Repérage dans le plan (début)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Repérage dans le plan (début)"

Transcription

1 Repérage dans le plan (début) I/ Repère Def: un repère du plan est la donnée de trois points non alignés O, I et J. Def: si les axes ( OI ) et ( OJ ) sont perpendiculaires et si les distances OI et OJ sont égales, on dit que le repère ( O, I, J ) est orthonormé. Dans ce cas on dit que la distance OI est 1, et la distance OJ aussi. II/ Distance (ceci ne marche qu en repère orthonormé) Dans un repère orthonormé on donne les points ( 3 ; -5 ) et ( -2 ; 2 ). 7 Pour aller de à, on se déplace de 5 carreaux vers la gauche et de 7 vers le haut. Le triangle dessiné est rectangle. La distance est donc la longueur de l hypoténuse, elle est donnée par le théorème de Pythagore. 5 2 = = 74 donc = 74 8,6. III/ Milieux Soient ( 1 ; 3 ) et ( 7 ; 1 ). 3 M Les coordonnées du milieu M de [ ] sont ( 4 ; 2 ). 2 4 est la moyenne de 1 et de est la moyenne de 3 et de Prop: l abscisse de M est la moyenne des abscisses de et de. Prop: l ordonnée de M est la moyenne des ordonnées de et de.

2 IV/ Que faire avec des calculs de distances et de milieux? 1/ Montrer qu un triangle est isocèle Dans un repère orthonormé, on donne ( 2 ; 1 ) ; ( 6 ; 4 ) et ( 2 ; 6 ). est-il isocèle? alculons (dessin de gauche): 2 = = = 25 donc = 5. alculons : 2 = = = 20 donc = 20. = 5 (pas besoin d appliquer le théorème de Pythagore pour ça). Finalement, = donc est isocèle en / Montrer qu un triangle est rectangle Dans un repère orthonormé, on donne ( 1 ; 2 ) ; ( 2 ; 5 ) et ( 4 ; 1 ). est-il rectangle? 2 = = 10 2 = = 10 2 = = 20 donc = 2 donc est rectangle en.

3 3/ Montrer qu un point appartient à un cercle On reprend les points de l exercice 1: ( 2 ; 1 ) ; ( 6 ; 4 ) et ( 2 ; 6 ). appartient-il au cercle de centre passant par? Remarque: un cercle est un ensemble de points à égale distance du centre. Pour montrer que deux points appartiennent à un même cercle, il suffit donc de montrer qu ils sont à la même distance du centre. omme à l exercice 1, on montre que = donc appartient au cercle de centre passant par. 4/ Montrer qu un point appartient à un cercle On reprend les points de l exercice 2: ( 1 ; 2 ) ; ( 4 ; 1 ) et ( 2 ; 5 ). appartient-il au cercle de diamètre [ ]? Remarque: vous savez que si est rectangle en, alors appartient au cercle de diamètre []. omme à l exercice 2, on montre que est rectangle en donc appartient au cercle de diamètre [ ]. 5/ Montrer qu un point appartient à la médiatrice d un segment On reprend les points de l exercice 1: ( 2 ; 1 ) ; ( 6 ; 4 ) et ( 2 ; 6 ). appartient-il à la médiatrice du segment [ ]? Remarque: vous connaissez deux définition la médiatrice d un segment []: - l ensemble des points à égale distance de et de. - la droite perpendiculaire à [] qui passe par le milieu de [].

4 es deux définitions permettent de répondre à la question mais c est beaucoup plus facile avec la première définition. Il suffit de montrer que est à égale distance de et de. omme à l exercice 1, on montre que = donc appartient à la médiatrice de [ ]. 6/ Montrer qu un quadrilatère est un parallélogramme Dans un repère orthonormé, on donne ( - 2 ; 3 ) ; ( 2 ; 5 ) ; ( 3 ; 3 ) et D ( - 1 ; 1 ). D est-il un parallélogramme? D ttention, montrer que les côtés opposés sont de même longueur ne suffit pas. e que vous savez ne permet pas de montrer que des côtés sont parallèles. Il ne reste plus qu une méthode: montrer que les diagonales ont le même milieu. 2 3 Soit M le milieu de [ ]. M ( ; 3 3 ) = ( ; 3 ). Soit M le milieu de [ D ]. M ( 2 1 ; 5 1 ) = ( ; 3 ). [ ] et [ D ] ont donc le même milieu donc D est un parallélogramme. 7/ Montrer qu un quadrilatère est un rectangle Le quadrilatère de l exercice précédent est-il un rectangle? Vous avez trois définition d un rectangle (voir les rappels sur la géométrie du collège). Elles donnent trois démonstrations. a/ Un rectangle est un parallélogramme dont les diagonales ont la même longueur. On montre comme à l exercice 6/ que D est un parallélogramme. Ensuite on calcule la longueur des diagonales. = 5 et D 2 = = 25 donc D = 5. Finalement D est un parallélogramme dont les diagonales ont la même longueur donc D est un rectangle. b/ Un rectangle est un parallélogramme qui a un angle droit. On montre comme à l exercice 6/ que D est un parallélogramme. Ensuite on utilise la réciproque du théorème de Pythagore pour montrer que est rectangle en.

