B) Attention
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Probabilités conditionnelles Loi binomiale
Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard
Probabilités. C. Charignon. I Cours 3
Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3
Probabilités conditionnelles Exercices corrigés
Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.
Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...
1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................
NOTIONS DE PROBABILITÉS
NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison
Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence
Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités
Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements
GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau
GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles
Calculs de probabilités conditionelles
Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile
POKER ET PROBABILITÉ
POKER ET PROBABILITÉ Le poker est un jeu de cartes où la chance intervient mais derrière la chance il y a aussi des mathématiques et plus précisément des probabilités, voici une copie d'écran d'une main
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
P1 : Corrigés des exercices
P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à
Lois de probabilité. Anita Burgun
Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage
Géométrie dans l espace Produit scalaire et équations
Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire
Listes de fournitures du secondaire pour la rentrée 2015-2016
Listes de fournitures du secondaire pour la rentrée 2015-2016 Classe de 6 ème - Un paquet de pinceaux (gros, moyens, petit) Classe de 5 ème - Un paquet de pinceaux (gros, moyens, petits) Classe de 4 ème
Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES
Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable
Fluctuation d une fréquence selon les échantillons - Probabilités
Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille
I. Ensemble de définition d'une fonction
Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.
Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir
CALCUL DES PROBABILITES
CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
Exercices de dénombrement
Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,
Probabilités Loi binomiale Exercices corrigés
Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
Loi binomiale Lois normales
Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli
I. Cas de l équiprobabilité
I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Calcul élémentaire des probabilités
Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire La loi de Poisson. Définition. Exemple. 1 La loi de Poisson. 2 3 4
DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES
BTS GPN ERE ANNEE-MATHEMATIQUES-DENOMBREMENT-COMBINATOIRE-EXERCICE DE SYNTHESE EXERCICE RECAPITULATIF (DE SYNTHESE) CORRIGE Le jeu au poker fermé DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES On joue
CHAPITRE VIII : Les circuits avec résistances ohmiques
CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Exercices sur le chapitre «Probabilités»
Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015
Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
TESTS D'HYPOTHESES Etude d'un exemple
TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
BACCALAUREAT GENERAL MATHÉMATIQUES
BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la
Plan général du cours
BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES-DENOMBREMENT,COMBINATOIRE PROBABILITES Plan général du cours 1. Dénombrement et combinatoire (permutations, arrangements, combinaisons). 2. Les probabilités
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
Cours de Probabilités et de Statistique
Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles
Coefficients binomiaux
Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au
Couples de variables aléatoires discrètes
Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude
OPÉRATIONS SUR LES FRACTIONS
OPÉRATIONS SUR LES FRACTIONS Sommaire 1. Composantes d'une fraction... 1. Fractions équivalentes... 1. Simplification d'une fraction... 4. Règle d'addition et soustraction de fractions... 5. Règle de multiplication
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01
Exo7. Probabilité conditionnelle. Exercices : Martine Quinio
Exercices : Martine Quinio Exo7 Probabilité conditionnelle Exercice 1 Dans la salle des profs 60% sont des femmes ; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle
SIECLE Inscription en ligne
Services en ligne Inscription pour l entrée au lycée 13/05/2015 Diffusion nationale Guide de l utilisateur SIECLE Inscription en ligne Guide à l usage des établissements Version 15.2 Mai 2015 Services
Cours d algorithmique pour la classe de 2nde
Cours d algorithmique pour la classe de 2nde F.Gaudon 10 août 2009 Table des matières 1 Avant la programmation 2 1.1 Qu est ce qu un algorithme?................................. 2 1.2 Qu est ce qu un langage
Spécialité auxiliaire en prothèse dentaire du brevet d études professionnelles. ANNEXE IIb DEFINITION DES EPREUVES
ANNEXE IIb DEFINITION DES EPREUVES 51 Epreuve EP1 : ANALYSE ET COMMUNICATION TECHNOLOGIQUES UP1 Coefficient 4 Finalité et objectifs de l épreuve L épreuve vise à évaluer la capacité du candidat à mobiliser
Initiation aux calculatrices graphiques numériques TI en français TI-82 STATS.fr TI-83 Plus TI-83 Plus SE TI-84 Plus TI-84 Plus SE
Initiation aux calculatrices graphiques numériques TI en français TI-82 STATS.fr TI-83 Plus TI-83 Plus SE TI-84 Plus TI-84 Plus SE Introduction Nous avons conçu ce document dans le but de vous aider à
Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.
Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée produite par TFO. Le guide Édition 1988 Rédacteur (version anglaise) : Ron Carr Traduction : Translatec Conseil Ltée
LES GENERATEURS DE NOMBRES ALEATOIRES
LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Raisonnement probabiliste
Plan Raisonnement probabiliste IFT-17587 Concepts avancés pour systèmes intelligents Luc Lamontagne Réseaux bayésiens Inférence dans les réseaux bayésiens Inférence exacte Inférence approximative 1 2 Contexte
Probabilités conditionnelles
Probabilités conditionnelles Exercice Dans une usine, on utilise conjointement deux machines M et M 2 pour fabriquer des pièces cylindriques en série. Pour une période donnée, leurs probabilités de tomber
Chapitre 3 : INFERENCE
Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage
TRIGONOMETRIE Algorithme : mesure principale
TRIGONOMETRIE Algorithme : mesure principale Déterminer la mesure principale d un angle orienté de mesure! 115" Problèmatique : Appelons θ la mesure principale, θ et! 115" sont deux mesures du même angle,
Calculs de probabilités avec la loi normale
Calculs de probabilités avec la loi normale Olivier Torrès 20 janvier 2012 Rappels pour la licence EMO/IIES Ce document au format PDF est conçu pour être visualisé en mode présentation. Sélectionnez ce
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
Travaux dirigés d introduction aux Probabilités
Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien
4 Distributions particulières de probabilités
4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli
CRÉER DES LEÇONS AVEC L'ÉDITEUR DU LOGICIEL 1000 MOTS POUR APPRENDRE À LIRE EN FRANÇAIS, ANGLAIS ET ALLEMAND
93 CRÉER DES LEÇONS AVEC L'ÉDITEUR DU LOGICIEL 1000 MOTS POUR APPRENDRE À LIRE EN FRANÇAIS, ANGLAIS ET ALLEMAND 1 - LE LOGICIEL 1000 MOTS 1000 mots est un logiciel destiné aux classes du cycle II en France
J AI PERÇU DES REVENUS EXCEPTIONNELS OU DIFFÉRÉS, comment les déclarer?
DIRECTION DES SERVICES FISCAUX IMPÔT SUR LE REVENU ANNÉE 2014 J AI PERÇU DES REVENUS EXCEPTIONNELS OU DIFFÉRÉS, comment les déclarer? Pr vs aider à remplir votre déclaration, La cellule impôts service
Bureau N301 (Nautile) [email protected]
Pre-MBA Statistics Seances #1 à #5 : Benjamin Leroy-Beaulieu Bureau N301 (Nautile) [email protected] Mise à niveau statistique Seance #1 : 11 octobre Dénombrement et calculs de sommes 2 QUESTIONS
1.6- Génération de nombres aléatoires
1.6- Génération de nombres aléatoires 1- Le générateur aléatoire disponible en C++ 2 Création d'un générateur aléatoire uniforme sur un intervalle 3- Génération de valeurs aléatoires selon une loi normale
mathématiques mathématiques mathématiques mathématiques
mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.
Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication. Philippe Robert INRIA Paris-Rocquencourt
Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication Philippe Robert INRIA Paris-Rocquencourt Le 2 juin 2010 Présentation Directeur de recherche à l INRIA Institut
choisir H 1 quand H 0 est vraie - fausse alarme
étection et Estimation GEL-64943 Hiver 5 Tests Neyman-Pearson Règles de Bayes: coûts connus min π R ( ) + ( π ) R ( ) { } Règles Minimax: coûts connus min max R ( ), R ( ) Règles Neyman Pearson: coûts
Arbre de probabilité(afrique) Univers - Evénement
Arbre de probabilité(afrique) Univers - Evénement Exercice 1 Donner l univers Ω de l expérience aléatoire consistant à tirer deux boules simultanément d une urne qui en contient 10 numérotés puis à lancer
PROBABILITÉS CONDITIONNELLES
PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais
Séquence 3. Expressions algébriques Équations et inéquations. Sommaire
Séquence 3 Expressions algébriques Équations et inéquations Sommaire 1. Prérequis. Expressions algébriques 3. Équations : résolution graphique et algébrique 4. Inéquations : résolution graphique et algébrique
Moments des variables aléatoires réelles
Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
= constante et cette constante est a.
Le problème Lorsqu on sait que f(x 1 ) = y 1 et que f(x 2 ) = y 2, comment trouver l expression de f(x 1 )? On sait qu une fonction affine a une expression de la forme f(x) = ax + b, le problème est donc
épreuve possible pour tenter de soigner quelqu'un (max 1D6 ). sur un échec critique, le héros parvient à blesser encore plus son compagnon (-1D6 ).
À l'aide de cette compétence, un personnage pourra tenter de réparer ou de fabriquer des objets rudimentaires, pour peu qu'il réussisse une épreuve d'adresse, et sans avoir besoin de connaître le sujet
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Séquence 4. Statistiques. Sommaire. Pré-requis Médiane, quartiles, diagramme en boîte Moyenne, écart-type Synthèse Exercices d approfondissement
Séquence 4 Statistiques Sommaire Pré-requis Médiane, quartiles, diagramme en boîte Moyenne, écart-type Synthèse Exercices d approfondissement 1 Introduction «Etude méthodique des faits sociaux par des
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
