CST. Mathématiques CST - Figures planes équivalentes - Figures planes équivalentes. Deux figures planes sont équivalentes si elles ont la même aire.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "CST. Mathématiques CST - Figures planes équivalentes - Figures planes équivalentes. Deux figures planes sont équivalentes si elles ont la même aire."

Transcription

1 - Figures planes équivalentes - Figures planes équivalentes Deux figures planes sont équivalentes si elles ont la même aire. Ex. : A A D 4 cm 2 cm B 3 cm C B 3 cm C A = A = A = b x h 2 3 x A = b x h A = 3 x 2 A = 2 Donc le triangle ABC et le rectangle ABCD sont équivalents.

2 Exercice : Quelle est la mesure de la grande diagonale du losange ABCD si celui-ci est équivalent au cerf-volant EFGH? 8 cm B A D F 13 cm 15 cm E 4 cm G C 13 cm H 4 cm? Figures équivalentes A losange losange = A cerf-volant A cerf-volant A cerf-volant = A EFG + A FGH A EFG = p (p a) (p( b) (p( c) (formule de Héron où p A EFG = 16 (16 4) (16( 13) (16( 15) A EFG = 16 (12) (3) (1) A EFG = Comme Donc 24 cm 2 A EFG = A FGH, A cerf-volant = A cerf-volant = alors A EFG + A FGH = 48 cm 2 est le ½-périmètre) A FGH = 24 cm 2

3 Exercice : Quelle est la mesure de la grande diagonale du losange ABCD si celui-ci est équivalent au cerf-volant EFGH? 8 cm B A D F 13 cm 15 cm E 4 cm G C 13 cm H 4 cm? Figures équivalentes A losange losange = A cerf-volant D losange A losange = D x d 2 48 = D x = D x 8 12 = D Réponse : La grande diagonale mesure 12 cm.

4 - Figures planes équivalentes - Propriétés des figures planes équivalentes De tous les polygones équivalents à n côtés,, c est le polygone régulier qui a le plus petit périmètre. Ex. #1 : Parmi ces triangles équivalents, c est le triangle équilatéral qui a le plus petit périmètre.

5 - Figures planes équivalentes - Propriétés des figures planes équivalentes De tous les polygones équivalents à n côtés,, c est le polygone régulier qui a le plus petit périmètre. Ex. #2 : Parmi ces quadrilatères équivalents, c est le carré qui a le plus petit périmètre.

6 - Figures planes équivalentes - Propriétés des figures planes équivalentes De tous les polygones réguliers équivalents, c est le polygone qui a le plus grand nombre de côtés qui a le plus petit périmètre. À la limite, c est le disque équivalent qui a le plus petit périmètre. Ex. : Parmi ces polygones réguliers équivalents, c est l hexagone qui a le plus petit périmètre.

7 - Solides équivalents - Révision des principales formules A) Volume des solides

8 A) Volume des solides Prismes (et cylindres) V A base h Pyramides (et cônes) Sphères V A base h 3 V 4 r3 3

9 B) Aire des solides Prismes (et cylindres) A (P base h) + A 2 bases Pyramides (et cônes) Sphères A P base a A 2 base A 4 r 2

10 Solides équivalents - Solides équivalents - Deux solides sont équivalents s ils possèdent le même volume.

11 Ex. : Soit les quatre solides suivants. 9 cm 4 cm 8 cm 9 cm 9 cm 12 cm

12 Volume du prisme à base rectangulaire A base x h 6 x 4 x 9 9 cm cm Volume du cube A base x h 6 x 6 x

13 Volume de la pyramide à base carrée A base x h 3 9 x 9 x cm cm 9 cm Volume du prisme à base triangulaire A base x h 6 x x cm Donc ces quatre solides sont équivalents puisqu ils ont le même volume,, c est-à-dire 21 3.

14 Exercice : Quelle est la mesure de la hauteur du cylindre si celui-ci est équivalent au cône? 8 cm 10 cm h 4 cm Hauteur du cône Volume du cône (h cône ) = 10 2 (h cône ) 2 = (par Pythagore) A base x h 3 (h cône ) 2 = 64 h cône = 8 cm x 6 2 x 8 3 V 301, 3

15 Exercice : Quelle est la mesure de la hauteur du cylindre si celui-ci est équivalent au cône? 8 cm 10 cm h 4 cm Hauteur du cylindre A base x h 301,6 = x 4 2 x h 301,6 50,265 x h h Volume du cône V A base x h 3 x 6 2 x , 3 Réponse : La hauteur du cylindre mesure.

16 - Solides équivalents - Optimisation des solides Solides de même AIRE De tous les prismes à base rectangulaire, c est le CUBE qui a le plus grand volume. 5 cm 5 cm 7,5 cm 3 cm 5 cm 5 cm A tot = 150 cm 2 A tot = 150 cm 2 112,5 cm cm 3

17 - Solides équivalents - Optimisation des solides Solides de même AIRE De tous les solides,, c est la SPHÈRE qui a le plus grand volume. 3 cm 4,9 3 cm A tot = 150 cm 2 A tot = 150 cm 2 V 140,24 cm 3 V 172,75 cm 3

18 - Solides équivalents - Optimisation des solides Solides de même VOLUME De tous les prismes à base rectangulaire, c est le CUBE qui a la plus petite aire. 5 cm 5 cm 10 cm 2,5 cm 5 cm 5 cm 125 cm cm 3 A tot = 175 cm 2 A tot = 150 cm 2

19 - Solides équivalents - Optimisation des solides Solides de même VOLUME De tous les solides,, c est la SPHÈRE qui a la plus petite aire. 3 cm 4,42 cm 3,1 cm 125 cm cm 3 A tot 139,8 2 A tot 120,7 2

Les formules de la géométrie spaciale

Les formules de la géométrie spaciale Troisième, chapitre n o 1 Les formules de la géométrie spaciale L'ensemble des formules permettent de déterminer les volumes et les surfaces des solides usuels. L'étude s'enrichit du cas de la sphère.