5 2 = = 20 2 = = 5 2 = 5 2 = 25 donc 2 = donc est rectangle en. Finalement D est un parallélogramme qui a un angle droit donc D est un rectangle. c/ Un rectangle est un quadrilatère qui a trois angle droits. Je crois que vous pouvez le faire. 8/ Montrer qu un quadrilatère est un losange Dans un repère orthonormé, on donne ( 2 ; 3 ) ; ( 1 ; 5 ) ; ( 0 ; 3 ) et D ( 1 ; 1 ). D est-il un losange? Les trois définitions d un losange donnent trois démonstrations. a/ 2 = = 5 ; 2 = = 5 D 2 = = 5 ; D 2 = = 5 Finalement, D est un quadrilatère qui a quatre côtés de même longueur donc D est un losange. D Pour les autres démonstrations, il faut montrer que D est un parallélogramme. Soit M le milieu de [ ]. M ( 2 0 ; 3 3 ) = ( 1 ; 3 ). 2 2 Soit M le milieu de [ D ]. M ( 1 1 ; 5 1 ) = ( 1 ; 3 ). 2 2 [ ] et [ D ] ont donc le même milieu donc D est un parallélogramme. b/ 2 = = 5 ; 2 = = 5 donc D est un parallélogramme qui a deux côtés consécutifs de même longueur donc D est un losange. c/ On peut aussi montrer que les diagonales sont perpendiculaires. On cherche les coordonnées de l intersection des diagonales (le milieu de l une d elle) et on montre que M est rectangle en M.

Chapitre I Configurations du plan et géométrie repérée

Chapitre I Configurations du plan et géométrie repérée I. Rappels sur les symétries 1. Symétries axiales Chapitre I Configurations du plan et géométrie repérée Méd iatric e de Définition : Médiatrice d un segment On note I le milieu de. On appelle médiatrice

Plus en détail

I Rappels sur les symétries :

I Rappels sur les symétries : I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ AB ]. On appelle médiatrice du segment [ AB ] la droite perpendiculaire en I à ( AB ). Propriétés : La médiatrice de [ AB ]

Plus en détail

REPERAGE DANS LE PLAN

REPERAGE DANS LE PLAN 1 sur 5 REPERAGE DANS LE PLAN I. Coordonnées de points du plan a) Repère du plan Définition : un repère orthonormé d origine O est un triplet (O ;I,J) de points tels que le triangle OIJ est rectangle isocèle

Plus en détail

Chapitre 3 BASE DE LA GÉOMÉTRIE PLANE 2 de

Chapitre 3 BASE DE LA GÉOMÉTRIE PLANE 2 de Chapitre 3 BASE DE LA GÉOMÉTRIE PLANE 2 de I Définition d un repère 1.1 Introduction Définition Soit d une droite, O et I deux points distincts de cette droite, alors (O, I) est appelé Propriété Soit d

Plus en détail

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE.

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE. Seconde chap Géométrie plane /6 GEOMETRIE PLNE. I. Repère et coordonnées. oordonnées. Si O, I et J sont trois points non alignés du plan, alors (O I J) est un repère du plan d origine O. Si (OI) et (OJ)

Plus en détail

Proprié té s dé gé omé trié plané

Proprié té s dé gé omé trié plané Proprié té s dé gé omé trié plané Droites Si deux droites sont parallèles à une même troisième alors elles sont parallèles entre elles (fig.1). Si deux droites sont perpendiculaires à une même troisième

Plus en détail

Rappels de collège sur la géométrie dans le plan

Rappels de collège sur la géométrie dans le plan Rappels de collège sur la géométrie dans le plan I Rappels sur les symétries : I 1 Symétrie axiale : On note I le milieu de On appelle médiatrice du segment la droite perpendiculaire en I à Propriétés

Plus en détail

Chapitre 1 - Repérage et configurations du plan

Chapitre 1 - Repérage et configurations du plan nde hapitre 1 - Repérage et configurations du plan 01-013 hapitre 1 - Repérage et configurations du plan ctivités d approche 1. (a) Deux points et ont pour abscisses 7 3 et. alculer la distance. et sur

Plus en détail

DISTANCE DE DEUX POINTS. dans un repere orthonormal

DISTANCE DE DEUX POINTS. dans un repere orthonormal THEME : DISTNCE DE DEUX POINTS dans un repere orthonormal Dans tout ce chapitre, nous travaillerons dans un repère orthonormal ( O, I, J ) Un repère ( O, I, J ) est dit orthonormal ( ou orthonormé ) lorsque

Plus en détail

Repérage dans le plan Cours

Repérage dans le plan Cours Repérage dans le plan Cours Objectifs du chapitre Savoir repérer la position d un point à l aide de ses coordonnées dans un repère. Savoir calculer les coordonnées du milieu d un segment. Savoir calculer

Plus en détail

CONFIGURATIONS DU PLAN

CONFIGURATIONS DU PLAN onfiguations du plan - Théorème de Pythagore ONFGURTONS DU PLN Théorème de Pythagore Si un triangle est rectangle, alors le carré de son hypoténuse est égal à la somme des carrés des deux autres côtés

