Espaces de dimension finie

Dimension: px
Commencer à balayer dès la page:

Download "Espaces de dimension finie"

Transcription

1 [ édité le 28 décembre 2016 Enoncés 1 Espaces de dimension finie Bases en dimension finie Dimension d un espace Exercice 1 [ ] [Correction] Soit E l ensemble des fonctions f : R R telles qu il existe a, b, c R pour lesquels : x R, f (x) = (ax 2 + bx + c) cos x (a) Montrer que E est sous-espace vectoriel de F (R, R). (b) Déterminer une base de E et sa dimension. Exercice 2 [ ] [Correction] Soient p N et E l ensemble des suites réelles p périodiques i.e. l ensemble des suites réelles (u n ) telles que n N, u(n + p) = u(n) Montrer que E est un R-espace vectoriel de dimension finie et déterminer celle-ci. Exercice 3 [ ] [Correction] Soient p N et E l ensemble des suites complexes p périodiques i.e. l ensemble des suites (u n ) telles que n N, u(n + p) = u(n) (a) Montrer que E est un C-espace vectoriel de dimension finie et déterminer celle-ci. (b) Déterminer une base de E formée de suites géométriques. Exercice 4 [ ] [Correction] Soit E = R R. Pour tout n N, on pose f n : x x n. (a) Montrer que ( f 0,..., f n ) est libre. (b) En déduire dim E. Exercice 6 [ ] [Correction] On pose e 1 = (1, 1, 1), e 2 = (1, 1, 0) et e 3 = (0, 1, 1). Montrer que B = ( e 1, e 2, e 3 ) est une base de R 3. Exercice 7 [ ] [Correction] Soit E un K-espace vectoriel de dimension 3 et e = (e 1, e 2, e 3 ) une base de E. On pose ε 1 = e 2 + 2e 3, ε 2 = e 3 e 1 et ε 3 = e 1 + 2e 2 Montrer que ε = (ε 1, ε 2, ε 3 ) est une base de E. Exercice 8 [ ] [Correction] Soit E un K-espace vectoriel de dimension 3 et e = (e 1, e 2, e 3 ) une base de E. Soit ε 1 = e 1 + 2e 2 + 2e 3 et ε 2 = e 2 + e 3 Montrer que la famille (ε 1, ε 2 ) est libre et compléter celle-ci en une base de E. Exercice 9 [ ] [Correction] Soit E un K-espace vectoriel muni d une base e = (e 1,..., e n ). Pour tout i {1,..., n}, on pose ε i = e e i. (a) Montrer que ε = (ε 1,..., ε n ) est une base de E. (b) Exprimer les composantes dans ε d un vecteur en fonction de ses composantes dans e. Exercice 5 [ ] [Correction] Soient E un R-espace vectoriel de dimension finie n N et δ une application à valeurs réelles définie sur l ensemble des sous-espaces vectoriels de E. On suppose F, F sous - espaces vectoriels de E, F F = {0 E } = δ(f + F ) = δ(f) + δ(f ) Déterminer δ. Exercice 10 [ ] [Correction] [Lemme d échange] Soient (e 1,..., e n ) et (e 1,..., e n) deux bases d un R-espace vectoriel E. Montrer qu il existe j {1,..., n} tel que la famille (e 1,..., e n 1, e j ) soit encore une base de E.

