Autour de la symétrie axiale

Dimension: px
Commencer à balayer dès la page:

Download "Autour de la symétrie axiale"

Transcription

1 Autour de la symétrie axiale Le napperon 1 Il s'agit de reproduire un «napperon» en papier affiché dans la classe. Les élèves doivent observer le napperon et le reproduire en réalisant des pliages et des découpages, la seule contrainte étant de déplier uniquement après avoir réalisé tous les pliages et découpages souhaités. Les élèves doivent ensuite comparer leur réalisation avec le modèle et, dans le cas où leur production n'est pas satisfaisante, recommencer en s'appuyant sur l'analyse des différences constatées avec le modèle. Cette situation peut être mise en œuvre à l école élémentaire aux cycles 2 et 3 selon le type de napperon choisi et les critères de conformité au modèle. Les consignes données font que dans la réalisation de la tâche, l esprit est mobilisé en même temps que la main. La manipulation va servir de support à la réflexion. Il est donc nécessaire de développer une réelle activité cognitive, d anticiper l action, de faire des hypothèses sur les pliages et les découpages à réaliser en utilisant implicitement des connaissances géométriques et ici plus particulièrement les éléments de symétrie de certaines figures géométriques (axes de symétrie du carré, du triangle isocèle, du losange, de l octogone régulier). L analyse des différents essais infructueux permet de modifier ses hypothèses et donc de modifier la manière de plier et de découper. Cette analyse permet en outre la construction d images mentales relatives aux différents 1 La situation présentée par PELTIER M.-L. (2000), «Le napperon», Grand N, n 68, IREM de Grenoble, est adaptable du cycle 2 au cycle 3. Muriel Fénichel mai

2 éléments de symétrie que possèdent à la fois le support (carré) et les différentes formes géométriques qui constituent les découpes du napperon. Muriel Fénichel mai

3 Une fois le carré plié le long de ses axes de symétrie, on obtient la partie minimale sur laquelle il faudra réaliser les découpes, c est ce que montre la figure ci-contre. Muriel Fénichel mai

4 Les propriétés de la symétrie axiale Il s agit de reconnaître si chacune des figures ci-dessous constitue une configuration symétrique par rapport à une droite en argumentant la réponse afin de mettre en évidence quelles sont les propriétés de la symétrie axiale. En effet, pour mettre en évidence ces dernières, on peut partir de configurations non symétriques. Etant donné une configuration non symétrique, il est possible d apporter plusieurs arguments portant sur des propriétés distinctes pour justifier qu il n y a pas symétrie. Parmi ces propriétés, l une d entre elles est plus pertinente à la perception que les autres et apporte ainsi un argument «plus évident», plus rapidement reconnaissable. A B C D E G F Muriel Fénichel mai

5 A n est pas une configuration symétrique par rapport à une droite : la forme des deux figures n est pas conservée B n est pas une configuration symétrique par rapport à une droite : l orientation des deux figures par rapport à l axe n est pas bonne C est une configuration symétrique D n est pas une configuration symétrique par rapport à une droite : les deux figures ne sont pas à la même distance de l axe E n est pas une configuration symétrique par rapport à une droite : les deux figures ne sont pas situées sur une même droite perpendiculaire à l axe F n est pas une configuration symétrique par rapport à une droite : les deux figures n ont pas la même taille G n est pas une configuration symétrique par rapport à une droite : les deux figures ont la même orientation La symétrie axiale par rapport à une droite (d) est la transformation qui à tout M point du plan associe le point M tel que (d) est la médiatrice de [MM ] Lorsqu on donne deux figures symétriques par rapport à une droite, pour construire cette dernière, il suffit de construire la médiatrice du segment joignant un point d une figure et son symétrique sur l autre figure. La symétrie axiale conserve les angles et les distances. C est une isométrie. De cette propriété on déduit d autres propriétés : La perpendicularité est conservée. Le parallélisme est conservé. Le symétrique du milieu I d un segment [AB] est le milieu I du segment dont les extrémités sont les symétriques des points A et B. L image d une figure dans une symétrie axiale est superposable à la figure initiale après retournement. L axe de symétrie est l ensemble des points invariants. Exercices Exercice 2 a) Un triangle isocèle un axe de symétrie, un «cerf-volant» a un axe de symétrie. Un rectangle a deux axes de symétries qui sont ses médianes, un losange a deux axes de symétries qui sont ses diagonales. Un triangle équilatéral a trois axes de symétrie. Le carré a quatre axes de symétrie : ses diagonales et ses médianes. Un pentagone régulier a 5 axes de symétrie : les médiatrices de ses côtés. Un cercle a une infinité d axes de symétrie : les diamètres. Une droite a une infinité d axes de symétrie : toutes les droites perpendiculaires à cette dernière. b) Une figure peut avoir un centre de symétrie sans avoir d axe de symétrie. Par exemple le parallélogramme a un centre de symétrie qui est le point de concours de ses diagonales. c) Le raisonnement est faux : le point d intersection des axes de symétrie d une figure est un centre de symétrie pour cette dernière, uniquement dans le cas où les axes sont perpendiculaires. Le triangle équilatéral a trois axes de symétrie mais pas de centre de symétrie. Exercice 3 a) Une droite est déterminée par deux points. On peut faire l hypothèse que la droite cherchée est celle qui passe par les deux centres I et J des carrés. Il faut alors démontrer que cette hypothèse est vérifiée. Le centre d un carré, point de concours I de ses diagonales est un centre de symétrie du carré. I est donc le centre d une rotation d angle 180. Muriel Fénichel mai