Plus en détail

1.5 Le volume de pyramides droites et de cônes droits

1.5 Le volume de pyramides droites et de cônes droits 1.5 Le volume de pyramides droites et de cônes droits CHOIX MULTIPLE 1. Calcule le volume de cette pyramide droite à base carrée, au pied cube près. A. 58 pieds cubes B. 62 pieds cubes C. 54 pieds cubes

Plus en détail

PRISME DROIT. II- Vue en perspective et vocabulaire: Les triangles ABC et A'B'C' sont les bases du prisme

PRISME DROIT. II- Vue en perspective et vocabulaire: Les triangles ABC et A'B'C' sont les bases du prisme PRISME DROIT I- Patron: En traçant deux triangles et trois rectangles disposés de la manière ci-contre et en pliant, on obtient un prisme droit à base triangulaire II- Vue en perspective et vocabulaire:

Plus en détail

1 Les solides de 6e et de 5e.

1 Les solides de 6e et de 5e. 1 Les solides de 6e et de 5e. 1.1 Le pavé droit et le cube Le pavé droit a six faces rectangulaires, 8 sommets et 12 arêtes (3 dimensions d arêtes). Vue en perspective cavalière : Patron : Aire : l aire

Plus en détail

CORRIGÉ. b) L hypoténuse mesure 76,32 cm et une cathète mesure 58,42 cm ; l autre cathète mesure

CORRIGÉ. b) L hypoténuse mesure 76,32 cm et une cathète mesure 58,42 cm ; l autre cathète mesure EXERCICES DE RÉVISION PYTHAGORE ET LES SOLIDES La relation de Pythagore et sa réciproque 1. Comment se nomme : a) le côté opposé à l angle droit d un triangle rectangle? Hypoténuse. b) chacun des côtés

Plus en détail

Chapitre 5 : agrandissement, réduction ; sections de solides

Chapitre 5 : agrandissement, réduction ; sections de solides Chapitre 5 : agrandissement, réduction ; sections de solides I. Rappels et sections de solides 1/ Parallélépipède rectangle Description/Figure Un parallélépipède ou un pavé droit est solide de l'espace

Plus en détail

Récupération 3 e secondaire Vision 5 : Solides semblables

Récupération 3 e secondaire Vision 5 : Solides semblables Récupération 3 e secondaire Vision 5 : Solides semblables 1. Dans chaque cas, détermine si les deux polygones illustrés sont semblables. S ils le sont, détermine le rapport de similitude (k). S ils ne

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui compose ce polygone

Plus en détail

La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d

La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d C3 Géométrie : droite, segment, milieu Leçon Géom1 CM1/2 La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d

Plus en détail

5 ème AIRE ET VOLUME (PREPARATION) AIRE D UN PARALLELLOGRAMME. Exercice 1

5 ème AIRE ET VOLUME (PREPARATION) AIRE D UN PARALLELLOGRAMME. Exercice 1 AIRE D UN PARALLELLOGRAMME Si le parallélogramme au chocolat pèse 40 grammes, alors le rectangle au chocolat pèse. On peut découper le parallélogramme pour obtenir le rectangle. Comparer les aires du parallélogramme

Plus en détail

Cercles et polygones

Cercles et polygones Cercles et polygones I) Le cercle : a) Soit O un point donné et R un nombre décimal positif. On appelle cercle C de centre O et de rayon R, l ensemble des points M situés à la distance R du point O. On

Plus en détail

7. Grandeurs et mesures

7. Grandeurs et mesures - 1 - Grandeurs et mesures 7. Grandeurs et mesures 7.1 Longueurs et périmètres Unités de longueur : km hm dam m dm cm mm Figure : Nom de la figure : Périmètre : Carré P= 4 a Rectangle P = a+ b= ( a+ b)

Plus en détail

Le vocabulaire de géométrie

Le vocabulaire de géométrie Géom1 Le vocabulaire de géométrie En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire : Un point A A X Un segment [AB] (d) Une droite (d)

Plus en détail

Construction de solides

Construction de solides Le matériel pour construire les solides est composé de 5 figures planes: *des carrés *des rectangles *des triangles rectangles *des triangles isocèles *des triangles équilatéraux. 1 Redonne leurs noms

Plus en détail

2 Pour identifier que 2 droites sont perpendiculaires, j utilise le signe sur le dessin.

2 Pour identifier que 2 droites sont perpendiculaires, j utilise le signe sur le dessin. Les droites perpendiculaires éfinition (e) eux droites sont perpendiculaires si elles se coupent en formant un angle droit. (f) Pour identifier que droites sont perpendiculaires, j utilise le signe sur

Plus en détail

Les faces latérales sont représentées par des parallélogrammes, mais dans la réalité, ce sont des rectangles.