2 [ édité le 28 décembre 2016 Enoncés 2 Sous-espaces vectoriels de dimension finie Exercice 11 [ ] [Correction] Soient F, G deux sous-espaces vectoriels d un K-espace vectoriel E de dimension finie n N. Montrer que si dim F + dim G > n alors F G contient un vecteur non nul. Exercice 16 [ ] [Correction] Soit E un espace vectoriel de dimension finie. (a) Soient H et H deux hyperplans de E. Montrer que ceux-ci possèdent un supplémentaire commun. (b) Soient F et G deux sous-espaces vectoriels de E tels que dim F = dim G. Montrer que F et G ont un supplémentaire commun. Exercice 12 [ ] [Correction] Dans R 4 on considère les vecteurs u = (1, 0, 1, 0), v = (0, 1, 1, 0), w = (1, 1, 1, 1), x = (0, 0, 1, 0) et y = (1, 1, 0, 1). Soit F = Vect (u, v, w) et G = Vect (x, y). Quelles sont les dimensions de F, G, F + G et F G? Exercice 13 [ ] [Correction] Soit U, V et W trois sous-espaces vectoriels d un R-espace vectoriel de dimension finie n. (a) On suppose dim U + dim V > n. Montrer que U V n est pas réduit au vecteur nul. (b) On suppose dim U + dim V + dim W > 2n. Que dire de l espace U V W? Exercice 14 [ ] [Correction] Soient E un K-espace vectoriel de dimension finie et F 1,..., F n des sous-espaces vectoriels de E. On suppose que E = F F n. Montrer qu il existe G 1,..., G n sous-espaces vectoriels tels que : Supplémentarité 1 i n, G i F i et E = G 1 G n Exercice 15 [ ] [Correction] Dans R 3, déterminer une base et un supplémentaire des sous-espaces vectoriels suivants : (a) F = Vect(u, v) où u = (1, 1, 0) et v = (2, 1, 1) (b) F = Vect(u, v, w) où u = ( 1, 1, 0), v = (2, 0, 1) et w = (1, 1, 1) (c) F = { (x, y, z) R 3 x 2y + 3z = 0 }. Exercice 17 [ ] [Correction] Montrer que deux sous-espaces vectoriels d un espace vectoriel de dimension finie qui sont de même dimension ont un supplémentaire commun. Exercice 18 [ ] [Correction] Soient K un sous-corps de C, E un K-espace vectoriel de dimension finie, F 1 et F 2 deux sous-espaces vectoriels de E. (a) On suppose dim F 1 = dim F 2. Montrer qu il existe G sous-espace vectoriel de E tel que F 1 G = F 2 G = E. (b) On suppose que dim F 1 dim F 2. Montrer qu il existe G 1 et G 2 sous-espaces vectoriels de E tels que F 1 G 1 = F 2 G 2 = E et G 2 G 1. Exercice 19 [ ] [Correction] Soit (e 1,..., e p ) une famille libre de vecteurs de E, F = Vect(e 1,..., e p ) et G un supplémentaire de F dans E. Pour tout a G, on note (a) Montrer que (b) Soient a, b G. Montrer F a = Vect(e 1 + a,..., e p + a) F a G = E a b = F a F b Rang d une famille de vecteurs Exercice 20 [ ] [Correction] Déterminer le rang des familles de vecteurs suivantes de R 4 : (a) (x 1, x 2, x 3 ) avec x 1 = (1, 1, 1, 1), x 2 = (1, 1, 1, 1) et x 3 = (1, 0, 1, 1).