6 A B I D C E F J H G La droite (IJ) coupe [AD] en O, [BC] en P, [EH] en Q et [FG] en R Considérons le carré ABCD. Dans la rotation de centre I et d angle 180, C est l image de A, D est l i mage de B, O est l image de P. Le trapèze OABP a donc pour image le trapèze PCDO. Comme une rotation conserve les longueurs et les angles, ces deux trapèzes sont isométriques, ils sont donc superposables. La droite (OP) partage donc le carré ABCD en deux parties égales. On démontrerait de la même manière que la droite (QR) partage le carré EFGH en deux parties égales. La droite (IJ) partage les deux carrés en deux parties égales. b) Cette propriété reste vraie pour les rectangles et les parallélogrammes qui ont un centre de symétrie. La symétrie centrale ou symétrie par rapport à un point La symétrie par rapport à un point O ou symétrie centrale est la transformation qui a tout point M du plan associe le point M tel que O est le milieu du segment [MM ]. La symétrie centrale par de centre O est une rotation de centre O et d angle 180. La symétrie centrale conserve les longueurs et les angles. C est une isométrie. Exercice 4 Soit C le point situé sur la berge de la rivière où le jardinier puise de l eau. Il faut déterminer où est situé C pour que la longueur AC + CB soit minimale. Soit A le point symétrique du point A par rapport à la berge de la rivière. C étant sur la médiatrice de [AA ], AC = A C. AC + CB est donc égal à A C + CB. Pour que A C + CB soit minimale C doit être situé sur (A B). C est donc l intersection de (A B) avec la berge de la rivière A C B A Muriel Fénichel mai

Chapitre 11 : Symétrie axiale.

Chapitre 11 : Symétrie axiale. Chapitre 11 : Symétrie axiale. I Approche expérimentale. Définition : Deux figures sont symétriques par rapport à une droite si, en pliant suivant cette droite, les deux figures se superposent. Cette droite

Plus en détail

Symétrie centrale - Exercices

Symétrie centrale - Exercices Symétrie centrale - Exercices Exercice 1 On considère le triangle ABC tel que AB = 4, 5 cm, AC = 6cm et BC = 4cm. a. Construire ce triangle. b. Tracer les symétriques A et C de A et C par rapport à B.

Plus en détail

Géométrie transformation du plan.

Géométrie transformation du plan. Géométrie transformation du plan. I. Cercle 2 A. Définitions 2 B. Positions relatives d une droite et d un cercle 2 C. Positions relatives de deux cercles 2 II. 2 A. Construction à la règle et au compas

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. Ex 1 : Vrai ou faux

Plus en détail

Parallélogrammes Particuliers

Parallélogrammes Particuliers Parallélogrammes Particuliers I) Définitions et propriétés Les parallélogrammes particuliers étudiés sont les rectangles, les carrés et les losanges. 1) Le rectangle a) Définition : Un rectangle est un

Plus en détail

I. Les figures élémentaires :

I. Les figures élémentaires : I. Les figures élémentaires : A. Les triangles : Triangle isocèle Un triangle isocèle est un triangle qui a deux de ses côtés de. un triangle est isocèle les deux côtés issus du sommet principal ont. un

Plus en détail

S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes. Un quadrilatère qui a deux côtés parallèles est un parallélogramme

S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes. Un quadrilatère qui a deux côtés parallèles est un parallélogramme CRPE Mise en route 1. Trouver l intrus. Justifier. 2. Voici des polygones convexes S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes 1 2 3 4 5 6 7 8 Lesquels sont : des quadrilatères?

Plus en détail

COURS. Demi-droite d origine Segment d extrémités Droite A et B (AB) ou (d) [AB) [AB]

COURS. Demi-droite d origine Segment d extrémités Droite A et B (AB) ou (d) [AB) [AB] EC 4A : ELEMENTS DE MATHEMATIQUES PARALLELISME, PERPENDICULARITE, FIGURES PLANES ELEMENTAIRES COURS Objectifs du chapitre : Reconnaître et construire les figures de base de la géométrie Caractériser, reconnaître

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

Étymologiquement, le mot «polygone» vient du grec «polus» qui signifie «nombreux», et «gônia» qui signifie «angle».

Étymologiquement, le mot «polygone» vient du grec «polus» qui signifie «nombreux», et «gônia» qui signifie «angle». 2 Quadrilatères Ce deuxième chapitre 4 de géométrie plane sera consacré à l étude des quadrilatères d un point de vue théorique et d un point de vue didactique, par l intermédiaire d extraits de manuels,

Plus en détail

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés.