Plus en détail

CONTRÔLE N 2. Exercice 2 : (sur la copie double)

CONTRÔLE N 2. Exercice 2 : (sur la copie double) NOM : Prénom : Classe : 2nde CONTRÔLE N 2 Consignes : - l utilisation de la calculatrice est autorisée - sauf mention contraire, toutes les réponses devront être soigneusement justifiées. Le tableau suivant

Plus en détail

Les triangles : droites et points remarquables

Les triangles : droites et points remarquables Fiche de cours : Configurations du plan. Les triangles : droites et points remarquables Médianes et centre de gravité : Soit un triangle ABC, on appelle médiane issue de A la droite qui passe par A et

Plus en détail

Comment démontrer que deux droites sont parallèles

Comment démontrer que deux droites sont parallèles F1 Comment démontrer que deux droites sont parallèles P : Si deux droites sont parallèles, alors toute parallèle à l une est parallèle à l autre. P : Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle.

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle. 1 / 6 I. Polygones : Un polygone est une figure fermée dont les côtés sont des segments. II. Triangles : 1) Un triangle est un polygone à trois côtés. Les segments [AC], [AB] et [BC] sont les trois côtés

Plus en détail

Seconde : Géométrie plane page 1. Géométrie plane. Pour reprendre contact n o p 239

Seconde : Géométrie plane page 1. Géométrie plane. Pour reprendre contact n o p 239 Seconde : Géométrie plane page 1 Géométrie plane Pour reprendre contact n o 1-2 - 3 p 239 I. Droites et points remarquables du triangle (A) Hauteurs Définition 1 Une hauteur est une droite passant par

Plus en détail

Chapitre 7. Géométrie plane

Chapitre 7. Géométrie plane Chapitre 7 Géométrie plane Hauteurs Ce sont les perpendiculaires aux côtés, issues du sommet opposé. Les trois hauteurs d'un triangle sont concourantes en un point appelé l'orthocentre du triangle. Médianes

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

Fiche -Géométrie. 1 Triangle. 1.1 Triangle isocèle

Fiche -Géométrie. 1 Triangle. 1.1 Triangle isocèle Fiche -Géométrie 1 Triangle Définition 1. Un triangle est une figure plane, formée par trois points appelés sommets. Les côtés sont les segments qui joignent les sommets deux à deux. Remarque 1. Un triangle,

Plus en détail

CONFIGURATIONS PLANES. REPERAGE

CONFIGURATIONS PLANES. REPERAGE CONFIGURATIONS PLANES. REPERAGE Figures planes. Repérage- B.O. GEOMETRIE EUCLIDIENNE Un peu d histoire Les objets de base de la géométrie euclidienne Le point : Objet sans dimension, le point est, à la

Plus en détail

Géométrie plane. I - Symétries. 1 - Symétrie axiale. 2 - Symétrie centrale

Géométrie plane. I - Symétries. 1 - Symétrie axiale. 2 - Symétrie centrale Géométrie plane I - Symétries 1 - Symétrie axiale Définition : Deux figures géométriques sont symétriques par rapport à une droite (d) si, en pliant la feuille suivant la droite (d), les deux figures se

Plus en détail

Repérage dans le plan. repérage du plan

Repérage dans le plan. repérage du plan Repérage dans le plan repérage du plan 1. Repérage du plan Définition : dans le plan, trois points non alignés O, I et J déterminent un repère (O, I, J)... O est appelé l origine du repère. La droite (OI)

Plus en détail

Droites, cercles et quadrilatères

Droites, cercles et quadrilatères Droites, cercles et quadrilatères «Des outils pour les démonstrations» I Droites et segments 1) Droites Propriété 1 : Par deux points distincts A et B, il passe une seule droite ; on peut la noter (AB).

Plus en détail

I. Parallélogrammes :

I. Parallélogrammes : 1 / 5 I. Parallélogrammes : Un parallélogramme est un quadrilatère dont les côtés opposés sont parallèles. Si un quadrilatère est un parallélogramme, alors : Ses côtés opposés sont parallèles et de même

Plus en détail

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés.

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. Th Trois longueurs étant données, Si la plus grande est

Plus en détail

Fiche de cours : Configurations du plan.

Fiche de cours : Configurations du plan. Fiche de cours : Configurations du plan. Les triangles. Médianes et centre de gravité : Soit un triangle ABC, on appelle médiane issue de A la droite qui passe par A et coupe le côté [BC] en son milieu.