3 [ édité le 28 décembre 2016 Enoncés 3 (b) (x 1, x 2, x 3, x 4 ) avec x 1 = (1, 1, 0, 1), x 2 = (1, 1, 1, 0), x 3 = (2, 0, 1, 1) et x 4 = (0, 2, 1, 1). Exercice 21 [ ] [Correction] Dans E = R ] 1;1[ on considère : 1 + x f 1 (x) =, f 2(x) = Quel est le rang de la famille ( f 1, f 2, f 3, f 4 )? 1 + x, f 3(x) = 1 2, f 4(x) = Exercice 22 [ ] [Correction] Soit (x 1,..., x n ) une famille de vecteurs d un K-espace vectoriel E. Montrer que pour p n : rg(x 1,..., x p ) rg(x 1,..., x n ) + p n Hyperplans en dimension finie Exercice 23 [ ] [Correction] Dans R 3, on considère le sous-espace vectoriel H = { (x, y, z) R 3 x 2y + 3z = 0 } x 2 Exercice 26 [ ] [Correction] Soit E un espace de dimension finie et F un sous-espace vectoriel de E distinct de E. Montrer que F peut s écrire comme une intersection d un nombre fini d hyperplans. Quel est le nombre minimum d hyperplans nécessaire? Exercice 27 [ ] [Correction] Soient D une droite vectorielle et H un hyperplan d un K-espace vectoriel E de dimension n N. Montrer que si D H alors D et H sont supplémentaires dans E. Exercice 28 [ ] [Correction] Soient E un K-espace vectoriel de dimension finie n N, H un hyperplan de E et D une droite vectorielle de E. À quelle condition H et D sont-ils supplémentaires dans E? Exercice 29 [ ] [Correction] Soient E un espace vectoriel de dimension finie et F un sous-espace vectoriel de E, distinct de E. Montrer que F peut s écrire comme une intersection d un nombre fini d hyperplans. Quel est le nombre minimum d hyperplans nécessaire? Soient u = (1, 2, 1) et v = ( 1, 1, 1). Montrer que B = (u, v) forme une base de H. Exercice 24 [ ] [Correction] Soit E un K-espace vectoriel de dimension finie supérieure à 2. Soit H 1 et H 2 deux hyperplans de E distincts. Déterminer la dimension de H 1 H 2. Exercice 25 [ ] [Correction] Soient H un hyperplan et F un sous-espace vectoriel non inclus dans H. Montrer dim F H = dim F 1

4 [ édité le 28 décembre 2016 Corrections 4 Corrections Exercice 1 : [énoncé] (a) E = Vect( f 0, f 1, f 2 ) avec f 0 (x) = cos x, f 1 (x) = x cos x et f 2 (x) = x 2 cos x. E est donc un sous-espace vectoriel et ( f 0, f 1, f 2 ) en est une famille génératrice. (b) Supposons α f 0 + β f 1 + γ f 2 = 0. On a x R, (α + βx + γx 2 ) cos x = 0. Pour x = 2nπ, on obtient α + 2nπβ + 4n 2 π 2 γ = 0 pour tout n N. Si γ 0 alors α + 2nπβ + 4n 2 π 2 γ ±. C est exclu. Nécessairement γ = 0. On a alors α + 2nπβ = 0 pour tout n N. Pour n = 0, puis n = 1 on obtient successivement α = β = 0. Finalement ( f 0, f 1, f 2 ) est une famille libre. C est donc une base de E et dim E = 3 Exercice 2 : [énoncé] On vérifie aisément que E est un sous-espace vectoriel de R N. Pour tout 0 i p 1, on note e i la suite définie par { [ ] 1 si n = i p e i (n) = 0 sinon On vérifie aisément que les suites e 0,..., e p 1 sont linéairement indépendantes et on a p 1 u E, u = u(i)e i La famille (e 0,..., e p 1 ) est donc une base de E et par suite dim E = p. Exercice 3 : [énoncé] (a) On vérifie aisément que E est un sous-espace vectoriel de C N. Pour tout 0 i p 1, on note e i la suite définie par [ ] 1 si n = i p e i (n) = 0 sinon On vérifie aisément que les suites e 0,..., e p 1 sont linéairement indépendantes et on a p 1 u E, u = u(i)e i La famille (e 0,..., e p 1 ) est donc une base de E et par suite dim E = p. i=0 i=0 (b) Soit q C. La suite géométrique (q n ) est élément de E si, et seulement si, n N, q n+p = q n ce qui équivaut à affirmer que q est une racine p-ième de l unité. Considérons alors les suites u 1,..., u p avec u j (n) = ( e 2iπ j/p) n = ω n 2iπ j/p j avec ω j = e Les suites u 1,..., u p sont éléments de E. Pour affirmer qu elles constituent une base de E, il suffit de vérifier qu elles forment une famille libre. Supposons Pour n N, on a l équation λ j u j = 0 λ j ω n j = 0 Soit k {1,..., p} fixé. En multipliant l équation précédente par ω n k et en sommant les équations obtenues pour n = 0, 1,..., p 1, on obtient En permutant les deux sommes p 1 n=0 λ j p 1 ( ) λ j ω j ω 1 n k = 0 n=0 ( ) ω j ω 1 n k = 0 Le nombre ω j ω 1 k est une racine p-ième de l unité et, lorsque j k, celle-ci diffère de 1, de sorte que p 1 ( ) ω j ω 1 n si j k k = 0 p si j = k On obtient ainsi n=0 λ p pδ j,k = 0 et donc λ k = 0. Ceci valant pour tout k {1,..., p}, on peut conclure à la liberté de la famille (u 1,..., u p ).