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. Th Trois longueurs étant données, Si la plus grande est

Plus en détail

Cours configurations du plan

Cours configurations du plan I Polygones a) Polygones particuliers triangles Propriété : La somme des angles d un triangle est égale à 180. Définition : Un triangle isocèle a deux côtés de même longueur. Propriétés caractéristiques

Plus en détail

Progression des activités géométriques au cycle 3 (programmes 2002)

Progression des activités géométriques au cycle 3 (programmes 2002) Progression des activités géométriques au cycle 3 (programmes 2002) Vocabulaire spécifique CE2 CM Repérage, utilisation de plans, de cartes Repérer une case ou un point sur un quadrillage Ecrire les coordonnées

Plus en détail

SYMETRIE AXIALE. 1 ) symétrie axiale. a) symétrique d'un point

SYMETRIE AXIALE. 1 ) symétrie axiale. a) symétrique d'un point 1 ) symétrie axiale SYMETRIE AXIALE a) symétrique d'un point Définition : A' est le symétrique du point A par rapport à la droite (d) si (d) est la médiatrice du segment [AA'] (C'est à dire si la droite

Plus en détail

Le napperon un travail pour travailler la symétrie axiale

Le napperon un travail pour travailler la symétrie axiale Le napperon un travail pour travailler la symétrie axiale D après l article paru dans «Grand N», n 68, pp. 17 à 21, 2000-2001. Marie-Lise Peltier Module préparatoire au Rallye Mathématiques départemental

Plus en détail

GÉOMÉTRIE. Ecole santa cruz M.Cohen

GÉOMÉTRIE. Ecole santa cruz M.Cohen GÉOMÉTRIE GM.01 Objets et notations GM.02 Les instruments de dessin GM.03 Tracer 2 droites perpendiculaires GM.04 Tracer 2 droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés

Plus en détail

Géom1. Connaitre le vocabulaire et les instruments géométriques

Géom1. Connaitre le vocabulaire et les instruments géométriques Connaitre le vocabulaire et les instruments géométriques Géom1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. La règle sert à mesurer,

Plus en détail

Cours 6ème Chapitre VIII. La symétrie axiale. Définition 1 : Deux figures sont symétriques par rapport à une droite (d) lorsque par

Cours 6ème Chapitre VIII. La symétrie axiale. Définition 1 : Deux figures sont symétriques par rapport à une droite (d) lorsque par La symétrie axiale I. Figures symétriques Définition 1 : Deux figures sont symétriques par rapport à une droite (d) lorsque par pliage autour de la droite (d), elles se superposent. Ex : (d) (F 1 ) (F

Plus en détail

Le vocabulaire de géométrie

Le vocabulaire de géométrie Géom1 Le vocabulaire de géométrie En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire : Un point A A X Un segment [AB] (d) Une droite (d)

Plus en détail

1. Activité. 2. Symétrique d'un point. Chapitre 2 Une nouvelle symétrie : La symétrie centrale. Classe de 5ème. Une double symétrie axiale : d 1

1. Activité. 2. Symétrique d'un point. Chapitre 2 Une nouvelle symétrie : La symétrie centrale. Classe de 5ème. Une double symétrie axiale : d 1 Classe de 5ème Chapitre 2 Une nouvelle symétrie : La symétrie centrale 1. ctivité Une double symétrie axiale : d 1 F 1 F 2 d 2 F 3 Les 2 axes d 1 et d 2 sont perpendiculaires. La figure F 2 est symétrique

Plus en détail

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe :

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe : GÉOMÉTRIE GM.01 Objets et notations GM.02 Les instruments de dessin GM.03 Tracer 2 droites perpendiculaires GM.04 Tracer 2 droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés

Plus en détail

A. Médiatrice d un segment de droite.

A. Médiatrice d un segment de droite. Cours de Mr Jules Classe de Cinquième Contrat 2 p.1 I. Symétrie axiale (Rappels de sixième). A. Médiatrice d un segment de droite. Définition : La médiatrice d un segment est droite : passant par le de

Plus en détail

PUZZLE À 3 PIÈCES 1. DESCRIPTION 2. UTILISATIONS

PUZZLE À 3 PIÈCES 1. DESCRIPTION 2. UTILISATIONS 1 PUZZLE À 3 PIÈCES 1. DESCRIPTION Ce jeu est construit à partir du découpage d un carré en 3 pièces à l aide de deux segment (l un joignant le milieu d un côté à l un des deux sommets opposés, l autre

Plus en détail

«LES QUADRILATÈRES» Fiche pédagogique élaborée par Lidia SARAT

«LES QUADRILATÈRES» Fiche pédagogique élaborée par Lidia SARAT «LES QUADRILATÈRES» Fiche pédagogique élaborée par Lidia SARAT 1. Définition : un quadrilatère est une figure géométrique qui a 4 côtés 2. Définition : un trapèze est un quadrilatère qui a deux côtés parallèles.

Plus en détail

Droites parallèles et perpendiculaires Groupe 3

Droites parallèles et perpendiculaires Groupe 3 Droites parallèles et perpendiculaires Groupe 3 Objectif: reconnaître et tracer des droites parallèles et perpendiculaires. 1. Trace la droite (d4) passant par A et parallèle à (d2). Trace la droite (d5)

Plus en détail

Le point. 2. Axiome d'euclide (III ème IV ème siècle av J.C.) 3. Parties d'une droite. RAPPELS DE GÉOMÉTRIE

Le point. 2. Axiome d'euclide (III ème IV ème siècle av J.C.) 3. Parties d'une droite. RAPPELS DE GÉOMÉTRIE 1. Le point. C'est l élément élémentaire de la géométrie. Une infinité de points constitue une droite. Sur le dessin, la droite (D) passe par une infinité de points : on dit que ces points sont alignés.