Les faces latérales sont représentées par des parallélogrammes, mais dans la réalité, ce sont des rectangles. Chapitre 8 GEOMETRIE GEOMETRIE DANS L ESPACE 1 ) Solides usuels de l espace le cube La face avant et la face arrière sont représentées par des carrés. Les faces latérales sont représentées par des parallélogrammes,

Plus en détail

Exercices sur le volume

Exercices sur le volume Exercices sur le volume Question 1 Aire de polygones Compare l aire des polygones suivants (plus petit au plus grand) Justifie ta réponse. Réponse : Les trois polygones ont la même aire. Pour arriver à

Plus en détail

Géométrie dans l'espace

Géométrie dans l'espace Géométrie dans l'espace première partie I Perspective A Le point de vue de l'artiste La cité idéale (1475), Piero della Francesca La perspective est l'art de représenter les objets à trois dimensions sur

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace I - Prismes Prisme droit : Un prisme droit est un solide composé : De deux bases polygonales parallèles et superposables, De faces latérales rectangulaires perpendiculaires aux

Plus en détail

SECTIONS AGRANDISSEMENT REDUCTION

SECTIONS AGRANDISSEMENT REDUCTION ECTION AGRANDIEMENT REDUCTION * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * A - ECTION D'UN PAVE DROIT PAR UN PLAN La section d'un pavé droit par un plan

Plus en détail

Progression des activités géométriques au cycle 3 (programmes 2002)

Progression des activités géométriques au cycle 3 (programmes 2002) Progression des activités géométriques au cycle 3 (programmes 2002) Vocabulaire spécifique CE2 CM Repérage, utilisation de plans, de cartes Repérer une case ou un point sur un quadrillage Ecrire les coordonnées

Plus en détail

GEOMETRIE. Point, droite, segment

GEOMETRIE. Point, droite, segment GEOMETRIE Gé 1 Point, droite, segment Le point : - Il désigne un endroit bien précis. - Il est représenté par une croix. - On le nomme avec une lettre majuscule. La droite : A X Le point B est situé exactement

Plus en détail

Tracer un cercle. 1 Trace le cercle C de centre A et de rayon 5 cm. Le cercle C coupe la

Tracer un cercle. 1 Trace le cercle C de centre A et de rayon 5 cm. Le cercle C coupe la Tracer un cercle 1 Construire un cercle avec un compas. Utiliser le vocabulaire géométrique: centre d un cercle, rayon, diamètre. 1 Trace le cercle C de centre A et de rayon 5 cm. Le cercle C coupe la

Plus en détail

A] Propriétés et classement des solides. Exercice supplémentaire 1 Théorie. a) Donne la définition précise d un polyèdre.

A] Propriétés et classement des solides. Exercice supplémentaire 1 Théorie. a) Donne la définition précise d un polyèdre. A] Propriétés et classement des solides Exercice supplémentaire 1 Théorie a) Donne la définition précise d un polyèdre. b) Remplis le tableau suivant (coche sous la bonne colonne) Nom Polyèdre Prisme droit

Plus en détail

Espace 2 Solides 7 Figures planes 14 Frises et dallages 22

Espace 2 Solides 7 Figures planes 14 Frises et dallages 22 Espace 2 Solides 7 Figures planes 14 Frises et dallages 22 1 Espace Vocabulaire et symboles * Système de repérage C est le système qu on utilise pour définir la position d un point à l aide des coordonnées.

Plus en détail

THEME : PYRAMIDES ET CONES - RAPPELS PRISME. V = B x h B. Prisme ( oblique ) Remarque : Un parallélépipède rectangle ( ou pavé droit ) est un prisme

THEME : PYRAMIDES ET CONES - RAPPELS PRISME. V = B x h B. Prisme ( oblique ) Remarque : Un parallélépipède rectangle ( ou pavé droit ) est un prisme THEME : PYRAMIDES ET CONES - RAPPELS PRISME B Prisme ( oblique ) Un prisme est le solide délimité par deux polygones ( bases ), situés dans des plans parallèles, dont les sommets sont joints. Il y a autant

Plus en détail

LA PYRAMIDE ET LE CÔ NE.

LA PYRAMIDE ET LE CÔ NE. LASSE DE 4EME ATIVITES GEOMETRIQUES LA PYRAMIDE ET LE Ô NE. Rappels du programme de 5 ème. 1. Le prisme droit. 1.1 Description. Un prisme droit est un solide dont les faces sont des rectangles. Il possède

Plus en détail

SECTIONS PLANES DE SOLIDES DE L ESPACE

SECTIONS PLANES DE SOLIDES DE L ESPACE SECTIONS PLANES DE SOLIDES DE L ESPACE I) Activité : 1) Visionnage de la vidéo 2) Questions a) A quelle condition deux plans sont-ils parallèles? b) A quelle condition une droite est perpendiculaire à

Plus en détail

Figures usuelles et axes de symétrie

Figures usuelles et axes de symétrie Chapitre 4 Figures usuelles et axes de symétrie I. Figures usuelles 1) Triangles un triangle est un polygone ayant 3 côtés. Vocabulaire : ABC est un triangle. A A, B et C sont ses 3 sommets. [AB], [AC]