5 [ édité le 28 décembre 2016 Corrections 5 Exercice 4 : [énoncé] (a) Supposons λ 0 f λ n f n = 0. On a x R : λ 0 + λ 1 x + + λ n x n = 0. Si λ n 0 alors λ 0 + λ 1 x + + λ n x n ± c est absurde. x + Nécessairement λ n = 0 puis de même λ n 1 =... = λ 0 = 0. Finalement ( f 0,..., f n ) est libre. (b) Par suite n + 1 dim E pour tout n N, donc dim E = + Exercice 5 : [énoncé] Pour F = F = {0 E }, on obtient δ({0 E }) = 0 Pour x 0 E, posons f (x) = δ(vect x). On a évidemment x 0 E, λ R, f (λx) = f (x) Soient x et y non colinéaires. On a Or on a aussi Vect(x) Vect(y) = Vect(x, y) Vect(x, y) = Vect(x, x + y) = Vect(x) Vect(x + y) car x et x + y ne sont pas colinéaires. On en déduit f (x) + f (y) = f (x) + f (x + y) Ainsi f (x + y) = f (x) et de façon analogue f (x + y) = f (y) donc f (x) = f (y). Finalement la fonction f est constante. En posant α la valeur de cette constante, on peut affirmer f = α. dim car, par introduction d une base, un sous-espace vectoriel peut s écrire comme somme directe de droites vectorielles engendrées par ces vecteurs de base. Exercice 6 : [énoncé] Supposons λ 1 e 1 + λ 2 e 2 + λ 3 e 3 = 0. On a λ 1 + λ 2 = 0 λ 1 + λ 2 + λ 3 = 0 λ 1 + λ 3 = 0 qui donne λ 1 = λ 2 = λ 3 = 0. La famille B est une famille libre formée de 3 = dim R 3 vecteurs de R 3, c est donc une base de R 3. Exercice 7 : [énoncé] Supposons λ 1 ε 1 + λ 2 ε 2 + λ 3 ε 3 = 0 E. On a Or (e 1, e 2, e 3 ) est libre donc (λ 3 λ 2 )e 1 + (λ 1 + 2λ 3 )e 2 + (2λ 1 + λ 2 )e 3 = 0 E λ 3 λ 2 = 0 λ 1 + 2λ 3 = 0 2λ 1 + λ 2 = 0 puis λ 1 = λ 2 = λ 3 = 0. La famille ε est une famille libre formée de 3 = dim E vecteurs de E, c est donc une base de E. Exercice 8 : [énoncé] Les vecteurs ε 1 et ε 2 ne sont pas colinéaires donc forme une famille libre. Pour ε 3 = e 2 (ou encore par exemple ε 3 = e 3 mais surtout pas ε 3 = e 1 ), on montre que la famille (ε 1, ε 2, ε 3 ) est libre et donc une base de E. Exercice 9 : [énoncé] (a) Supposons λ 1 ε λ n ε n = 0 E. On a (λ λ n )e λ n e n = 0 E donc λ 1 + λ λ n = 0 λ λ n = 0. λ n = 0 qui donne λ 1 =... = λ n = 0. La famille ε est une famille libre formée de n = dim E vecteurs de E, c est donc une base de E. (b) λ 1 ε λ n ε n = µ 1 e µ n e n donne λ 1 + λ λ n = µ 1 puis λ λ n = µ 2. λ n = µ n λ 1 = µ 1 µ 2.. λ n 1 = µ n 1 µ n λ n = µ n