Plus en détail

Familles de quadrilatères

Familles de quadrilatères Cellule de Géométrie Familles de quadrilatères à l école primaire (à partir de la 3 e année) Danielle POPELER Michel DEMAL Sommaire 1. Classements des quadrilatères famille par famille à partir de la 3

Plus en détail

Thème N 12: SYMETRIE AXIALE

Thème N 12: SYMETRIE AXIALE Thème N 12: SYMETRIE XILE la fin du thème, tu dois savoir : onstruire le symétrique d un point, d une droite, d un segment, d un cercle (que l axe de symétrie coupe ou non la figure). onstruire ou compléter

Plus en détail

Exercices de géométrie plane Corrigés des exercices Propriétés des figures planes

Exercices de géométrie plane Corrigés des exercices Propriétés des figures planes Préparation accélérée RPE Mathématiques Exercices de géométrie plane orrigés des exercices Propriétés des figures planes Exercice 1 VRI / FUX a. Il est possible de construire le premier triangle. Il est

Plus en détail

Corrigé fiche 1 géométrie

Corrigé fiche 1 géométrie orrigé fiche 1 géométrie 1. On trace la droite (). vec l équerre, on trace une perpendiculaire (µ) à () passant par. Puis une autre perpendiculaire à (µ) passant par. 2. onstruction : cf. cours. La médiatrice

Plus en détail

Progression des apprentissages en mathématique : quelques précisions

Progression des apprentissages en mathématique : quelques précisions en mathématique : quelques précisions Géométrie/Géométrie p. 35, n o A-1 Repérage Effectuer des activités de repérage sur un axe, selon les nombres à l étude p. 35, n o A-2 Repérer un point dans le plan

Plus en détail

Exercices à propos des transformations géométriques.

Exercices à propos des transformations géométriques. Exercices à propos des transformations géométriques. 1) our chacune des figures suivantes, le triangle est-il l image de par une transformation? Si oui, préciser laquelle. n ne demande pas seulement le

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

, en déduire la nature du triangle ORS.

, en déduire la nature du triangle ORS. Groupe seconde chance Feuille d exercices n 6 Exercice On appelle triangles pythagoriciens les triangles rectangles dont les trois côtés ont pour mesure un nombre entier. Soit a, b, c les mesures des côtés

Plus en détail

(Programmation) (Programme de Construction) Support : cahier d entrainement (1 programme par semaine, à écrire au tableau)

(Programmation) (Programme de Construction) Support : cahier d entrainement (1 programme par semaine, à écrire au tableau) (Programmation) (Programme de Construction) Support : cahier d entrainement (1 programme par semaine, à écrire au tableau) Comment faire? Le PE marque sur un côté du tableau le programme de construction.

Plus en détail

aux cycles 2 et 3 Roland Charnay - Georges Combier

aux cycles 2 et 3 Roland Charnay - Georges Combier aux cycles 2 et 3 Roland Charnay - Georges Combier - 2011 1 De quoi parle-t-on de l'école au collège? Espace sensible et géométrie Roland Charnay - Georges Combier - 2011 2 Du spatial au géométrique Un

Plus en détail

La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d

La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d C3 Géométrie : droite, segment, milieu Leçon Géom1 CM1/2 La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d

Plus en détail

ÉLÉMENTS DE GÉOMÉTRIE PLANE

ÉLÉMENTS DE GÉOMÉTRIE PLANE ÉLÉMENTS DE GÉOMÉTRIE PLANE I. DROITE ET SEGMENT 1. Généralités Il existe une droite et une seule passant par deux points A et B distincts donnés, on la note (AB). On peut dire que la droite passe par

Plus en détail

Exercice 1 (Guadeloupe ) Question 1 Question 2 Calcul de la longueur AC a 2 Question 3

Exercice 1 (Guadeloupe ) Question 1 Question 2 Calcul de la longueur AC a 2 Question 3 Exercice 1 (Guadeloupe 2004-3) Question 1 Le sujet ne précise pas les instruments utilisables, on suppose que seuls la règle et le compas sont autorisés. Question 2 Calcul de la longueur AC Méthode 1 :

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE.

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE. CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc pas

Plus en détail

Symétrie axiale. I - Définition. II - Symétriques des figures géométriques. 1 - Propriété. 2 - Segment

Symétrie axiale. I - Définition. II - Symétriques des figures géométriques. 1 - Propriété. 2 - Segment Symétrie axiale Nous allons, dans ce chapitre, faire des transformations. C est la symétrie. Sachez qu il existe plusieurs types de symétrie. Cette année, nous étudierons la symétrie axiale, par rapport

Plus en détail

Chapitre 10 - Notions de géométrie

Chapitre 10 - Notions de géométrie Chapitre 10 - Notions de géométrie Activité 1 Exercice 1 Exercice 2 x y a b c x // // S y // // S a // // S b // // S c S S S S // Exercice 3 MATHE 1 re année - Solutionnaire, http://maths.deboeck.com

Plus en détail

Si A (d), alors le symétrique du point A par rapport à la droite (d) est lui-même.

