Algèbre 4 CALCUL MATRICIEL SYSTEMES LINEAIRES

Dimension: px
Commencer à balayer dès la page:

Download "Algèbre 4 CALCUL MATRICIEL SYSTEMES LINEAIRES"

Transcription

1 Algèbre - cha 4 /9 Dans tout le chaitre K désigne R ou C, n et désignent des entiers naturels non nuls.. OPERATIONS SUR LES MATRICES. Notion de matrice Algèbre 4 CALCUL MATRICIEL SYSTEMES LINEAIRES Définition : On aelle matrice à n lignes et colonnes à coefficients dans K un tableau à n lignes et colonnes de nombres de K résenté de la manière suivante : a a A =. a n a n Cette matrice se note également A = (a ij ) i n, j, ou lus simlement (a ij ) quand n et sont connus. Si =, A est aelée une matrice colonne ; Si n =, A est aelée une matrice ligne ; Si n =, A est aelée une matrice carrée d ordre n. Les éléments a ii ( i n ) sont aelés éléments diagonaux, et (a ; ;a nn ) est aelée la diagonale de A Notations : M n, (K) désigne l ensemble des matrices à n lignes et colonnes sur K. On note M n (K) = M n,n (K). On note 0 n ou 0 la matrice dont tous les éléments sont nuls. Définition 2 : On aelle matrice identité de M n (K) la matrice I n = ( ij ) i n, j n 0 où ii = i, et ij = 0 i j. I n = M n(k) 0 Définition 3 : Soit A = (a ij ) une matrice de M n (K). On dit que A est une matrice diagonale si (i ; j) ( ) 2 ;n, (i j) (a ij = 0). On note D = diag(λ ; ; λ n ) une telle matrice, et D n (K) l ensemble des matrices diagonales d ordre n. On dit que A est une matrice triangulaire suérieure si (i ; j) ;n, (i > j) (a ij = 0). ( ) 2 On dit que A est une matrice triangulaire inférieure si (i ; j) ( ;n ) 2, (i < j) (a ij = 0).

2 Algèbre - cha 4 2/9.2 Oérations sur les matrices Définition 4 : On aelle addition dans M n, (K) la loi notée + définie ar : (a ij ) + (b ij ) = (a ij + b ij ). Remarque : Pour l addition les deux matrices doivent être de même format! Définition 5 : On aelle multilication ar un scalaire la loi notée. définie ar : λ.(a ij ) = (λa ij ) (avec λ K). Proriétés : Soit ( A;B;C) ( M n, (K) ) 3 (A + B) + C = A + (B + C) A + B = B + A Si 0 est la matrice nulle (tous les coefficients sont nuls), A + 0 = A A + (-)A = 0 ( λ ; µ ) K 2, ( λµ ) A = λ ( µ A) λ K, λ ( A + B) = λ A + λ B Définition 6 : Soient A = (a ik ) M n, (K) et B = (b kj ) M,q (K), on aelle roduit de A ar B et on note A B ( ou lus simlement AB) la matrice C = (c ij ) M nq (K) définie ar : c ij = k= a ikb kj i n, j q Remarque : AB est défini si le nombre de colonnes de A est égal au nombre de lignes de B. Proosition : Soient A = (a ik ) M n, (K) et B = (b kj ) M,q (K). La j ième colonne de AB est le roduit de A ar la j ième colonne de B. La i ième ligne de AB est le roduit de la i ième ligne de A ar B. Proriétés : ( A;B;C) M n, (K) M,q (K) M q,r (K), (AB) C = A (BC) ( A;B;C) M n, (K) M,q (K) M,q (K), A (B + C) = AB + AC ( A;B;C) M n, (K) M q,n (K) M q,n (K), (B + C) A = BA + CA (A; B) M n, (K) M,q (K), λ K, ( λa)b = A( λb) = λ(ab) A M n (K), A I n = I n A = A et 0A = A0 = 0 (où 0 est la matrice nulle)