6 [ édité le 28 décembre 2016 Corrections 6 Exercice 10 : [énoncé] Par l absurde, supposons la famille (e 1,..., e n 1, e j ) liée pour chaque j {1,..., n}. Puisque la sous-famille (e 1,..., e n 1 ) est libre, le vecteur e j est combinaison linéaire des vecteurs e 1,..., e n 1 et donc Cela entraîne ce qui est absurde. Exercice 11 : [énoncé] On sait donc j {1,..., n}, e j Vect(e 1,..., e n 1 ) e n E = Vect(e 1,..., e n) Vect(e 1,..., e n 1 ) dim F + G = dim F + dim G dim F G dim F G = dim F + dim G dim F + G or dim F + G dim E = n donc dim F G > 0. Par suite F G possède un vecteur non nul. Exercice 12 : [énoncé] (u, v, w) forme une famille libre donc une base de F. Ainsi dim F = 3. (x, y) forme une famille libre donc une base de G. Ainsi dim G = 2. (u, v, w, x) forme une famille libre donc une base de R 4. Ainsi F + G = E et dim F + G = 4. Enfin dim F G = dim F + dim G dim F + G = 1 Exercice 13 : [énoncé] (a) Puisque U + V E, on a dim(u + V) n. La formule des quatre dimensions donne alors dim U + dim V dim(u V) = dim(u + V) n L hypothèse de travail fournit alors dim(u V) > 0. (b) Introduisons l espace W = U V. Par la fomule des quatre dimensions On a donc dim W = dim U + dim V dim(u + V) dim U + dim V n dim W + dim W dim U + dim V + dim W n > n L étude précédent assure alors que l espace U V W = W W n est pas réduit à l espace nul. Exercice 14 : [énoncé] Posons G 1 = F 1, G 2 le supplémentaire de G 1 F 2 dans F 2, et plus généralement G i le supplémentaire de (G 1 G i 1 ) F i dans F i. Les G i existent, ce sont des sous-espaces vectoriels, G i F i et G 1 G n. Soit x E. On peut écrire x = n x i avec x i F i. Or x i = y i yi i avec yi j G j car F i = ((G 1 G i 1 ) F i ) G i. Par suite x = z z n avec z k = n l=k yl k G k. Par suite E = G 1 G n. Exercice 15 : [énoncé] (a) (u, v) est libre (car les deux vecteurs ne sont pas colinéaires) et (u, v) génératrice de F. C est donc une base de F. D = Vect(w) avec w = (1, 0, 0) est un supplémentaire de F car la famille (u, v, w) est une base de R 3. (b) w = u + v donc F = Vect(u, v). (u, v) est libre (car les deux vecteurs ne sont pas colinéaires) et (u, v) génératrice de F. C est donc une base de F. D = Vect(t) avec t = (1, 0, 0) est un supplémentaire de F car la famille (u, v, t) est une base de R 3. (c) F = {(2y 3z, y, z) y, z R} = Vect(u, v) avec u = (2, 1, 0) et v = ( 3, 0, 1). (u, v) est libre (car les deux vecteurs ne sont pas colinéaires) et (u, v) génératrice de F. C est donc une base de F. D = Vect(w) avec w = (1, 0, 0) est un supplémentaire de F car la famille (u, v, w) est une base de R 3. Exercice 16 : [énoncé] (a) Si H = H alors n importe quel supplémentaire de H est convenable et il en existe. Sinon, on a H H et H H donc il existe x H et x H tels que x H et x H. On a alors x + x H H et par suite Vect(x + x ) est supplémentaire commun à H et H. (b) Raisonnons par récurrence décroissante sur n = dim F = dim G {0 1,..., dim E}. Si n = dim E et n = dim E 1 : ok Supposons la propriété établie au rang n + 1 {1..., dim E}. Soient F et G deux sous-espaces vectoriels de dimension n. Si F = G alors n importe quel supplémentaire de F est convenable. Sinon, on a F G et G F donc il existe x F et x G tels que x G et x F. On a alors x + x F G. Posons F = F Vect(x + x ) et G = G Vect(x + x ).