Si A (d), alors le symétrique du point A par rapport à la droite (d) est lui-même. I. Figures symétriques Définition : CHAPITRE : SYMETRIE AXIALE Deux figures sont symétriques par rapport à une droite, si en pliant autour de cette droite, les deux figures se superposent. Cette droite

Plus en détail

Chapitre 11 Géométrie 4. Figures usuelles

Chapitre 11 Géométrie 4. Figures usuelles I : Quelques éfinitions hapitre 11 Géométrie 4 Figures usuelles Nous avons vu au premier chapitre de géométrie la définition d'un segment. Voici donc quelques définitions supplémentaires: Ligne risée:

Plus en détail

Les programmes de géométrie en

Les programmes de géométrie en Les programmes de géométrie en 2010-2011 Ecole primaire CYCLE 1 Dessiner un rond, un carré, un triangle CYCLE 2 Les élèves enrichissent leurs connaissances en matière d orientation et de repérage. Ils

Plus en détail

Montbrison 1er avril

Montbrison 1er avril La géométrie au cycle 3 R. Charnay - G. Combier - 2009 1 A propos des programmes Deux points importants pour penser leur mise en œuvre R. Charnay - G. Combier - 2009 2 Montbrison 1er avril 2009 1 Sur les

Plus en détail

2 ) Il semble que le résultat fourni par cet algorithme soit le carré du nombre choisi au départ.

2 ) Il semble que le résultat fourni par cet algorithme soit le carré du nombre choisi au départ. Eléments du corrigé du devoir commun de SECONDE Exercice 1 : Il suffit d utiliser la propriété du cours, M(x, y) et O(0 ; 0) donc dans le repère orthonormé du plan (O ; I ; J) on a : OM ² ( x 0)² ( y 0)²

Plus en détail

PROGRESSION POSSIBLE POUR LE COURS DE GEOMETRIE DANS LE CYCLE 10-12

PROGRESSION POSSIBLE POUR LE COURS DE GEOMETRIE DANS LE CYCLE 10-12 LES LIGNES Pré-requis PROGRESSION POSSIBLE POUR LE COURS DE GEOMETRIE DANS LE CYCLE 10-12 Sous-compétences à développer Identifier des lignes : Horizontales Verticales Obliques Brisées Courbes : ouvertes

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

EXTRAITS DU B.O. SPÉCIAL N 6 DU 28 AOÛT 2008 Connaissances Capacités Commentaires

EXTRAITS DU B.O. SPÉCIAL N 6 DU 28 AOÛT 2008 Connaissances Capacités Commentaires EXTRITS U.. SPÉIL N 6 U 28 ÛT 2008 onnaissances apacités ommentaires 3. Géométrie 3.2 Symétries Symétrie axiale. [Reprise du programme de 6 e ] Symétrie centrale. onstruire le symétrique d une droite.

Plus en détail

Le point M image de M est défini par : O est le milieu de [ M M ] (D) est la médiatrice de [ M M ] OM OM et. MOM' α.

Le point M image de M est défini par : O est le milieu de [ M M ] (D) est la médiatrice de [ M M ] OM OM et. MOM' α. Seconde Les transformations du plan Les transformations. e sont des fonctions, l ensemble de départ est formé de tous les points du plan. Les notations sont les mêmes que pour les fonctions numériques.

Plus en détail

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite 6 ème - 5 ème Géométrie de base Notation : On note un point à l aide d une croix pour indiquer le lieu et d une lettre MAJUSCULE à côté pour indiquer son nom Attention : Une MÊME lettre ne peut désigner

Plus en détail

FICHES OUTILS GEOMETRIE CM2

FICHES OUTILS GEOMETRIE CM2 FICHES OUTILS GEOMETRIE 1 Les instruments pour reproduire 2 Reproduire des figures planes 3 Les polygones 4 Les quadrilatères 5 Le carré et le rectangle 6 Les triangles 7 Construire des figures géométriques

Plus en détail

LES BASES DE LA GEOMETRIE.

LES BASES DE LA GEOMETRIE. Chapitre 2 LES BASES DE LA GEOMETRIE. GEOMETRIE 1 ) Les triangles. Condition d existence: la somme de la mesure de deux côtés est toujours supérieure à la mesure du troisième côté. Exemples : le triangle

Plus en détail

Configurations fondamentales - Seconde

Configurations fondamentales - Seconde Configurations fondamentales - Seconde Exercices de géométrie plane avec GéoPlan : puzzle, triangle, point fixe. Sommaire 1. Puzzle et triangle isocèle 2. Puzzle et carrés 3. Propriété de Thalès 4. Utiliser

Plus en détail

Chapitre 4 : Triangles.

Chapitre 4 : Triangles. Chapitre 4 : Triangles. I Somme des angles d un triangle. 1 Propriété. La somme des mesures des angles d un triangle est égale à 180. Dans le triangle JKL, on a + + = 180. 2 Triangles particuliers. Triangle

Plus en détail

Géom1. Connaître le vocabulaire et le codage en géométrie. La géométrie exige rigueur et précision dans le vocabulaire utilisé.