3 Algèbre - cha 4 3/9 Attention! Le roduit de matrices n est as commutatif. Proosition 2 : Formule du binôme de Newton our les matrices (A ; B) (M n (K)) 2 n, n N, si A.B = B.A, alors :( A+ B) = A B k.3 Transosition n n k n k Définition 7 : On aelle transosée de la matrice A = (a ij ) M n, (K) la matrice t A = (a ij ) M,n (K) telle que a ij = a ji our i, j n. k= 0 Définition 8 : Soit A = (a ij ) une matrice de M n (K). On dit que A est une matrice symétrique si t A = A. On note S n (K) l ensemble des matrices symétriques d ordre n. On dit que A est une matrice antisymétrique si t A = - A. On note A n (K) l ensemble des matrices antisymétriques d ordre n. Proosition 3 : (A ; B) (M n (K)) 2, t (A.B) = t B. t A.4 Matrices inversibles Définition 9 : On dit qu une matrice carrée A M n (K) est inversible s il existe une matrice de M n (K), notée A -, telle que AA - = A - A = I n. L ensemble des éléments inversibles de M n (K) est aelé groue linéaire et noté GL n (K). Proosition 4 : (A ; B) (GL n (K))², AB GL n (K), et (AB) - = B - A -. Proosition 5 : Si A GL n (K) alors t A GL n (K) et ( t A) - = t (A - ). Proosition 6 : D D n (K) est inversible si et seulement si i {,,n} λ i 0. On a alors : D - = diag(λ -,,λ n - ) Remarque : de même une matrice triangulaire est inversible si et seulement si tous ses éléments diagonaux sont différents de SYSTEMES LINEAIRES 2. Définitions Définition 0 : On aelle système linéaire de n équations linéaires à inconnues ax + a2x2 + + ax = b (x ; x 2 ; ; x ) K a 2x a 22x 2 a 2x b2 le système S : = a nx + a n2x2 + + a nx = bn où les coefficients a ij et b j ( i n, j ) sont éléments de K. Résoudre le système S, c est chercher l ensemble des -ulets solutions.

4 Algèbre - cha 4 4/9 Définition : Soient A = (a ij ) et B = b. b n A est aelée matrice du système S, ( A B ) est aelée matrice augmentée du système. x Remarque : En notant X = on obtient que X est solution de S dans K si et seulement x si A X = B : interrétation matricielle de S. Définition 2 : Si B = 0, on dit que le système est homogène et on le note alors S 0. Définition 3 : Un système linéaire est dit de Cramer si la matrice associée est inversible. Proosition 7 : Un système de Cramer admet une solution unique : X = A - B Remarque : Un système de Cramer homogène admet our unique solution (0 ; ; 0) K. 2.2 Systèmes équivalents Définition 4 : On aelle oérations élémentaires sur les lignes d un système ou d une matrice : la ermutation (ou l échange) de deux lignes notée L i L j le roduit d une ligne ar λ (λ K*) notée L i λl i l addition à une ligne d une autre ligne multiliée ar λ (λ K) notée L i L i + λl j Remarque : on définit de même les oérations élémentaires sur les colonnes d une matrice. Définition 5 : Deux systèmes S et S sont dits équivalents si l on asse de l un à l autre ar une suite finie d oérations élémentaires sur les lignes. On note S S. Deux matrices A et A sont dites équivalentes en lignes si elles se déduisent l une de l autre ar une suite finie d oérations élémentaires sur les lignes. On note A A. Proosition 8 : Si l on asse d un système S à un autre système S ar une suite finie d oérations élémentaires sur les lignes, la matrice augmentée de S s obtient en effectuant la même suite d oérations élémentaires sur la matrice augmentée de S. Définition 6 : On aelle matrice élémentaire de M n, (K) la matrice E ij M n, (K) telle que E ij = (δ ki δ hj ) k n, h (tous les termes sont nuls sauf le terme a ij qui est égal à.) Remarque : A = (a ij ) = n aijeij. i= j=