7 [ édité le 28 décembre 2016 Corrections 7 Comme dim F = dim G = n + 1, par hypothèse de récurrence, F et G possède un supplémentaire commun H et par suite H Vect(x + x ) est supplémentaire commun à F et G. Récurrence établie. Exercice 17 : [énoncé] Notons F et G les sous-espaces vectoriels de même dimension d un espace vectoriel E. Raisonnons par récurrence décroissante sur n = dim F = dim G {0, 1,..., dim E}. Si n = dim E, l espace nul est un supplémentaire commun. Supposons la propriété établie au rang n + 1 {1,..., dim E}. Soient F et G deux sous-espaces vectoriels de dimension n. Si F = G alors n importe quel supplémentaire de F est convenable. Sinon, on a F G et G F donc il existe x F et x G tels que x G et x F. On a alors x + x F G. Posons F = F Vect(x + x ) et G = G Vect(x + x ). Comme dim F = dim G = n + 1, par hypothèse de récurrence, F et G possèdent un supplémentaire commun H et par suite H Vect(x + x ) est supplémentaire commun à F et G. Récurrence établie. Exercice 18 : [énoncé] (a) Par récurrence sur p = dim E dim F 1. Si dim E dim F 1 = 0 alors G = {0 E } convient. Supposons la propriété établie au rang p 0. Soient F 1 et F 2 de même dimension tels que dim E dim F 1 = p + 1. Si F 1 = F 2 l existence d un supplémentaire à tout sous-espace vectoriel en dimension finie permet de conclure. Sinon, on a F 1 F 2 et F 2 F 1 ce qui assure l existence de x 1 F 1 \ F 2 et de x 2 F 2 \ F 1. Le vecteur x = x 1 + x 2 n appartient ni à F 1, ni à F 2. On pose alors F 1 = F 1 Vect(x) et F 2 = F 2 Vect(x). On peut appliquer l hypothèse de récurrence à F 1 et F 2 : on obtient l existence d un supplémentaire commun G à F 1 et F 2. G = G Vect(x) est alors supplémentaire commun à F 1 et F 2. Récurrence établie. (b) Soit F 1 un sous-espace vectoriel contenant F 1 et de même dimension que F 2. F 1 et F 2 possèdent un supplémentaire commun G. Considérons H un supplémentaire de F 1 dans F 1. En posant G 1 = H G et G 2 = G on conclut. Exercice 19 : [énoncé] (a) Soit x F a G, on peut écrire Mais alors x = λ i e i = x λ i (e i + a) λ i.a F G = {0 E } donc λ 1 =... = λ p = 0 puis x = 0 E. Soit x E, on peut écrire x = u + v avec u = p λ i.e i F et v G. On a alors x = λ i (e i + a) + v λ i a F a + G Ainsi F a G = E. (b) Par contraposée : Si F a = F b alors on peut écrire On a alors e 1 + a = λ i e i e 1 = λ i (e i + b) λ i b a F G donc λ 1 = 1 et 2 i p, λ i = 0. La relation initiale donne alors e 1 + a = e 1 + b puis a = b. Exercice 20 : [énoncé] (a) (x 1, x 2, x 3 ) est libre donc rg(x 1, x 2, x 3 ) = 3. (b) Comme x 3 = x 1 + x 2 et x 4 = x 2, on a Vect(x 1, x 2, x 3, x 4 ) = Vect(x 1, x 2 ). Comme (x 1, x 2 ) est libre, on a rg(x 1, x 2, x 3, x 4 ) = rg(x 1, x 2 ) = 2. Exercice 21 : [énoncé] On a donc f 1 (x) = car ( f 3, f 4 ) est libre. 1 + x 2 = f 3(x) + f 4 (x), f 2 (x) = rg( f 1, f 2, f 3, f 4 ) = rg( f 3, f 4 ) = 2 2 = f 3(x) f 4 (x)