Plus en détail

Rapport de similitude k =

Rapport de similitude k = SAVOIRS Les solides semblables Deux solides sont semblables si l un est un agrandissement, une réduction ou la reproduction exacte de l autre. Par exemple, les homothéties et les reproductions à l échelle

Plus en détail

12.2 Les solides L aire des prismes et des pyramides Le cylindre et l aire des solides décomposables Les mesures manquantes

12.2 Les solides L aire des prismes et des pyramides Le cylindre et l aire des solides décomposables Les mesures manquantes 12.2 Les solides 12.3 L aire des prismes et des pyramides 14.4 Le cylindre et l aire des solides décomposables 12.4 Les mesures manquantes Notes de cours Mathématiques 2 e secondaire Mars et avril 2016

Plus en détail

Chapitre 12 Géométrie dans l Espace Cours

Chapitre 12 Géométrie dans l Espace Cours Capitre 12 Géométrie dans l Espace Cours I. SOLIDES USUELS 1) Prisme droit Un prisme droit est un polyèdre dont les bases (faces parallèles) sont deux polygones identiques et dont les faces latérales sont

Plus en détail

QSJp130. ES56 Esquisse et développement. Espace 11 e. Page Par exemple: a) b) c) d) e) 2. A Faux. B Correct: un parallélépipède rectangle

QSJp130. ES56 Esquisse et développement. Espace 11 e. Page Par exemple: a) b) c) d) e) 2. A Faux. B Correct: un parallélépipède rectangle Page 21 QSJp130 1. Par exemple: a) b) c) d) e) 2. A Faux B Correct: un parallélépipède rectangle C Correct: un prisme droit dont la base est un hexagone régulier D Faux 3. Par exemple: ES56 Esquisse et

Plus en détail

1.4 L aire totale des pyramides droites et des cônes droits

1.4 L aire totale des pyramides droites et des cônes droits 1.4 L aire totale des pyramides droites et des cônes droits CHOIX MULTIPLE 1. Calcule l aire totale de ce tétraèdre régulier, au centimètre carré près. A. 29 cm 2 B. 116 cm 2 C. 58 cm 2 D. 44 cm 2 2. Calcule

Plus en détail

Solides et patrons. Table des matières. Paul Milan. Professeurs des écoles le 29 septembre 2009 TABLE DES MATIÈRES 1

Solides et patrons. Table des matières. Paul Milan. Professeurs des écoles le 29 septembre 2009 TABLE DES MATIÈRES 1 TABLE DES MATIÈRES 1 Solides et patrons. Paul Milan Professeurs des écoles le 29 septembre 2009 Table des matières 1 Les polyedres 2 1.1 Définition.................................. 2 1.2 Représentation

Plus en détail

CHAP 9 : PERIMETRES, AIRES ET VOLUMES 2016/2017

CHAP 9 : PERIMETRES, AIRES ET VOLUMES 2016/2017 Plan du chapitre : 1. Périmètres et aires 2. Le triangle 3. Le parallélogramme 4. Le trapèze 5. Le losange et le cercle 6. Les volumes Complète les phrases suivantes à l aide des mots périmètre, aire ou

Plus en détail

C h`a p i tˇr`e 16 : Eṡfi p`a`c e. Compétences évaluées dans ce chapitre

C h`a p i tˇr`e 16 : Eṡfi p`a`c e. Compétences évaluées dans ce chapitre C h`a p i tˇr`e 16 : Eṡfi p`a`c e Compétences évaluées dans ce chapitre Intitulé des compétences G60 G61 M13 Reconnaître et construire des solides. Utiliser et construire des représentations de solides.

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

M1 Droites et segments

M1 Droites et segments M1 Droites et segments Le segment [AB] comprend: -Le point A. -Le point B. -Tous les points alignés avec A et B et situés entre A et B. La droite (CD) comprend: -Le point C. -Le point D. -Tous les points

Plus en détail

Mathématiques Stage n

Mathématiques Stage n Mathématiques Stage n A Sommet A B Côté BC C Angle ACB Le triangle (ABC) C.F.A du bâtiment Ermont 1 Rappel de quelques évidences : Un triangle est une forme géométrique fermée à 3 côtés. Il a également

Plus en détail

FICHES OUTILS GEOMETRIE CM2

FICHES OUTILS GEOMETRIE CM2 FICHES OUTILS GEOMETRIE Constructions pour le plaisir avec des cercles: page 25: la cible page 26: la rosace page 27: la rosace double page 28: la rose page 29: le mandala Pages 2 à 9: 1 Les instruments

Plus en détail

Droite et segment B B A A. une droite. un segment. C est un trait qui passe par deux points et qui va à l infini. On ne peut pas mesurer une droite.