Géom1. Connaître le vocabulaire et le codage en géométrie. La géométrie exige rigueur et précision dans le vocabulaire utilisé. Connaître le vocabulaire et le codage en géométrie Géom1 La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc

Plus en détail

NOM : PRODUIT SCALAIRE 1ère S

NOM : PRODUIT SCALAIRE 1ère S Exercice 1 R D Q C Soit un carré ABCD. On construit un rectangle AP QR tel que : P et R sont sur les côtés [AB] et [AD] du carré ; AP = DR. Le problème a pour objet de montrer que les droites (CQ) et (P

Plus en détail

MATHEMATIQUES CYCLE 2. ESPACE ET GEOMETRIE (1) Repérage, orientation. Niveaux Compétences Objectifs Activités

MATHEMATIQUES CYCLE 2. ESPACE ET GEOMETRIE (1) Repérage, orientation. Niveaux Compétences Objectifs Activités ESPACE ET GEOMETRIE (1) Repérage, orientation Dans l espace proche, connaître et utiliser le vocabulaire lié au positions relatives ou à la description de déplacements (devant, derrière, entre, à gauche

Plus en détail

Petit dictionnaire de géométrie plane

Petit dictionnaire de géométrie plane Petit dictionnaire de géométrie plane Le point 'est l'élément de base de la géométrie. eux droites qui se coupent définissent un point à leur intersection. xemple : Les droites (a) et (b) définissent le

Plus en détail

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD]

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD] COMMENT DEMONTRER Pour démontrer qu'un point est le milieu d'un segment On sait que I appartient au segment [AB] et IA = IB Propriété :Si un point appartient à un segment et est équidistant des extrémités

Plus en détail

S11 Autour de la GEOMETRIE PLANE Vocabulaire et constructions de base

S11 Autour de la GEOMETRIE PLANE Vocabulaire et constructions de base CRPE Mise en route S11 Autour de la GEOMETRIE PLANE Vocabulaire et constructions de base 1. A et B sont deux points du plan. que représentent (AB), [AB], [AB), AB? 2. A, B et C sont trois points distincts

Plus en détail

Saint Pierre de Varengeville Les 6 décembre 2008 et 28 janvier 2009 S. Dubois C.P.C. Circonscription de Canteleu. S. Dubois - C.P.C.

Saint Pierre de Varengeville Les 6 décembre 2008 et 28 janvier 2009 S. Dubois C.P.C. Circonscription de Canteleu. S. Dubois - C.P.C. Saint Pierre de Varengeville Les 6 décembre 2008 et 28 janvier 2009 S. Dubois C.P.C. Circonscription de Canteleu 1 2 C est une science de l espace ; C est une partie des mathématiques qui a pour objet

Plus en détail

Renforcer ses compétences en mathématiques Devoir n 1

Renforcer ses compétences en mathématiques Devoir n 1 Renforcer ses compétences en mathématiques Devoir n 1 I. Conseils pour mieux réussir Le devoir 1 porte sur les notions des chapitres I, II, III, IV et V. EXERCICE 1 Voir la division euclidienne. Il peut

Plus en détail

Thème : Géométrie plane. I- Situation du thème dans le programme :

Thème : Géométrie plane. I- Situation du thème dans le programme : Thème : Géométrie plane I- Situation du thème dans le programme : Primaire : Géométrie perceptive et instrumentée. 6 e : Apparition de la géométrie déductive avec : - rectangle, carré, losange, cercle,

Plus en détail

Vocabulaire de la géométrie

Vocabulaire de la géométrie GEOM 1 Vocabulaire de la géométrie 1 Le point Le point est un endroit précis du plan. On le représente par une croix dont il est le centre et on le nomme avec une lettre majuscule. 2 Droite Trois points

Plus en détail

CHAPITRE 2 : LES PROPRITES DES FIGURES PLANES

CHAPITRE 2 : LES PROPRITES DES FIGURES PLANES CHAPITRE 2 : LES PROPRITES DES FIGURES PLANES 1. Le carré : le carré est un quadrilatère qui a les côtés égaux et les angles droits. es propriétés : a) Quatre côtés de même longueur ; b) Quatre angles

Plus en détail

Polygones réguliers. Corrigé

Polygones réguliers. Corrigé 1 ère partie 1. Dans le dossier «ch 7» ouvre le fichier «polygones reg1» de type GEOGEBRA (vous le trouverez dans poste de travail, sous «3b/commun» ou «3d/commun») 2. D après les codages, quelle est la

Plus en détail

Les parallélogrammes. Cinquième, chapitre n o 5

Les parallélogrammes. Cinquième, chapitre n o 5 Cinquième, chapitre n o 5 Les parallélogrammes Le parallélogramme est le quadrilatère fondammental : outre les propriétés de ses côtés et de ses diagonales, il est à l'origine de nombreuses démonstrations

Plus en détail

Les programmes de géométrie plane en

Les programmes de géométrie plane en Les programmes de géométrie plane en 2011-2012 1 Ecole primaire CYCLE 1 Dessiner un rond, un carré, un triangle 2 CYCLE 2 Les élèves enrichissent leurs connaissances en matière d orientation et de repérage.