8 [ édité le 28 décembre 2016 Corrections 8 Exercice 22 : [énoncé] Vect(x 1,..., x n ) = Vect(x 1,..., x p ) + Vect(x p+1,..., x n ). donc rg(x 1,..., x n ) rg(x 1,..., x p ) + rg(x p+1,..., x n ) rg(x 1,..., x p ) + n p. Exercice 23 : [énoncé] u, v H car ces vecteurs vérifient l équation définissant H. (u, v) est libre et dim H = 2 car H est un hyperplan de R 3. On secoue, hop, hop, le résultat tombe. Exercice 24 : [énoncé] H 1 + H 2 est un sous-espace vectoriel de E qui contient H 1 donc dim H 1 + H 2 = n 1 ou n. Si dim H 1 + H 2 = n 1 alors par inclusion et égalité des dimensions : H 2 = H 1 + H 2 = H 1. C est exclu, il reste dim H 1 + H 2 = n et alors dim H 1 H 2 = dim H 1 + dim H 2 dim H 1 + H 2 = n 2. Exercice 25 : [énoncé] On a F F + H E et F H donc F + H = E d où dim F H = dim F 1 via le théorème des quatre dimensions. Supposons D H. Soit x D H. Si x 0 E alors D = Vect(x) H ce qui est exclu. Nécessairement D H = {0 E }. De plus dim H + dim D = dim E donc H D = E Exercice 29 : [énoncé] Posons n = dim E et p = dim F. Soit B = (e 1,..., e p ) une base de F que l on complète en (e 1,..., e n ) base de E. Posons H i = Vect(e 1,..., ê i,..., e n ) Par double inclusion, on montre F = n i=p+1 On ne peut construire une intersection avoir moins d hyperplans car on peut montrer par récurrence que l intersection de q hyperplans est de dimension supérieure à n q. Ainsi, le nombre minimum d hyperplans intersecté pour écrire F est de n p. H i Exercice 26 : [énoncé] Posons n = dim E et p = dim F. Soit B = (e 1,..., e p ) une base de F que l on complète en (e 1,..., e n ) base de E. Posons H i = Vect(e 1,..., ê i,..., e n ) où ê i signifie que le terme est absent de la liste. Par double inclusion F = H p+1... H n. On ne peut pas avoir moins d hyperplans dans cette intersection puisque par récurrence on peut montrer que l intersection de q hyperplans est de dimension supérieure à n q. Exercice 27 : [énoncé] D + H est un sous-espace vectoriel de E contenant H donc dim D + H = n 1 ou n. Si dim D + H = n 1 alors par inclusion et égalité des dimensions D + H = H or D D + H et D H, ceci est donc exclu. Il reste dim D + H = n d où D + H = E. Puisque D + H = E et dim D + dim H = dim E, D et H sont supplémentaires dans E. Exercice 28 : [énoncé] Si D H alors H et D ne sont pas supplémentaires car H D = D {0 E }

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

Corrigé Problème. Partie I. I-A : Le sens direct et le cas n= 2

Corrigé Problème. Partie I. I-A : Le sens direct et le cas n= 2 33 Corrigé Corrigé Problème Théorème de Motzkin-Taussky Partie I I-A : Le sens direct et le cas n= 2 1-a Stabilité des sous-espaces propres Soit λ une valeur propre de v et E λ (v) le sous-espace propre

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Equations cartésiennes d une droite

Equations cartésiennes d une droite Equations cartésiennes d une droite I) Vecteur directeur d une droite : 1) Définition Soit (d) une droite du plan. Un vecteur directeur d une droite (d) est un vecteur non nul la même direction que la

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Algorithmes pour la planification de mouvements en robotique non-holonome

Algorithmes pour la planification de mouvements en robotique non-holonome Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot

Plus en détail

Construction d un cercle tangent à deux cercles donnés.