Droite et segment B B A A. une droite. un segment. C est un trait qui passe par deux points et qui va à l infini. On ne peut pas mesurer une droite. Droite et segment une droite un segment B B A A C est un trait qui passe par deux points et qui va à l infini. On ne peut pas mesurer une droite. C est la partie de la droite qui est délimitée par deux

Plus en détail

FICHES OUTILS GEOMETRIE CM2

FICHES OUTILS GEOMETRIE CM2 FICHES OUTILS GEOMETRIE 1 Les instruments pour reproduire 2 Reproduire des figures planes 3 Les polygones 4 Les quadrilatères 5 Le carré et le rectangle 6 Les triangles 7 Construire des figures géométriques

Plus en détail

GÉOMÉTRIE DANS L ESPACE

GÉOMÉTRIE DANS L ESPACE GÉOMÉTRIE DANS L ESPACE DROITE ET PLANS DE L ESPACE. Pour décrire les positions relatives de droites et de plans dans l espace voici l exemple du cube : Les 8 sommets du cube sont : A, B, C, D, E, F, G,

Plus en détail

Triangle isocèle et équilatéral

Triangle isocèle et équilatéral Collège Ferdinand Sarrien Bourbon-Lancy Classe de 6 ème Classe de 5 ème Classe de 4 ème Classe de ème Droites Si deux droites sont parallèles à une même droite alors ces deux droites sont parallèles entre

Plus en détail

Evaluation n 1 : Les polygones. Evaluation n 1 : Les polygones. ! J ai quatre égaux, mes côtés sont parallèles, je n ai pas d angle droit, je suis un.

Evaluation n 1 : Les polygones. Evaluation n 1 : Les polygones. ! J ai quatre égaux, mes côtés sont parallèles, je n ai pas d angle droit, je suis un. Date : Evaluation n 1 : Les polygones Consigne 1 : Complète (orthographe importante). Comment appelle-t-on : L ensemble des polygones à 3 côtés? Les... Prénom et Nom : Date : Evaluation n 1 : Les polygones

Plus en détail

On considère le prisme droit ABCDEF dont la base est un triangle ABC rectangle en A, et dont la hauteur est [AD].

On considère le prisme droit ABCDEF dont la base est un triangle ABC rectangle en A, et dont la hauteur est [AD]. Prismes 1 Prisme à base un triangle rectangle 1 Pavés droits 1 Le pavé droit 1 Le cube Pyramides pyramide dans pavé droit ctivité pyramide à base rectangulaire, d'arêtes égales. alques et résultats. 4

Plus en détail

PYRAMIDE. Pour nommer une pyramide on écrit le nom de son sommet, suivi du nom de sa base. La pyramide ci-dessus se nomme SABCDE

PYRAMIDE. Pour nommer une pyramide on écrit le nom de son sommet, suivi du nom de sa base. La pyramide ci-dessus se nomme SABCDE PYRAMIDE I- Vue en perspective et définitions: Soit un polygone (ici le pentagone ABCDE) et S un point n'appartenant pas au plan de ce polygone. En joignant S à chacun des sommets du polygone on obtient

Plus en détail

Ch.G5 : Pyramides et cônes

Ch.G5 : Pyramides et cônes 4 e A - programme 2011 mathématiques ch.g5 cahier élève Page 1 sur 8 Ch.G5 : Pyramides et cônes Activité n 1 page 20 De l'ancien vers le nouveau On a représenté, ci-dessous, des solides en perspective

Plus en détail

Pyramides et Cônes de révolution

Pyramides et Cônes de révolution Pyramides et Cônes de révolution Objectifs : Connaître la définition et les caractéristiques d'une pyramide Connaître la définition et les caractéristiques d'une pyramide régulière Connaître la définition

Plus en détail

t b, où b représente l avance (en m) de la voiture B. Lorsque la voiture A dépasse la voiture B, on a : À ce moment, la distance est de : d A

t b, où b représente l avance (en m) de la voiture B. Lorsque la voiture A dépasse la voiture B, on a : À ce moment, la distance est de : d A SR 4. Les voitures téléguidées Pages 139-140 Démarche et calculs Variables Équations t : temps écoulé depuis le départ (en s) d A 1,5t d : distance à partir de la ligne de départ (en m) d B t b, où b représente

Plus en détail

Symétrie centrale: AB = A'B' Figures symétriques

Symétrie centrale: AB = A'B' Figures symétriques Symétrie centrale: Figures symétriques ide mémoire Géométrie 5 ème Le symétrique d'un segment par rapport à un point est un segment de même longueur. La symétrie centrale conserve les longueurs. ' = ''

Plus en détail

1. La base d une pyramide ABCD de sommet A est un triangle rectangle isocèle en D. M est un point de l arête [AB].

1. La base d une pyramide ABCD de sommet A est un triangle rectangle isocèle en D. M est un point de l arête [AB]. EXERCICE 1 : Trouver la nature d une section d un solide et d un plan. La section d un solide et d un plan.est l ensemble des points qui appartiennent à la fois au solide et au plan. Dans chaque cas, trouve

Plus en détail

Les figures à trois. dimensions... Les polyèdres. mathématiques 9e année. le mercredi 6 mai 2009

Les figures à trois. dimensions... Les polyèdres. mathématiques 9e année. le mercredi 6 mai 2009 mathématiques 9e année le mercredi 6 mai 009 Les figures à trois dimensions... Les polyèdres Les figures à trois dimensions... Un polyèdre est un objet à trois dimensions dont les surfaces, toutes plates,

Plus en détail

Chaque face d un tétraèdre peut être une base.

Chaque face d un tétraèdre peut être une base. Chapitre 6 : Ô I ) Pyramides : 1 ) Définition : On appelle pyramide tout solide qui a pour base un polygone et pour faces latérales des triangles ayant un sommet en commun : c est le sommet de la pyramide.