Plus en détail

Exercices supplémentaires : Produit scalaire dans l espace

Exercices supplémentaires : Produit scalaire dans l espace Exercices supplémentaires : Produit scalaire dans l espace Dans tous les exercices, sauf quand cela est précisé, on considère un repère orthonormal de l espace ; ; ;. Partie A : Repère et vecteurs coplanaires

Plus en détail

Classeur de géométrie 4 ème

Classeur de géométrie 4 ème - 1 - lasseur de géométrie 4 ème Pour démontrer que. Un point est le milieu d un segment Un point est sur un cercle Un point est l image d un autre par es distances sont égales eux angles ont la même mesure

Plus en détail

ESSENTIEL DE GEOMETRIE PLANE

ESSENTIEL DE GEOMETRIE PLANE ESSENTIEL DE GEOMETRIE PLNE I ngles - Somme des angles d un triangle Théorème : Quel que soit le triangle BC, + B + C = 80 - ngles opposés par le sommet On considère deux droites sécantes en O Définition

Plus en détail

Propriétés de géométrie plane vues au collège

Propriétés de géométrie plane vues au collège Propriétés de géométrie plane vues au collège Théorème de Pythagore Théorème de Pythagore : Dans un triangle rectangle, le carré de la longueur de l hypoténuse est égal à la somme des carrés des longueurs

Plus en détail

Configuration du plan

Configuration du plan onfiguration du plan I - Les triangles 1 - Rappels La somme des angles d un triangle est égale à 180 Si le triangle est rectangle en, alors d après le théorème de Pythagore 2 = 2 + 2. Réciproquement, si

Plus en détail

LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST...

LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST... THEME : LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST... SOMMAIRE : PARALLELOGRAMME? RECTANGLE? LOSANGE? CARRE? PARALLELOGRAMME? Vous disposez principalement de deux méthodes, une concernant

Plus en détail

PARALLELES ET PERPENDICULAIRES

PARALLELES ET PERPENDICULAIRES GEOMETRIE : RAPPELS PARALLELES ET PERPENDICULAIRES Théorème 1: Si deux droites sont parallèles à une même troisième. Alors elles sont parallèles entre elles. Théorème 2: Si deux droites sont perpendiculaires

Plus en détail

Chapitre II : Configurations planes et repérages

Chapitre II : Configurations planes et repérages hapitre II : onfigurations planes et repérages Extrait du programme : I Propriété et réciproque Propriété Une propriété en mathématiques est une phrase qui est toujours vraie. Elle est toujours en deux

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

LA DEMONSTRATION EN GEOMETRIE PLANE

LA DEMONSTRATION EN GEOMETRIE PLANE LA DEMONSTRATION EN GEOMETRIE PLANE I. Le débat Pour discuter de la validité d'énoncés mathématiques, les mathématiciens ont mis en place des règles de débat. En mathématiques, ces principales règles sont

Plus en détail

REPERAGE. Définir un repère sur une droite D c est se donner deux points distincts O et I de D, pris dans cet ordre et noté (O,I).

REPERAGE. Définir un repère sur une droite D c est se donner deux points distincts O et I de D, pris dans cet ordre et noté (O,I). REPERAGE I Repérage sur une droite Définir un repère sur une droite D c est se donner deux points distincts O et I de D, pris dans cet ordre et noté (O,I). O s appelle l origine du repère et la longueur

Plus en détail

Triangle isocèle et équilatéral

Triangle isocèle et équilatéral Collège Ferdinand Sarrien Bourbon-Lancy Classe de 6 ème Classe de 5 ème Classe de 4 ème Classe de ème Droites Si deux droites sont parallèles à une même droite alors ces deux droites sont parallèles entre

Plus en détail

Extrait CNED. Configuration du plan. Sommaire. 1. Prérequis 2. Les théorèmes à connaître, à savoir utiliser. Séquence 7 MA20. Cned Académie en ligne

Extrait CNED. Configuration du plan. Sommaire. 1. Prérequis 2. Les théorèmes à connaître, à savoir utiliser. Séquence 7 MA20. Cned Académie en ligne Extrait NED onfiguration du plan Sommaire 1. Prérequis 2. Les théorèmes à connaître, à savoir utiliser Séquence 7 M20 1 ned cadémie en ligne 1 Prérequis Médiatrice Définition Définition Soient et deux

Plus en détail

Repérage dans le plan

Repérage dans le plan Repérage dans le plan I Les repères a) Définition Définition : Un repère du plan est défini par la donnée de trois points distincts non alignés O, I et J. Le repère est alors noté (O ; I ; J). Le point

Plus en détail

I. Propriétés de géométrie analytique.

I. Propriétés de géométrie analytique. I. Propriétés de géométrie analytique. Activité 1 Dans un repère orthonormé (O ; I ; J), a. Distance entre deux points. Dans un repère orthonormée (O ; I ; J) on considère deux point A(2 ; 1) et B(5 ;

Plus en détail

Parallélogrammes particuliers

Parallélogrammes particuliers Tout est dans le socle. I.Le rectangle Parallélogrammes particuliers 1) éfinition n appelle rectangle un quadrilatère qui a quatre angles droits. remarque 1: si un quadrilatère a trois angles droits, alors

Plus en détail

Chapitre III : Configurations planes et repérage

Chapitre III : Configurations planes et repérage Chapitre III : Configurations planes et repérage Extrait du programme : I. Configurations planes Dans cette partie, aucune nouveauté! La rédaction devra être apprise, comme indiquée dans les exercices

Plus en détail

12 Outils. pour la géométrie. 1 Commentaires généraux

12 Outils. pour la géométrie. 1 Commentaires généraux 1 Outils pour la géométrie 1 ommentaires généraux e chapitre rassemble les résultats géométriques vus par les élèves dans les classes précédentes et utiles pour la classe de troisième. Selon l organisation

Plus en détail

Chapitre 2 Géométrie et coordonnées dans le plan. du repère. Dans l'exemple, il s'agit de la droite (OJ).