5 Algèbre - cha 4 5/9 Définition 7 : On aelle matrice de transosition de M n (K) toute matrice P ij de la forme : P ij = I n E ii E jj + E ij + E ji = Proosition 9 : ( ) ( ) 2 i; j ;n, A M n, (K), la matrice P ij A se déduit de A en échangeant les lignes L i et L j (L i L j ) Proosition 0 : ( i; j) ( ;n ) 2, la matrice P ij est inversible, d inverse elle-même. Définition 8 : On aelle matrice d affinité de M n (K) toute matrice D i ( ) de la forme : D i ( ) = I n + ( ) E ii = Proosition : i ;n, λ K, A M n, (K), la matrice D i ( )A se déduit de A en multiliant la ligne L i ar (L i λl i ). Proosition 2 : i ; n, λ 0,, la matrice D i ( ) est inversible, d inverse D i λ. Définition 9 : On aelle matrice de transvection de M n (K) toute matrice T ij ( ) de la forme : T ij ( ) = I n + E ij = Proosition 3 : ( ) ( ) 2 i; j ;n, λ K, A M n, (K), la matrice T ij ( )A se déduit de A en remlaçant la ligne L i ar elle-même additionnée de la ligne L j multiliée ar ( L i L i + λl j ) Proosition 4 : ( ) ( ) 2 i; j ;n, λ K, la matrice T ij ( ) est inversible, d inverse T ij (- ). Remarque : Chaque oération élémentaire sur une matrice A corresond au roduit de cette matrice ar une matrice carrée inversible. Théorème : Deux systèmes équivalents ont le même ensemble de solutions

6 Algèbre - cha 4 6/9 2.3 Matrice échelonnée Définition 20 : On aelle matrice échelonnée en lignes toute matrice vérifiant les conditions suivantes : Si une ligne est entièrement nulle, toutes les lignes suivantes le sont aussi Si le remier terme non nul de la i ième ligne est en osition j, soit la (i +) ième ligne est nulle, soit son remier terme non nul est en osition k > j. On aelle système échelonné tout système dont la matrice est échelonnée en lignes. On aelle ivot le remier coefficient non nul de chaque ligne non entièrement nulle. Une matrice échelonnée en ligne est dite échelonnée réduite en lignes lorsque tous les ivots sont égaux à et sont les seuls éléments non nuls de leur colonne. Exemles: Contre exemle : n est as une matrice échelonnée. Théorème 2 : Toute matrice non nulle est équivalente en lignes à une unique matrice échelonnée réduite en lignes. 2.4 Algorithme du ivot de Gauss On considère un système linéaire de n équations à inconnues. ❶ On se ramène à un système équivalent tel que a 0 (en ermutant éventuellement L avec une autre ligne), uis on divise L (la nouvelle remière ligne!) ar a (le nouveau!). ❷ i 2;n, Li Li ail. On a ainsi éliminé l inconnue x dans toutes les équations à artir de L 2. Le nouveau système est de la forme : x + a2x ax = b a 22x a 2x = b2 a x a x = b n2 2 n n On considère désormais le système de n - équations formé des lignes L 2 à L n. - Si tous les coefficients sont nuls, l algorithme est achevé. - Sinon, on considère le sous-système de n- équations formé des lignes L 2 à L n et des colonnes C i à C + où C i est la remière colonne non nulle, uis on alique les étaes ❶ et ❷ au sous-système. De roche en roche en reroduisant un nombre fini de fois ces étaes on obtient un système dont la matrice augmentée est échelonnée.

7 Algèbre - cha 4 7/9 2.5 Ensemble des solutions d un système linéaire Définition 2 : On aelle rang d un système S, noté rg(s), le nombre de ivots de la matrice échelonnée réduite du système équivalent. Remarque : le rang d un système ne déend as du second membre. On considère un système linéaire S de n équations à inconnues, de rang r. On se ramène au cas où le système est échelonné et, quitte à changer l ordre des inconnues, on suose que le nombre de 0 qui commencent chaque ligne augmente de à chaque ligne. On note A = (a ij ) la matrice échelonnée associée au système, et (b i ) la matrice colonne du second membre Si r = n = Le système s écrit : x + a x a x = b x a x = b xn = b 2 2 n n 2 2n n 2 On est dans le cas d un système de Cramer. Il admet une unique solution quel que soit son second membre. On trouve la solution en «remontant» les équations du système à artir de x n = b n. n Si r = n < Le système s écrit : x + a x a x + a x = b x a x + a x = b 2 2 n n j j j= n+ 2 2n n 2 j j 2 j= n+ x + a x = b n nj j n j= n+ Le système admet une infinité de solutions quel que soit son second membre. En «remontant» les équations du système on exrime les inconnues x n, x n-,, x (aelées inconnues rinciales) à l aide des inconnues x n+,, x (aelées inconnues secondaires ou aramètres). Remarque : Le nombre de aramètres est égal à la différence du nombre d inconnues et du rang.