Plus en détail

Niveau 1 (Corrigé) Résous les problèmes ci-dessous sur des feuilles lignées ou quadrillées. Laisse toutes les traces de ta démarche.

Niveau 1 (Corrigé) Résous les problèmes ci-dessous sur des feuilles lignées ou quadrillées. Laisse toutes les traces de ta démarche. Niveau 1 (Corrigé) Résous les problèmes ci-dessous sur des feuilles lignées ou quadrillées. Laisse toutes les traces de ta démarce. Problème 1 Un prisme a 8 sommets et 1 arêtes. De quel type de prisme

Plus en détail

Avec utilisation des TICE

Avec utilisation des TICE Avec utilisation des TICE TYPE D ACTIVITÉ PÉDAGOGIQUE : Introduction d une notion. THÈME : Sections planes de solides. NIVEAU : 3ème. CE DOSSIER COMPREND : 2 pages d exercices. TRAVAIL DEMANDÉ : 1. Proposer

Plus en détail

Mathématiques SOLIDES

Mathématiques SOLIDES SOLIDES I. Prismes 1. Définitions Prisme Un prisme est un polyèdre délimité par : - deux faces polygonales isométriques situées dans des plans parallèles. Ce sont les bases du prisme. - des parallélogrammes.

Plus en détail

SECTION 5 : LES SOLIDES Leçon 11 : L identification des solides. Aide-mémoire

SECTION 5 : LES SOLIDES Leçon 11 : L identification des solides. Aide-mémoire SECTION 5 : LES SOLIDES Leçon 11 : L identification des solides Aide-mémoire Les solides sont les figures qui ont trois dimensions : une longueur, une largeur et une hauteur. Les propriétés des solides

Plus en détail

p(p a)(p b)(p c) où p = 1 (a + b +c)

p(p a)(p b)(p c) où p = 1 (a + b +c) ème E DS4 racines carrées 01-014 sujet 1 Eercice 1 : (4 points) Les figures ci-dessous ont toutes une aire de cm². Donner la valeur eacte de en cm, dans chacun des cas. (1) () () (4) 1 Eercice : au brevet

Plus en détail

CHAPITRE VII AIRES ET VOLUMES

CHAPITRE VII AIRES ET VOLUMES CHAPITRE VII AIRES ET VOLUMES 6 e chapitre VII Aires et Volumes 1) Complétez : a) 3 3 3 1 m + 4004,3 cm 2 dm = l b) 3 3 8931 cm = m c) 3 3 3 177,35 m 421, 2 dm 230324, 04 mm = l d) 53,7 l= ml= 0,537 e)

Plus en détail

CHAPITRE 16 : GEOMETRIE DANS L ESPACE

CHAPITRE 16 : GEOMETRIE DANS L ESPACE CHAPITRE 16 : GEOMETRIE DANS L ESPACE Ce chapitre rappelle les notions de base pour connaitre le vocabulaire et les propriétés attachées aux solides, pour savoir lire les représentations planes de ces

Plus en détail

Chapitre 11 : Symétrie axiale.

Chapitre 11 : Symétrie axiale. Chapitre 11 : Symétrie axiale. I Approche expérimentale. Définition : Deux figures sont symétriques par rapport à une droite si, en pliant suivant cette droite, les deux figures se superposent. Cette droite

Plus en détail

Bloc 11 : La géométrie

Bloc 11 : La géométrie Bloc 11 : La géométrie Les quadrilatères Carré rectangle parallélogramme 4 côtés égaux 2 hauteurs égales 2 côtés égaux hauteur = côté 2 longueurs égales 2 longueurs égales 2 diagonales égales hauteur =

Plus en détail

soit (3 9) (9 10) 2 6 2(9 6,95). L aire totale de la pyramide est environ de 332,6 cm 2, soit 4. 8,4 15,6

soit (3 9) (9 10) 2 6 2(9 6,95). L aire totale de la pyramide est environ de 332,6 cm 2, soit 4. 8,4 15,6 Soutien 3.1 Page 6 1. a) Le volume des trois solides est de 351 cm 3. b) La mesure de l arête de la base de la pyramide est environ de 8,4 cm et le rayon de la boule est environ de 4,4 cm. c) L aire totale

Plus en détail

Chapitre 12 : Aires et volumes. Module 1 : Calculs d aires

Chapitre 12 : Aires et volumes. Module 1 : Calculs d aires Module 1 : Calculs d aires Tous les calculs d aires s appuient sur ce formulaire : Exemples : Exemple 1 : L aire du carré représenté ci-contre est : A 9 81 cm Exemple : L aire du rectangle représenté ci-contre

Plus en détail

Situation d aide à l apprentissage Une cabane à repeindre par Doris Fortin

Situation d aide à l apprentissage Une cabane à repeindre par Doris Fortin par Doris Fortin Consignes Décris ta démarche en détail et donne tous les calculs pour chaque tâche. Respecte les conventions du langage algébrique. Utilise π 3,14 et arrondis tes réponses au centième

Plus en détail

Nom : Groupe : Enseignant(e) : Des polygones aux polyèdres

Nom : Groupe : Enseignant(e) : Des polygones aux polyèdres e Nom : Groupe : Enseignant(e) : 12 2013-2014 Des polygones aux polyèdres Les polygones réguliers et les différents solides fascinent les mathématiciens et les mathématiciennes depuis plus de 2000 ans.