Construction d un cercle tangent à deux cercles donnés. Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Enoncés 1 [http://mpcpgedupuydelomefr] édité le 3 avril 215 Enoncés 1 Exercice 1 [ 265 ] [correction] On note V l ensemble des matrices à coefficients entiers du type a b c d d a b c c d a b b c d a et G l ensemble

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Les codes linéaires - Chapitre 6 - Principe Définition d un code linéaire Soient p un nombre premier et s est un entier positif. Il existe un unique corps de taille q

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

Pour l épreuve d algèbre, les calculatrices sont interdites.

Pour l épreuve d algèbre, les calculatrices sont interdites. Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Patrick Ciarlet et Vivette Girault ciarlet@ensta.fr & girault@ann.jussieu.fr ENSTA & Laboratoire Jacques-Louis Lions, Paris 6 Condition

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Chapitre VI - Méthodes de factorisation

Chapitre VI - Méthodes de factorisation Université Pierre et Marie Curie Cours de cryptographie MM067-2012/13 Alain Kraus Chapitre VI - Méthodes de factorisation Le problème de la factorisation des grands entiers est a priori très difficile.

Plus en détail

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

2 Division dans l anneau des polynômes à plusieurs variables

2 Division dans l anneau des polynômes à plusieurs variables MA 2 2011-2012 M2 Algèbre formelle 1 Introduction 1.1 Référence Ideals, varieties and algorithms, D. Cox, J. Little, D. O Shea, Undergraduate texts in Mathematics, Springer 1997. Using algebraic geometry,

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

IV- Equations, inéquations dans R, Systèmes d équations

IV- Equations, inéquations dans R, Systèmes d équations IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation

Plus en détail

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples, Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très

Plus en détail

Cours arithmétique et groupes. Licence première année, premier semestre

Cours arithmétique et groupes. Licence première année, premier semestre Cours arithmétique et groupes. Licence première année, premier semestre Raphaël Danchin, Rejeb Hadiji, Stéphane Jaffard, Eva Löcherbach, Jacques Printems, Stéphane Seuret Année 2006-2007 2 Table des matières

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Mesures gaussiennes et espaces de Fock

Mesures gaussiennes et espaces de Fock Mesures gaussiennes et espaces de Fock Thierry Lévy Peyresq - Juin 2003 Introduction Les mesures gaussiennes et les espaces de Fock sont deux objets qui apparaissent naturellement et peut-être, à première

Plus en détail

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions HQ = He 1 He 2 He 3 He 4 HQ e 5 comme anneaux (avec centre Re 1 Re 2 Re 3 Re 4

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Peut-on imiter le hasard?

Peut-on imiter le hasard? 168 Nicole Vogel Depuis que statistiques et probabilités ont pris une large place dans les programmes de mathématiques, on nous propose souvent de petites expériences pour tester notre perception du hasard

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Étudier si une famille est une base

Étudier si une famille est une base Base raisonnée d exercices de mathématiqes (Braise) Méthodes et techniqes des exercices Étdier si ne famille est ne base Soit E n K-espace vectoriel. Comment décider si ne famille donnée de vecters de

Plus en détail

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA 75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche

Plus en détail

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal III CHOIX OPTIMAL DU CONSOMMATEUR A - Propriétés et détermination du choix optimal La demande du consommateur sur la droite de budget Résolution graphique Règle (d or) pour déterminer la demande quand

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

4. Martingales à temps discret

4. Martingales à temps discret Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les

Plus en détail

PRIME D UNE OPTION D ACHAT OU DE VENTE

PRIME D UNE OPTION D ACHAT OU DE VENTE Université Paris VII - Agrégation de Mathématiques François Delarue) PRIME D UNE OPTION D ACHAT OU DE VENTE Ce texte vise à modéliser de façon simple l évolution d un actif financier à risque, et à introduire,

Plus en détail

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES Suites géométriques, fonction exponentielle Copyright c 2004 J.- M. Boucart GNU Free Documentation Licence L objectif de cet exercice

Plus en détail