8 Algèbre - cha 4 8/ Si r = < n Le système s écrit : x + a2x ax = b x a 2x = b2 x = b 0 = b 0 = b + n Définition 22 : Les équations 0 = b i sont aelées équations de comatibilité. - Si les équations de comatibilité sont la tautologie 0 = 0, le système admet une unique solution quel que soit son second membre. On trouve la solution en «remontant» les équations du système à artir de x = b. 2- Sinon, le système n a as de solution (il est dit système incomatible) Si r < et r < n Le système s écrit : x + a x a x + a x = b x a x + a x = b 2 2 r r j j j= r+ 2 2r r j j 2 j= r+ x + a x = b 0 = b r j j r j= r+ 0 = b r+ n - Si les équations de comatibilité sont la tautologie 0 = 0, le système admet une infinité de solutions quel que soit son second membre. En «remontant» les équations du système on exrime les inconnues x r, x r-,, x (aelées inconnues rinciales) à l aide des inconnues x r+,, x (aelées inconnues secondaires ou aramètres). 2- Sinon, le système n a as de solution (le système est dit incomatible) Bilan Proosition 5 : Un système linéaire de rang r à inconnues et n équations admet 0, ou une infinité de solutions. S il admet une infinité de solutions, celles-ci déendent de r aramètres. Si le système est de Cramer il a toujours une unique solution, sinon l existence de solutions déend du second membre.

9 Algèbre - cha 4 9/9 2.6 Structure de l ensemble des solutions d un système linéaire Proosition 6 : L ensemble des solutions d un système S est soit vide, soit de la forme X 0 + S H où X 0 est une solution articulière de S et S H est l ensemble des solutions du système homogène associé à S. 2.7 Inversion de matrice Proosition 7 : Soit A M n (K). Les roositions suivantes sont équivalentes : i) A GL n (K) ii) Le système AX = 0 n admet que la solution nulle iii) A I n iv) Pour tout B, le système AX = B admet une unique solution v) Pour tout B, le système AX = B admet au moins une solution. Inversion d une matrice ar résolution d un système linéaire Pour inverser une matrice A, on résout le système AX = Y où Y est un vecteur colonne générique. On obtient ainsi X en fonction de Y sous la forme BY, où B M n (K) est l inverse de A. Inversion d une matrice ar le ivot de Gauss D arès la roosition 4, si une matrice est inversible alors on eut la transformer en I n en faisant des oérations sur les lignes. En faisant les mêmes oérations sur les lignes de la matrice identité, on obtient A -.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

dénombrement, loi binomiale

dénombrement, loi binomiale dénombrement, loi binomiale Table des matières I) Introduction au dénombrement 1 1. Problème ouvert....................................... 2 2. Jeux et dénombrements...................................

Plus en détail

Cours d analyse numérique SMI-S4

Cours d analyse numérique SMI-S4 ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Module : réponse d un système linéaire

Module : réponse d un système linéaire BSEL - Physique aliquée Module : réonse d un système linéaire Diaoramas () : diagrammes de Bode, réonse Résumé de cours - Caractérisation d un système hysique - Calcul de la réonse our une entrée donnée

Plus en détail

Journées Télécom-UPS «Le numérique pour tous» David A. Madore. david.madore@enst.fr. 29 mai 2015

Journées Télécom-UPS «Le numérique pour tous» David A. Madore. david.madore@enst.fr. 29 mai 2015 et et Journées Télécom-UPS «Le numérique pour tous» David A. Madore Télécom ParisTech david.madore@enst.fr 29 mai 2015 1/31 et 2/31 : définition Un réseau de R m est un sous-groupe (additif) discret L

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Corrigé Problème. Partie I. I-A : Le sens direct et le cas n= 2

Corrigé Problème. Partie I. I-A : Le sens direct et le cas n= 2 33 Corrigé Corrigé Problème Théorème de Motzkin-Taussky Partie I I-A : Le sens direct et le cas n= 2 1-a Stabilité des sous-espaces propres Soit λ une valeur propre de v et E λ (v) le sous-espace propre