Plus en détail

Parallélogrammes particuliers

Parallélogrammes particuliers Tout est dans le socle. I.Le rectangle Parallélogrammes particuliers 1) éfinition n appelle rectangle un quadrilatère qui a quatre angles droits. remarque 1: si un quadrilatère a trois angles droits, alors

Plus en détail

Leçon 29. Droites remarquables du triangle

Leçon 29. Droites remarquables du triangle Tout ce qui est en bleu sera dit à l'oral ou nous sera éventuellement utile pour les questions venant du jury; le reste sera projeté. Leçon 29. Droites remarquables du triangle Introduction (à l'oral):

Plus en détail

Espace et géométrie Attendus de fin de cycle

Espace et géométrie Attendus de fin de cycle Espace et géométrie À l articulation de l école primaire et du collège, le cycle 3 constitue une étape importante dans l approche des concepts géométriques. Prolongeant le travail amorcé au cycle 2, les

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

Transformations (du plan)

Transformations (du plan) Cellule de Géométrie Transformations (du plan) Partie pratique (de 5 à 11 ans) Danielle POPELER Michel DEMAL Michel DEMAL Danielle POPELER Initiation aux transformations du plan pour découvrir, vérifier,

Plus en détail

I Exercices I I I I I I I I I I I I I I

I Exercices I I I I I I I I I I I I I I hapitre 6 Géométrie plane TLE ES MTÈRES page -1 hapitre 6 Géométrie plane Table des matières Exercices -1 1................................................ -1 2................................................

Plus en détail

Géométrie Cycle 3. Aide-mémoire. J appartiens à : version 1.0. Sommaire. 1. Distinguer : point, droite, segment, demi-droite, alignement de points

Géométrie Cycle 3. Aide-mémoire. J appartiens à : version 1.0. Sommaire. 1. Distinguer : point, droite, segment, demi-droite, alignement de points ide-mémoire Géométrie Cycle 3 Sommaire 1. Distinguer : point, droite, segment, demi-droite, alignement de points 2. Mesurer et tracer des segments 3. Se repérer dans un quadrillage 4. Repérer les angles

Plus en détail

1. Je suis un rectangle qui a deux côtés consécutifs de même longueur. Que suis-je?

1. Je suis un rectangle qui a deux côtés consécutifs de même longueur. Que suis-je? 5 ème SOUTIEN : RECONNAITRE DES PARALLELOGRAMMES PARTICULIERS EXERCICE 1 : 1. Je suis un rectangle qui a deux côtés consécutifs de même longueur. 2. Je suis un parallélogramme qui a deux côtés consécutifs

Plus en détail

Les quadrilatères. 1 Polygones Définition Différentes sortes de polygones... 2

Les quadrilatères. 1 Polygones Définition Différentes sortes de polygones... 2 ERNIÈRE IMPRESSIN LE 27 juin 2016 à 10:06 Les quadrilatères Table des matières 1 Polygones 2 1.1 éfinition................................. 2 1.2 ifférentes sortes de polygones..................... 2 2

Plus en détail

Connaissances et compétences visées

Connaissances et compétences visées L'élève doit être capable de : Connaissances et compétences visées Tracer le ou les axes de symétrie d une figure. Compléter une figure par symétrie axiale. Construire la figure symétrique d une figure

Plus en détail

CERTIFICAT, GEOMETRIE. Liste des sujets

CERTIFICAT, GEOMETRIE. Liste des sujets 9VSB CERTIFICAT, GEOMETRIE Liste des sujets 1. Notions préliminaires 2. Cercle, Cylindre et Cône 3. Angles 4. Polygones et Polyèdres 5. Transformations géométriques 6. Triangles isométriques 7. Théorème

Plus en détail

Quelle condition doit vérifier ce rectangle pour que les droites (ID) et (AC) soient perpendiculaires?

Quelle condition doit vérifier ce rectangle pour que les droites (ID) et (AC) soient perpendiculaires? A propos de losange : ABCD est un carré et DSC est un triangle équilatéral. Le cercle (C) passe par les point A, B et S. O est le centre du cercle (C). S D C ADSO est -il un losange? O A B A propos de

Plus en détail

Symétrie Centrale. Théorème admis: Le symétrique d'un segment est un segment de même longueur. On dit qu'une symétrie centrale conserve les longueurs.

Symétrie Centrale. Théorème admis: Le symétrique d'un segment est un segment de même longueur. On dit qu'une symétrie centrale conserve les longueurs. Symétrie entrale I.Définition 1) Symétrique d'une figure approche expérimentale Dans une symétrie centrale, deux figures sont symétriques par rapport à un point lorsqu'on passe d'une figure à l'autre en

Plus en détail

Chapitre n 8 : «Symétrie axiale»

Chapitre n 8 : «Symétrie axiale» Chapitre n 8 : «Symétrie axiale» I. Définition 1/ Activité La symétrie est un principe assez naturel. On trouve des symétries chez l'homme, les animaux ; dans les objets... Pour avoir «symétrie», il faut

Plus en détail

Chapitre 2 Symétrie centrale.

Chapitre 2 Symétrie centrale. Chapitre 2 Symétrie centrale. 1) Symétrique d un point a) Rappel : construction du symétrique d un point par rapport à une droite. Définition : Le symétrique M d un point M par rapport à une droite D est

Plus en détail

Géométrie. Quadrilatères, constructions et mesures

Géométrie. Quadrilatères, constructions et mesures Géométrie Quadrilatères, constructions et mesures 1. Quadrilatères et caractéristiques Un quadrilatère est une figure plane qui a quatre côtés, quatre angles et quatre sommets: Il existe différentes sortes

Plus en détail

Printemps des Sciences : activité encadrée

Printemps des Sciences : activité encadrée 1 Printemps des Sciences : activité encadrée LA GÉOMÉTRIE EN PIÈCES" Résumé - Réalisation de puzzles à 2 et 3 dimensions pour créer des figures planes et solides ; - Réflexion sur les agrandissements de

Plus en détail

I Définition. Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D.