Plus en détail

Géométrie dans l espace Soient A et B, deux points diamétralement opposés de ce cercle.

Géométrie dans l espace Soient A et B, deux points diamétralement opposés de ce cercle. I- Sphère et boule. 1- Génération d une sphère : Soit un cercle C de centre O et de rayon R Soient A et B, deux points diamétralement opposés de ce cercle. Dans son déplacement autour de la droite (AB),

Plus en détail

Chapitre 07 : Les solides

Chapitre 07 : Les solides Chapitre 7 : Les solides Le «volume d'un solide» est le nombre de cubes (dont les arrêtes mesurent unité de longueur) nécessaires pour le remplir complètement. Unités de volume Le mètre cube (m) est l'unité

Plus en détail

Chapitre 8 : Géométrie dans l espace

Chapitre 8 : Géométrie dans l espace Chapitre 8 : Géométrie dans l espace Seconde 11 Mme FELT 1 2 I Représentation dans l espace 1. Perspective cavalière La perspective cavalière est une convention mathématique de représentation des solides

Plus en détail

Ce document vous permettra de réviser certaines notions mathématiques préalables au cours MAT

Ce document vous permettra de réviser certaines notions mathématiques préalables au cours MAT Mathématique FBC Révision des préalables au cours MAT-2101 101-3 Révision des préalables en Mathématique MAT 2101 101-3 Modélisation algébrique Ce document vous permettra de réviser certaines notions mathématiques

Plus en détail

Mathématiques. Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème.

Mathématiques. Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème. Mathématiques Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème. Il pourra aussi servir plus tard au lycée pour des révisions.. A1 p1 Les nombres A2 p2

Plus en détail

Généralités de Géométrie

Généralités de Géométrie Les droites rouges sont parallèles entre elles ainsi que les droites vertes. La droite bleue est perpendiculaire à la droite rouge du bas. Enfin la droite verte du haut partage l angle b en b 1 et b 2

Plus en détail

GEOMETRIE CM1. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté.

GEOMETRIE CM1. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. x I x K x F Une droite est un alignement infini de points. On la désigne par

Plus en détail

Géom 1 Connaître le vocabulaire et le codage géométrique

Géom 1 Connaître le vocabulaire et le codage géométrique Géom 1 Connaître le vocabulaire et le codage géométrique En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. La règle sert à mesurer, tracer

Plus en détail

Chapitre 2 Géométrie NOTES DE COURS ET EXERCICES. Programme Local

Chapitre 2 Géométrie NOTES DE COURS ET EXERCICES. Programme Local Chapitre 2 Géométrie NOTES DE COURS ET EXERCICES Programme Local Mathématique 5 e secondaire CST Collège Regina Assumpta 2016 2017 Nom : Groupe : NOTES DE COURS 2 1. RAPPEL A) Nom des polygones réguliers

Plus en détail

Chapitre 7 : Géométrie dans l'espace

Chapitre 7 : Géométrie dans l'espace Chapitre 7 : Géométrie dans l'espace La géométrie dans l espace est l étude de solides «épais» contrairement aux rectangles et aux carrés qui sont «plats». On aura des triangles rectangles et des droites

Plus en détail

Géométrie dans l espace (Chapitre 4)

Géométrie dans l espace (Chapitre 4) Géométrie dans l espace (Chapitre 4) I. Représentations planes de figures de l espace 1) Les patrons d un solide Définition : Un patron d un solide est obtenu en plaçant toutes ses faces dans un même plan.

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. Géom 1 CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. Géom 1 CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE La géométrie exige rigueur et précision dans le vocabulaire utilisé. Géom 1 Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix

Plus en détail

Vocabulaire en géométrie

Vocabulaire en géométrie G1 Vocabulaire en géométrie : on trace une petite croix. On utilise des lettres pour désigner les points. x A : c est un trait qui passe par 2 points. On l écrit avec des parenthèses. Une droite est infinie

Plus en détail

La famille des prismes droits

La famille des prismes droits La famille des prismes droits On a représenté ci-dessus quatre solides en perspective cavalière. Pour chaque solide effectuer le travail suivant : déterminer le nombre de sommets, déterminer le nombre

Plus en détail

On souhaite démontrer que les droites (AC) et (BD) sont parallèles.

On souhaite démontrer que les droites (AC) et (BD) sont parallèles. 1 FICHE TD 1 (9 PAGES) EXERCICE 1 On souhaite démontrer que les droites (AC) et (BD) sont parallèles. 1) Observer la figure ci- dessus, et le codage. 2) D après le codage, que sait- on? 3) En relisant

Plus en détail

Exercice n 2 : Brevet Centres Etrangers ( Bordeaux ) Juin 2004 :

Exercice n 2 : Brevet Centres Etrangers ( Bordeaux ) Juin 2004 : Entraînement brevet : S E F H A B Exercice n : Brevet Septembre 2004: Groupe Est La figure ci-contre représente une pyramide P de sommet S. Sa base est un carré ABCD tel que AB = 6 cm ; sa hauteur [SA]

Plus en détail

Évaluation géométrie - mesure CM1 N 1

Évaluation géométrie - mesure CM1 N 1 Évaluation géométrie - mesure CM1 N 1 Exercice 1 Trace le segment [AU] = 4 cm qui est perpendiculaire à [AB] passant par A. Marque le point I milieu de [AB]. perpendiculaires Trace le segment [IP] = 3