Chapitre 2 Géométrie et coordonnées dans le plan. du repère. Dans l'exemple, il s'agit de la droite (OJ). I Notions de repère et de coordonnées I.1 Définir un repère du plan Chapitre Géométrie et coordonnées dans le plan Un repère du plan est formé par trois points distincts et non alignés du plan, classés

Plus en détail

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer...

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer... 3 Pr démontrer... Fiches de géométrie Niveau 3ème...que deux droites sont parallèles... Fiche...que deux droites sont perpendiculaires... Fiche 2...que deux longueurs sont égales... Fiche 3...que deux

Plus en détail

Construire et de crire une figure ge ome trique De monstrations en ge ome trie plane

Construire et de crire une figure ge ome trique De monstrations en ge ome trie plane Analyse de la figure Notes Géométrie 2016 Construire et de crire une figure ge ome trique De monstrations en ge ome trie plane Construire et décrire une figure géométrique Un programme de tracé est une

Plus en détail

Exercices supplémentaires : Application géométrique des complexes

Exercices supplémentaires : Application géométrique des complexes Exercices supplémentaires : Application géométrique des complexes Partie A : Affixe et vecteurs On considère les points, et d affixes respectives, 1 et 3. 1) Déterminer l affixe des vecteurs, et. ) Déterminer

Plus en détail

points alignés points alignés

points alignés points alignés angle angle points alignés points alignés bissectrice bissectrice centre centre consécutifs consécutifs côté côté demi-droite demi-droite diagonale diagonale distance distance angle droit angle droit droite

Plus en détail

THEOREMES DE GEOMETRIE

THEOREMES DE GEOMETRIE THEOREMES DE GEOMETRIE DROITES REMARQUABLES D'UN TRIANGLE Hauteurs : On appelle hauteur d'un triangle une droite qui passe par un sommet du triangle et qui est perpendiculaire au coté opposé à ce sommet.

Plus en détail

5ème - Parallélogramme

5ème - Parallélogramme 5ème - Parallélogramme I Reconnaître un parallélogramme éfinition : parallélogramme Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles deux à deux i-contre, le quadrilatère est un

Plus en détail

Repère et coordonnées

Repère et coordonnées 2nde. ours - Géométrie plane repérée Les planisphères et les cartes géographiques maritimes sont construits dans un repère comprenant l axe vertical des latitudes et l axe horizontal des longitudes. La

Plus en détail

DEUX ENCADREMENTS DE π

DEUX ENCADREMENTS DE π DEUX ENDREMENTS DE π lément oulonne 15 mars 013 Résumé Dans ce document, l auteur va essayer de donner deux encadrements du fameux nombre π. Les outils géométriques nécessaires pour cela seront le théorème

Plus en détail

Classeur de géométrie 3 ème

Classeur de géométrie 3 ème - 1 - lasseur de géométrie 3 ème Pour démontrer que. Un point est le milieu d un segment Un point est sur un cercle Un point est l image d un autre par es distances sont égales eux angles ont la même mesure

Plus en détail

Seconde 2 IE2 repérage et configurations du plan S1. IE2 repérage et configurations du plan S2

Seconde 2 IE2 repérage et configurations du plan S1. IE2 repérage et configurations du plan S2 On donne les points A(;3), B(1;-1) et C(6;). 3) Calculer les coordonnées du point D tel que ABDC soit un carré. ABCD est un parallélogramme de centre O. Les hauteurs des triangles ADO et BOC issues respectivement

Plus en détail

CORRIGE DU DEVOIR. Exercice 1. 1 ) On obtient la figure suivante : 2 ) I est le milieu du segment [BD] et C est le milieu du segment [AD].

CORRIGE DU DEVOIR. Exercice 1. 1 ) On obtient la figure suivante : 2 ) I est le milieu du segment [BD] et C est le milieu du segment [AD]. CORRIGE DU DEVOIR Exercice 1 1 ) On obtient la figure suivante : 2 ) I est le milieu du segment [BD] et C est le milieu du segment [AD]. On en déduit, en utilisant le théorème réciproque du théorème de

Plus en détail

Il sera tenu compte de la qualité de la présentation et de la rédaction. L'usage de la calculatrice est autorisé.

Il sera tenu compte de la qualité de la présentation et de la rédaction. L'usage de la calculatrice est autorisé. Nom-Prénom :... Vendredi 9 novembre 018 Classe : Seconde DEVOIR EN CLASSE N sujet A Il sera tenu compte de la qualité de la présentation et de la rédaction. L'usage de la calculatrice est autorisé. Exercice

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

I. Les figures élémentaires :

I. Les figures élémentaires : I. Les figures élémentaires : A. Les triangles : Triangle isocèle Un triangle isocèle est un triangle qui a deux de ses côtés de. un triangle est isocèle les deux côtés issus du sommet principal ont. un

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

1. Droites particulières a) Médiatrices. Déf :Une médiatrice coupe un segment perpendiculairement et en son milieu.

1. Droites particulières a) Médiatrices. Déf :Une médiatrice coupe un segment perpendiculairement et en son milieu. I. Les quadrilatères.. II. Les triangles. 1. Droites particulières a) Médiatrices Déf :Une médiatrice coupe un segment perpendiculairement et en son milieu. Th : Un point est sur la médiatrice de [] si