I Définition. Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D. QUADRILATERES I Définition Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D. Quatre côtés : les segments [AB], [BC], [CD] et

Plus en détail

Seconde Chapitre 1 : Les vecteurs (1) Page 1 sur 6

Seconde Chapitre 1 : Les vecteurs (1) Page 1 sur 6 Seconde Chapitre 1 : Les vecteurs (1) Page 1 sur 6 I ) Translation : Activité : Une télécabine se déplace le long d un câble de A vers B. Dessiner ci dessus la télécabine lorsqu elle sera arrivée au terminus

Plus en détail

Associer à chaque couple de poissons proposés ci-dessus une des actions énoncées ci-dessous :

Associer à chaque couple de poissons proposés ci-dessus une des actions énoncées ci-dessous : Une nouvelle transformation Associer à chaque couple de poissons proposés ci-dessus une des actions énoncées ci-dessous : «Après un demi-tour autour d un point, l un des poissons se superpose sur l autre»,

Plus en détail

Table des matières DANS L ESPACE 24. N Leçon Niveau 1 Niveau 2 Niveau 3 Page

Table des matières DANS L ESPACE 24. N Leçon Niveau 1 Niveau 2 Niveau 3 Page Géométrie Table des matières N Leçon Niveau 1 Niveau 2 Niveau 3 Page DANS LE PLAN 3 Gé1 Les lignes X X X 4 Gé2 La droite X X X 5 Gé3 Les points alignés X X 5 Gé4 Le segment X X 6 Gé5 La demi-droite X X

Plus en détail

Symétrie centrale: AB = A'B' Figures symétriques

Symétrie centrale: AB = A'B' Figures symétriques Symétrie centrale: Figures symétriques ide mémoire Géométrie 5 ème Le symétrique d'un segment par rapport à un point est un segment de même longueur. La symétrie centrale conserve les longueurs. ' = ''

Plus en détail

Construction d'une frise géométrique

Construction d'une frise géométrique Evaluer les compétences par les situations complexes Ressources produites par les enseignants de la circonscription de Pont de Chéruy dans le cadre de l'action de formation Février / Mai 2013 Construction

Plus en détail

TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL

TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL GEOMETRIE AUCUN DOCUMENT N EST AUTORISE CALCULATRICES INTERDITES Le sujet a été réalisé par l équipe pédagogique de Mes Concours Blancs et n engage en rien le concours

Plus en détail

LES TRACES ECRITES GEOMETRIE. CYCLE 3 ET CYCLE D'ADAPTATION (6 ème )

LES TRACES ECRITES GEOMETRIE. CYCLE 3 ET CYCLE D'ADAPTATION (6 ème ) LES TRACES ECRITES GEOMETRIE CYCLE 3 ET CYCLE D'ADAPTATION (6 ème ) IA 58 Groupe départemental science Traces écrites «géométrie» cycle 3 et cycle d adaptation. Mai 2012 1 / 65 L objectif de la «mission

Plus en détail

PREMIERS ELEMENTS DE GEOMETRIE.

PREMIERS ELEMENTS DE GEOMETRIE. Cours de Mr Jules v1.0 Classe de Sixième Contrat 2 p.1 PREMIERS ELEMENTS DE GEOMETRIE. I. Le point : 2 II. Droites, demi droites, segments de droite : 2 A. La Droite : 2 B. La Demi droite : 3 C. Le Segment

Plus en détail

Les propriétés du rectangle (côtés parallèles, diagonales)

Les propriétés du rectangle (côtés parallèles, diagonales) 1 Fiche d accompagnement pédagogique Le rectangle Les propriétés du rectangle (côtés parallèles, diagonales) æ PLACE DE L ÉPISODE DANS LA SÉRIE Épisode 3 d une série de 4 épisodes. Épisode précédent :

Plus en détail

SYMÉTRIE AXIALE. Exercices conseillés En devoir Exercices conseillés En devoir p182 n 12, 13, 14. p182 n 15 p180 n 12, 15, 14

SYMÉTRIE AXIALE. Exercices conseillés En devoir Exercices conseillés En devoir p182 n 12, 13, 14. p182 n 15 p180 n 12, 15, 14 1 SYMÉTRIE AXIALE Du grec, syn «avec» et metron «mesure». «symmetria» désignait la juste mesure. I. Construire le symétrique d un point Construire le symétrique de A par rapport à la droite. A 1 2 M 1

Plus en détail

Parallélogrammes particuliers

Parallélogrammes particuliers Parallélogrammes particuliers C H A P I T R E 16 Énigme du chapitre. Construire un parallélogramme ABCD de périmètre 36 cm de périmètre et dont la longueur AB est le double de la longueur BC. Objectifs

Plus en détail

Olympiades de mathématiques

Olympiades de mathématiques Olympiades de mathématiques Corrigé de l épreuve du 3 octobre 2012 Exercice1 Soit x le nombre de frère et de sœurs de Sarah. Fred a donc (x-1) frères et (x+1) sœurs. Si le nombre de frères de Fred est

Plus en détail