Plus en détail

Universités de Rennes 1 / Rennes Licence 2 - UED : Mathématiques

Universités de Rennes 1 / Rennes Licence 2 - UED : Mathématiques Universités de Rennes 1 / Rennes 2 2006-2007 Licence 2 - UED : Mathématiques Géométrie 2 Quadrilatères Exercice n 1 Construire à la règle et au compas un parallélogramme BCD sachant que : B = 7 cm, D=

Plus en détail

D après des exemples tirés des manuels Cap Maths, sauf mention contraire

D après des exemples tirés des manuels Cap Maths, sauf mention contraire 1 / 6 Exemples d'activités géométriques D après des exemples tirés des manuels Cap Maths, sauf mention contraire Reproduction de figures Activité 1 : Avec la règle, sans mesurer... On a commencé à reproduire

Plus en détail

Exploitation Solides

Exploitation Solides Nom :... Prénom :... lasse :... xploitation Solides Questions relatives à la restitution des connaissances 1) Vrai ou faux? oche la bonne réponse. Tout cube est un prisme droit. Toute pyramide est un polyèdre

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE.

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE. CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc pas

Plus en détail

Arden Quin, «sans titre

Arden Quin, «sans titre rden Quin, «sans titre Page 1 Page 2 Page 3 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page 16 Page 17 Repérage sur quadrillage ; agrandissement ; réduction. Mesurer

Plus en détail

Les bases des mathématiques : Maîtrise de l'ordre des opérations. Maîtrise des opérations dans Z (nombres relatifs)

Les bases des mathématiques : Maîtrise de l'ordre des opérations. Maîtrise des opérations dans Z (nombres relatifs) Les bases des mathématiques : Calcul numérique : Maîtrise de l'ordre des opérations Maîtrise des opérations dans Z (nombres relatifs) Maîtrise des opérations dans Q ((nombres fractionnaires) Maîtrise des

Plus en détail

Chapitre 23 : Triangles et quadrilatères particuliers

Chapitre 23 : Triangles et quadrilatères particuliers I- Triangles particuliers 1) Ce qu il faut savoir Chapitre 23 : Triangles et quadrilatères particuliers Triangle isocèle Définition : Un triangle isocèle est un triangle qui a deux côtés de même longueur

Plus en détail

7.1 Encore une même aire

7.1 Encore une même aire Polygones 7.1 Encore une même aire a) En prenant le carré a comme unité, détermine l aire de chacune des figures 1, 2, 3, 4, 5 et 6. ➊ ➌ ➍ ➏ a b ➋ ➎ b) Effectue la même recherche en utilisant cette fois

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. Ex 1 : Vrai ou faux

Plus en détail

RAPPELS DE GÉOMETRIE

RAPPELS DE GÉOMETRIE RPPELS DE GÉOMETRIE Sommaire de ce document : Remarques préalables page 2 I Formules pour calculer des aires page 2 II Quelques propriétés utiles pour bâtir une démonstration page 3 III Formules permettant

Plus en détail

Arithmétique 2 1. a) 13 est impair. c) Pour les chiffres 0, 2, 4, 6 et a) Impair b) Pair 3. a) pair + pair = pair b) impair + impair = pair

Arithmétique 2 1. a) 13 est impair. c) Pour les chiffres 0, 2, 4, 6 et a) Impair b) Pair 3. a) pair + pair = pair b) impair + impair = pair PAPYRUS EN RAPPEL Arithmétique 1 1. a) Quotient b) Somme c) Produit d) Somme e) Différence ou reste f) Quotient 2. a) 7 et 11 b) 6 et 7 c) 2 et 27 d) 11 et 20 e) 8 et 16 f) 5 et 15 g) 11 et 12 h) 10 et

Plus en détail

C h`a p i tˇr`e 14 : A`gˇr`a n`d i sfi sfi`e m`e n tṡ `eˇt r`é d u`cˇtˇi`o n s. Compétences évaluées dans ce chapitre

C h`a p i tˇr`e 14 : A`gˇr`a n`d i sfi sfi`e m`e n tṡ `eˇt r`é d u`cˇtˇi`o n s. Compétences évaluées dans ce chapitre C h`a p i tˇr`e 14 : A`gˇr`a n`d i sfi sfi`e m`e n tṡ `eˇt r`é d u`cˇtˇi`o n s Compétences évaluées dans ce chapitre Intitulé des compétences G20 G28 G63 Agrandir ou réduire une figure. Comprendre l effet

Plus en détail

Maison à vendre. MAT Représentations et transformations géométriques Mathématique, 1 er cycle du secondaire

Maison à vendre. MAT Représentations et transformations géométriques Mathématique, 1 er cycle du secondaire MAT-2102-3 Représentations et transformations géométriques Mathématique, 1 er cycle du secondaire Maison à vendre SAA2 Partie 1 Question de connaissances Partie 2 1. Un nouveau tapis 2. Il faut rafraichir

Plus en détail

2 Construire et représenter un cylindre de révolution

2 Construire et représenter un cylindre de révolution 1 Construire et représenter un prisme droit OJECTIF 1 Description DÉFINITION Un prisme droit est un solide qui a : deux faces parallèles et superposables qui sont des polygones, appelées bases ; des faces

Plus en détail