Plus en détail

Chapitre 3: Configurations planes. Repérage du plan

Chapitre 3: Configurations planes. Repérage du plan I) Configurations planes Cf Math'X p4-45 Chapitre 3: Configurations planes. Repérage du plan Eercices p 53 : Utilisation de la trigonométrie de collège. Eercice 3 p 54: Théorème de Pthagore et réciproque:

Plus en détail

CONFIGURATIONS PLANES. Médiatrice d un segment. Vous savez donc construire : Le milieu d'un segment Une droite perpendiculaire à une droite donnée.

CONFIGURATIONS PLANES. Médiatrice d un segment. Vous savez donc construire : Le milieu d'un segment Une droite perpendiculaire à une droite donnée. Médiatrice d un segment Définition : La médiatrice d'un segment [] est la droite perpendiculaire à [] et passant par son milieu. Un point est sur la médiatrice de [] si et seulement si il est équidistant

Plus en détail

Ch3 : configurations du plan - repérage d un point

Ch3 : configurations du plan - repérage d un point Ch3 : configurations du plan - repérage d un point 1. Coordonnées d un point sur un plan : repère orthonormé 1 (O,I,J et repérage d un point distance de deux points - démonstration avec le théorème de

Plus en détail

Les droites (d 1 ) et (d 2 ) sont parallèles. On note (d 1 ) // (d 2 )

Les droites (d 1 ) et (d 2 ) sont parallèles. On note (d 1 ) // (d 2 ) CONSTRUCTIONS DE FIGURES PLNES I. DROITES PRLLELES ET PERPENDICULIRES Deux droites sont parallèles quand elles n ont aucun point commun. Les droites (d 1 ) et (d 2 ) sont parallèles. On note (d 1 ) //

Plus en détail

CHAPITRE 2 : TRIANGLE RECTANGLE ET CERCLE CONSOLIDATION DU RAISONNEMENT DEDUCTIF

CHAPITRE 2 : TRIANGLE RECTANGLE ET CERCLE CONSOLIDATION DU RAISONNEMENT DEDUCTIF CHAPITRE 2 : TRIANGLE RECTANGLE ET CERCLE CONSOLIDATION DU RAISONNEMENT DEDUCTIF I) LE RAISONNEMENT DEDUCTIF EN GEOMETRIE. On ne peut pas prouver qu un énoncé de géométrie est vrai en faisant uniquement

Plus en détail

Repérage et configurations du plan

Repérage et configurations du plan I Repères et coordonnées a) Repères Définition : (O ;I,J) est un repère du plan. Il est constitué d un triplet de points non alignés. O est appelé origine du repère La droite graduée (O ;I) est l axe des

Plus en détail

Fiche -Géométrie. 1 Triangle. 1.1 Triangle isocèle

Fiche -Géométrie. 1 Triangle. 1.1 Triangle isocèle Fiche -Géométrie 1 Triangle Définition 1. Un triangle est une figure plane, formée par trois points appelés sommets. Les côtés sont les segments qui joignent les sommets deux à deux. Remarque 1. Un triangle,

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

Médiatrice, cercle circonscrit et médiane d un triangle

Médiatrice, cercle circonscrit et médiane d un triangle 3ème Géométrie 2015/2016 hapitre édiatrice, cercle circonscrit et médiane d un triangle Plan du cours 1 édiatrice d un segment......................................................... 2 2 ercle circonscrit

Plus en détail

Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers. Objectif 20 Livre e

Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers. Objectif 20 Livre e 5 e Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers Objectif 20 Livre 23.4 Mots clefs. Parallélogramme Rectangle Losange Carré Côté Diagonale Axe de symétrie Centre de

Plus en détail

Correction de l épreuve de mathématiques du BREVET (DNB) 2009

Correction de l épreuve de mathématiques du BREVET (DNB) 2009 Mathématiques Correction de l épreuve de mathématiques du EVET (DNB) 2009 Correction proposée par : Mr MORICEAU (Collège MONTGAILLARD) 01 juillet 2009 1 partie : Activités numériques V Premier exercice

Plus en détail

Exercices : Les éléments de géométrie

Exercices : Les éléments de géométrie Exercices : Les éléments de géométrie Montrer la construction avec cabri géomètre 1. Construire un triangle ABC et son centre de gravité G sachant que AC = 8 cm, I milieu de [AC] et IG = 3 cm 2. Sur la

Plus en détail

n 4 page 111 a) R n 1 page 110 a) Le parallélogramme peut se nommer : PARC, ARCP, RCPA, CPAR, PCRA, CRAP, APCR ou RAPC.

n 4 page 111 a) R n 1 page 110 a) Le parallélogramme peut se nommer : PARC, ARCP, RCPA, CPAR, PCRA, CRAP, APCR ou RAPC. n 1 page 110 e parallélogramme peut se nommer :,,,,,, ou. b) c) en violet en vert en rouge [] et [] sont deux co"tés opposés du parallélogramme. ^ et ^ sont deux angles consécutifs du parallélogramme.