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

Mathématiques appliquées à l'économie et à la Gestion

Mathématiques appliquées à l'économie et à la Gestion Mathématiques appliquées à l'économie et à la Gestion Mr Makrem Ben Jeddou Mme Hababou Hella Université Virtuelle de Tunis 2008 Continuité et dérivation1 1- La continuité Théorème : On considère un intervalle

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Des familles de deux enfants

Des familles de deux enfants Des familles de deux enfants Claudine Schwartz, IREM de Grenoble Professeur, Université Joseh Fourier Les questions et sont osées dans le dernier numéro de «Pour la Science» (n 336, octobre 2005, article

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

Pour l épreuve d algèbre, les calculatrices sont interdites.

Pour l épreuve d algèbre, les calculatrices sont interdites. Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe

Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe des n n groupes quantiques compacts qui ont la théorie

Plus en détail

Compter à Babylone. L écriture des nombres

Compter à Babylone. L écriture des nombres Compter à Babylone d après l article de Christine Proust «Le calcul sexagésimal en Mésopotamie : enseignement dans les écoles de scribes» disponible sur http://www.dma.ens.fr/culturemath/ Les mathématiciens

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

IV- Equations, inéquations dans R, Systèmes d équations

IV- Equations, inéquations dans R, Systèmes d équations IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation

Plus en détail

Déterminants. Marc SAGE 9 août 2008. 2 Inverses et polynômes 3

Déterminants. Marc SAGE 9 août 2008. 2 Inverses et polynômes 3 Déterminants Marc SAGE 9 août 28 Table des matières Quid des formes n-linéaires alternées? 2 2 Inverses et polynômes 3 3 Formule de Miller pour calculer un déterminant (ou comment illustrer une idée géniale)

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Licence Sciences de l Ingénieur et Licence Informatique. Niveau L2 (= 2ème année)

Licence Sciences de l Ingénieur et Licence Informatique. Niveau L2 (= 2ème année) Licence Sciences de l Ingénieur et Licence Informatique Niveau L2 (= 2ème année) Mathématiques : Résumé de ce qu il faut savoir en Algèbre linéaire (ou Calcul Matriciel) au sortir du L1, en préalable au

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Comment démontrer des formules sans effort? exposé de maîtrise

Comment démontrer des formules sans effort? exposé de maîtrise Comment démontrer des formules sans effort? exposé de maîtrise Marc Mezzarobba Sam Zoghaib Sujet proposé par François Loeser Résumé Nous exposons un ensemble de méthodes qui permettent d évaluer «en forme

Plus en détail

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Extrait du poly de Stage de Grésillon 1, août 2010

Extrait du poly de Stage de Grésillon 1, août 2010 MINI-COURS SUR LES POLYNÔMES À UNE VARIABLE Extrait du poly de Stage de Grésillon 1, août 2010 Table des matières I Opérations sur les polynômes 3 II Division euclidienne et racines 5 1 Division euclidienne

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Triangle de Pascal dans Z/pZ avec p premier

Triangle de Pascal dans Z/pZ avec p premier Triangle de Pascal dans Z/pZ avec p premier Vincent Lefèvre (Lycée P. de Fermat, Toulouse) 1990, 1991 1 Introduction Nous allons étudier des propriétés du triangle de Pascal dans Z/pZ, p étant un nombre

Plus en détail

S2I 1. quartz circuit de commande. Figure 1. Engrenage

S2I 1. quartz circuit de commande. Figure 1. Engrenage TSI 4 heures Calculatrices autorisées 214 S2I 1 L essor de l électronique nomade s accomagne d un besoin accru de sources d énergies miniaturisées. Les contraintes imosées à ces objets nomades sont multiles

Plus en détail

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques : MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Accès optiques : la nouvelle montée en débit

Accès optiques : la nouvelle montée en débit Internet FTR&D Dossier du mois d'octobre 2005 Accès otiques : la nouvelle montée en débit Dans le domaine du haut débit, les accès en France sont our le moment très majoritairement basés sur les technologies

Plus en détail

Coefficients binomiaux

Coefficients binomiaux Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant

Plus en détail

Représentation d un entier en base b

Représentation d un entier en base b Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant

Plus en détail

Équations d amorçage d intégrales premières formelles

Équations d amorçage d intégrales premières formelles Équations d amorçage d intégrales premières formelles D Boularas, A Chouikrat 30 novembre 2005 Résumé Grâce à une analyse matricielle et combinatoire des conditions d intégrabilité, on établit des équations

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

2.4 Représentation graphique, tableau de Karnaugh

2.4 Représentation graphique, tableau de Karnaugh 2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables

Plus en détail

Démonstration de la conjecture de Dumont

Démonstration de la conjecture de Dumont C. R. Acad. Sci. Paris, Ser. I 1 (005) 71 718 Théorie des nombres/combinatoire Démonstration de la conjecture de Dumont Bodo Lass http://france.elsevier.com/direct/crass1/ Institut Camille Jordan, UMR

Plus en détail

Découvrez les bâtiments* modulaires démontables

Découvrez les bâtiments* modulaires démontables Découvrez les bâtiments* modulaires démontables w Industrie w Distribution * le terme «bâtiment» est utilisé our la bonne comréhension de l activité de Locabri. Il s agit de structures modulaires démontables

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Première partie. Introduction à la méthodes des différences finies

Première partie. Introduction à la méthodes des différences finies Première partie Introduction à la méthodes des différences finies 5 7 Introduction Nous allons présenter dans cettte partie les idées de base de la méthode des différences finies qui est sans doute la

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Les emprunts indivis. Administration Économique et Sociale. Mathématiques XA100M

Les emprunts indivis. Administration Économique et Sociale. Mathématiques XA100M Les emprunts indivis Administration Économique et Sociale Mathématiques XA100M Les emprunts indivis sont les emprunts faits auprès d un seul prêteur. On va étudier le cas où le prêteur met à disposition

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Plus courts chemins, programmation dynamique

Plus courts chemins, programmation dynamique 1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique

Plus en détail

Optimisation Discrète

Optimisation Discrète Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R 2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications

Plus en détail

Bois. P.21 Bois-béton à Paris. Carrefour du Bois. Saturateurs. Usinage fenêtres. Bardages P.25 P.34 P.31 P.37. La revue de l activité Bois en France

Bois. P.21 Bois-béton à Paris. Carrefour du Bois. Saturateurs. Usinage fenêtres. Bardages P.25 P.34 P.31 P.37. La revue de l activité Bois en France CMP Bois n 19-12 avril - mai 2010 P.25 Carrefour du Bois P.34 cm La revue de l activité Bois en France Bois Saturateurs P.31 Usinage fenêtres P.37 Bardages Tout our l usinage du bois massif. Tout d un

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

.NET remoting. Plan. Principes de.net Remoting

.NET remoting. Plan. Principes de.net Remoting Plan.NET remoting Clémentine Nebut LIRMM / Université de Montellier 2 de.net Remoting côté serveur côté client.net Remoting en ratique Les canaux de communication L'activation L'invocation Les aramètres

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles

Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Physique, chimie et sciences de l ingénieur (PCSI) Discipline : Mathématiques Première année Classe préparatoire

Plus en détail

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA 75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche

Plus en détail

Une forme générale de la conjecture abc

Une forme générale de la conjecture abc Une forme générale de la conjecture abc Nicolas Billerey avec l aide de Manuel Pégourié-Gonnard 6 août 2009 Dans [Lan99a], M Langevin montre que la conjecture abc est équivalente à la conjecture suivante

Plus en détail

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique : Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de

Plus en détail

C algèbre d un certain groupe de Lie nilpotent.

C algèbre d un certain groupe de Lie nilpotent. Université Paul Verlaine - METZ LMAM 6 décembre 2011 1 2 3 4 Les transformations de Fourier. Le C algèbre de G/ Z. Le C algèbre du sous-groupe G 5 / vect{u,v }. Conclusion. G un groupe de Lie, Ĝ l ensemble

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

prix par consommateur identiques différents prix par identiques classique 3 unité différents 2 1

prix par consommateur identiques différents prix par identiques classique 3 unité différents 2 1 3- LE MONOOLE DISCRIMINANT Le monoole eut vendre ertaines unités de roduit à des rix différents. On arle de disrimination ar les rix. Selon une terminologie due à igou (The Eonomis of Welfare, 1920), on

Plus en détail