Plus en détail

Chapitre Les quadrilatères usuels

Chapitre Les quadrilatères usuels apitre 4 Géométrie 2 4.1 Les quadrilatères usuels éfinition 4.1 Un quarilatère est la donnée de quatre points tels que trois points consécutifs ne soient pas alignés. es points sont appelés sommets. Un

Plus en détail

Utiliser les propriétés des symétries axiale ou centrale.

Utiliser les propriétés des symétries axiale ou centrale. Chapitre 4 Éléments de Géométrie Ce que dit le programme CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Coordonnées d un point du plan Abscisse et ordonnée d un point dans le plan rapporté à un repère orthonormé.

Plus en détail

Chapitre 6 Triangle rectangle et cercle circonscrit

Chapitre 6 Triangle rectangle et cercle circonscrit Chapitre 6 Triangle rectangle et cercle circonscrit Compétences : Exemples d'activités, commentaires :. Ex N 1,,13,31,37,56 p175 Interrogation I 6 DST n 6 poly DM6 + sur chapitre et chapitre 6 ( IUFM)

Plus en détail

SYMETRIES. 1 ) Axe de symétrie.

SYMETRIES. 1 ) Axe de symétrie. Chapitre GEOMETRIE SYMETRIES 1 ) Axe de symétrie. On dit qu une figure plane admet un axe de symétrie lorsque, si je plie ma feuille le long de l axe, alors les deux parties de la figure se superposent

Plus en détail

Corrigé fiche 1 géométrie

Corrigé fiche 1 géométrie orrigé fiche 1 géométrie 1. On trace la droite (). vec l équerre, on trace une perpendiculaire (µ) à () passant par. Puis une autre perpendiculaire à (µ) passant par. 2. onstruction : cf. cours. La médiatrice

Plus en détail

Prop. Directe : Si un quadrilatère est un parallélogramme, alors il a ses côtés opposés parallèles.

Prop. Directe : Si un quadrilatère est un parallélogramme, alors il a ses côtés opposés parallèles. 5 ème hapitre G5 PRLLELOGRMMES 1 I) éfinition. f : Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles. On peut citer cette définition sous la forme de deux propriétés réciproques

Plus en détail

MS2_proprietes 2014/3/4 15:52 page 1 #1. page vide pour attaquer en page paire!

MS2_proprietes 2014/3/4 15:52 page 1 #1. page vide pour attaquer en page paire! MS2_proprietes 2014/3/4 15:52 page 1 #1 1 page vide pour attaquer en page paire! MS2_proprietes 2014/3/4 15:52 page 2 #2 PRPRIÉTÉS PUR ÉMNTRER EN GÉMÉTRIE Pour démontrer en géométrie, quelques astuces

Plus en détail

Aide mémoire Géométrie 3 è m e

Aide mémoire Géométrie 3 è m e Sinus d'un angle aigu: ide mémoire Géométrie è m e Sinus: est un triangle rectangle en. le sinus de l'angle, noté sin, est le rapport sin = longueur du côté opposé de l'angle longueur de 'hypoténuse côté

Plus en détail

Coordonnées : exercices maison. Exercice 1 Placer dans un repère les points suivants : A(2;5), B(-3;1), C(0;5) et D(-4;0).

Coordonnées : exercices maison. Exercice 1 Placer dans un repère les points suivants : A(2;5), B(-3;1), C(0;5) et D(-4;0). 1 oordonnées Exercice 1 Placer dans un repère les points suivants : (;5), (-3;1), (0;5) et (-4;0). 0 6. Exercice Voici un graphique 0 Lire les coordonnées des points du graphique (3;3), (-1;), (1,1) et

Plus en détail

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle.

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle. 6 e Décrire des figures usuelles Objectif 04 Livre 12 Mots clefs. Cercle Rayon, diamètre, corde et arc d un cercle Équidistance Triangle, triangle isocèle, triangle rectangle, triangle équilatéral Base

Plus en détail

Les parallélogrammes. Cinquième, chapitre n o 5

Les parallélogrammes. Cinquième, chapitre n o 5 Cinquième, chapitre n o 5 Les parallélogrammes Le parallélogramme est le quadrilatère fondammental : outre les propriétés de ses côtés et de ses diagonales, il est à l'origine de nombreuses démonstrations

Plus en détail

Devoir surveillé n 2 le 18/10/2015

Devoir surveillé n 2 le 18/10/2015 Nom : Classe : nde Devoir surveillé n le 18/10/0 Note : / Avis de l élève Avis du professeur Je sais : Oui Non Oui Non Exercice 1 Démontrer qu'une fonction peut s'écrire sous différentes formes. Déterminer

Plus en détail

CHAPITRE 3 : BASES DE GEOMETRIE PLANE

CHAPITRE 3 : BASES DE GEOMETRIE PLANE hapitre 3 ases de géométrie plane page 1 HPITRE 3 : SES DE GEOMETRIE PLNE 1. Triangles Propriété La somme des angles d un triangle vaut 180. d La droite d est parallèle à () et passe par. 1. Marquer clairement

Plus en détail

EXERCICES DE GEOMETRIE BASES

EXERCICES DE GEOMETRIE BASES EXERES E GEETRE SES Exercice n 1 p. 222 Puisque et sont de même mesure, il en est de même pour les angles L et N. Notons x cet angle. Par suite, NL = N = 180 (90 + x) = 90 x. e même, NL = L = 180 (90 +

Plus en détail

Exercices de géométrie plane Corrigés des exercices Propriétés des figures planes

Exercices de géométrie plane Corrigés des exercices Propriétés des figures planes Préparation accélérée RPE Mathématiques Exercices de géométrie plane orrigés des exercices Propriétés des figures planes Exercice 1 VRI / FUX a. Il est possible de construire le premier triangle. Il est

Plus en détail

BOITE A OUTILS ET DEDUCTOGRAMMES

BOITE A OUTILS ET DEDUCTOGRAMMES OITE OUTILS ET DEDUTOGRMMES Parmi les difficultés des élèves pour résoudre un problème, on peut en distinguer au moins deux. Repérer les outils (à prendre dans un sens très général) les plus performants

Plus en détail

L'essentiel des propriétés et des définitions utiles aux démonstrations

L'essentiel des propriétés et des définitions utiles aux démonstrations L'essentiel des propriétés et des définitions utiles aux démonstrations émontrer qu'un point est le milieu d'un segment P 1 Si un point est sur un segment et à égale distance de ses extrémités, alors ce

Plus en détail

Triangle rectangle. 1 Rappels sur le triangle rectangle. 1.1 Vocabulaire. Définition 1 Un triangle rectangle c est un triangle qui a un angle droit.

Triangle rectangle. 1 Rappels sur le triangle rectangle. 1.1 Vocabulaire. Définition 1 Un triangle rectangle c est un triangle qui a un angle droit. Triangle rectangle 1 Rappels sur le triangle rectangle 1.1 Vocabulaire Définition 1 Un triangle rectangle c est un triangle qui a un angle droit. Définition 2 Le coté qui est situé en face de l angle droit

Plus en détail

Mémento de géométrie. Cycle 3. J appartiens à : Ecole de Saint Jean le Vieux

Mémento de géométrie. Cycle 3. J appartiens à : Ecole de Saint Jean le Vieux Mémento de géométrie ycle 3 J appartiens à : Ecole de Saint Jean le Vieu Mars 2015 Sommaire 1. Point, droite et segment 2 2. roites perpendiculaires 3 3. roites parallèles 4 4. Les polygones 5 5. Le parallélogramme

Plus en détail

LES BASES DE LA GEOMETRIE

LES BASES DE LA GEOMETRIE Chapitre 2. GEOMETRIE 1 ) Les triangles. Condition d existence: la somme de la mesure de deux côtés est toujours supérieure à la mesure du troisième côté. Exemples : le triangle tel que AB=10cm, AC=3cm

Plus en détail

VOCABULAIRE DE GEOMETRIE PLANE

VOCABULAIRE DE GEOMETRIE PLANE Fiche de vocabulaire VOCABULAIRE DE GEOMETRIE PLANE Généralités... 2 1) Nom des polygones courants... 2 2) Qu est-ce qu un polygone?... 2 La médiatrice d un segment... 3 Cercle et disque... 3 1) Le disque?

Plus en détail

Seconde Repères Quelques démonstrations :... 5

Seconde Repères Quelques démonstrations :... 5 Index I- Sur un axe, droite graduée... 1 I-1- La droite graduée... 1 Exemple... 1 I-- Distance sur un axe gradué, distance entre deux nombres... 1 I-3- Abscisse du milieu sur un axe gradué.... II- Repère

Plus en détail

Parallélogrammes Particuliers

Parallélogrammes Particuliers Parallélogrammes Particuliers I) Définitions et propriétés Les parallélogrammes particuliers étudiés sont les rectangles, les carrés et les losanges. 1) Le rectangle a) Définition : Un rectangle est un

Plus en détail

DEMONSTRATIONS QUADRILATERES

DEMONSTRATIONS QUADRILATERES DEMONSTRATIONS QUADRILATERES I COMMENT ECRIRE UNE DEMONSTRATION * Une démonstration doit contenir ces 3 étapes : Les données utiles Le théorème La conclusion * LES DONNEES UTILES : Une donnée est quelque

Plus en détail

Seconde 2 IE2 repérage et configurations du plan Sujet 1. 1) Démontrer que les segments [AC] et [BD] ont le même milieu.

Seconde 2 IE2 repérage et configurations du plan Sujet 1. 1) Démontrer que les segments [AC] et [BD] ont le même milieu. Exercice 1 (5 points) On considère les points A(-3 ;0), B(5 ;-1), C(9 ;6) et D(1 ;7). 1) Démontrer que les segments [AC] et [BD] ont le même milieu. 2) Calculer les longueurs AB et BC. 3) Quelle est la

Plus en détail

Première partie : Calcul numérique

Première partie : Calcul numérique Vendredi décembre 1997 : Devoir commun de troisième onsignes : les trois parties doivent être rédigées sur trois copies doubles différentes. la fin des deux heures, vous les glisserez l'une dans l'autre

Plus en détail