Raisonnement par récurrence 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Raisonnement par récurrence 2"

Transcription

1 1 sur 9 25/10/ :38 Raisonnement par récurrence 2 DATE DE CRÉATION DE L'ARTICLE :16 NOVEMBRE 2010 DATE DE RÉDACTION ANTÉRIEURE : N.C. LANGUE DE L'ARTICLE (français) Cet article est une traduction de l'article numéro : Valider Écrire une nouvelle traduction de article I. Raisonnement par récurrence Exercice 1 Montrer par récurrence que pour tout naturel non nul : Exercice 2 Soit un réel tel que ; montrer par récurrence que, pour tout naturel,. Exercice 3 1. Montrer que pour tout naturel tel que : 2. Pour quel ensemble de naturels a-t-on :? Exercice 4 Soit un naturel quelconque. On considère les phrases suivantes : : est divisible par»» est divisible par» 1. Montrer que et sont héréditaires 2. Montrer que, pour tout naturel, est vraie 3. Montrer que, pour tout naturel, est fausse. II. Monotonie Exercice 5 Soit une suite définie sur. 1. Montrer que si, pour tout naturel, et ; alors décroît. 2. Montrer que si, pour tout naturel, et ; ; alors croît.

2 2 sur 9 25/10/ :38 Exercice 6 Soit une suite définie sur. Soit une fonction définie sur et telle que, pour tout, 1. Montrer que si croît sur,alors croît sur. 2. Montrer que si décroît sur,alors décroît sur. Exercice 7 Etudier la monotonie de chaque suite définie sur par : 1. ; 2. ; 3. ; 4. ; 5. ; 6. ; Remarques ; pour tout :. Ainsi. Par propriété : pour tout de,. Exercice 8 Montrer par récurrence la monotonie de chaque suite définie sur par : 1. et, pour tout naturel,. 2. et, pour tout naturel,. III. Quelques sommes Exercice 9 Calculer les sommes suivantes : Pour tous et Pour tous et,

3 3 sur 9 25/10/ :38 IV. Suites bornées Exercice 10 Soit la suite définie sur par :. Montrer que est bornée. Exercice 11 Soit la suite définie sur par : : 1. Calculer :. 2. Montrer que, pour tout :. (utiliser le plus petit et le plus grand des termes de la somme). 3. Montrer que est bornée. V. Limites Exercice 12 Dans chacun des cas suivants, montrer que la suite a une limite (finie ou infinie) et déterminer cette lim 1. ( ) 2. ( ) 3. ( ) 4. ( ) 5. ( ) 6. ( ) 7. ( ) 8. ( ) Exercice 13

4 4 sur 9 25/10/ :38 Soient les suites, définies sur par :, et,. 1. Montrer que la suite est convergente et déterminer sa limite. 2. Simplifier 3. Montrer que la suite a une limite (finie ou infinie) et déterminer cette limite. Exercice 14 Soit la suite définie sur par :. 1. Montrer que, pour tout : 2. Montrer que la suite est convergente et déterminer sa limite. Exercice 15 Soit la suite définie sur par :. 1. Montrer que, pour tout : 2. Montrer par récurrence que, pour tout :. 3. Montrer que la suite a une limite (finie ou infinie) et déterminer sa limite. Exercice 16 On pose : et pour tout ( ), [ a chiffres après la virgule]. 1. Vérifier que, pour tout,. 2. Simplifier. 3. En déduire une écriture fractionnaire de. Cas de (méthode utile à connaître) Exercice 17 Soit la suite définie sur par : ( et étant des réels fixés tels que ). 1. Déterminer le réel tel que :.

5 5 sur 9 25/10/ :38 2. Pour tout ( ), on pose :. Montrer que la suite est géométrique ; puis exprimer et en fonction de. Exercice Soit la suite définie sur par et, pour tout naturel, par :. De plus, pour tout, on pose :. Exprimer et en fonction de ; puis, montrer que les suites et sont convergentes et déterm leurs limites. (utiliser le procédé de l exercice précédent) 2. Soit la suite définie sur par et, pour tout naturel non nul, par :. De plus on pose, pour tout :. Exprimer et en fonction de ; puis, montrer que les suites et sont convergentes et détermi leurs limites. VI. Convergence monotone Exercice 19 : Soit la suite définie sur par :. 1. Montrer que, pour tout,. 2. A partir de quel naturel, la suite est-elle décroissante? 3. Montrer que la suite converge. 4. Déterminer. Exerice 20 Soit la suite définie sur par : et, pour tout,. 1. Montrer par récurrence que, pour tout,. 2. Montrer que, pour tout,.

6 6 sur 9 25/10/ :38 3. Montrer que la suite converge. VII. Suites récurrentes Exercice 21 (d après le bac) On considère la suite définie sur par :, pour tout entier naturel. 1. Etudier la monotonie de la suite. 2.a. Démontrer que, pour tout entier naturel,. 2.b Quelle est la limite de la suite? 3. Conjecturer une expression de en fonction de, puis démontrer la propriété ainsi conjecturée. Exercice 22 : (d après bac) On considère la suite définie par :,,, pour tout Montrer que la suite définie par est une suite géométrique dont on précisera raison. En déduire en fonction de On pose et on considère la suite définie par. Exprimer en fonction de Exprimer, puis, en fonction de (on pourra calculer, de deux manières, la somme. Déterminer. EX 23 : (d après exercice-type proposé) Soit l intervalle. On considère la fonction définie sur par Etudier les variations de et en déduire que, pour tout élément de, appartient à On considère la suite définie par : et. Montrer que, pour tout, appartient à. On se propose d étudier la suite par deux méthodes différentes. Première méthode Représenter graphiquement dans un repère orthonormal d unité graphique 10 cm En utilisant le graphique précédent, placer les points et d ordonnée nulle et d abscisse respectives et.

7 7 sur 9 25/10/ :38 Que suggère le graphique concernant le sens de variation de et sa convergence? Etablir la relation et en déduire le sens de variation de la suite Démontrer que la suite est convergente Prouver que la limite de la suite vérifie et calculer. Deuxième méthode : On considère la suite définie par Prouver que est une suite géométrique de raison Calculer et exprimer en fonction de Exprimer en fonction de, puis en fonction de En déduire la convergence de la suite et sa limite. EX 24 : (d après bac) On considère la suite numérique définie sur par :, et pour tout entier, est un réel donné tel que On suppose dans cette question que Calculer et Dans un repère orthonormal (unité graphique 8 cm), tracer, sur l intervalle, la droite d d équat et la courbe représentative de la fonction Utiliser d et pour construire sur l axe des abscisses les points d abscisses respectives On suppose dans cette question que est un réel quelconque de l intervalle Montrer par récurrence que, pour tout entier, Montrer que la suite est croissante Que peut-on en déduire? On suppose à nouveau dans cette question que. On considère la suite numérique définie sur

8 8 sur 9 25/10/ :38 par Exprimer, pour tout entier, en fonction de En déduire l expression de en fonction de Déterminer la limite de la suite, puis celle de la suite. EX 25 : (d après bac) On considère la suite de terme général, telle que : ( ) Montrer que, pour tout, Montrer que ; En déduire que, pour tout, Montrer que. En déduire que, pour tout, (on pourra faire une démonstration par récurrence) admet-elle une limite quand tend vers? Si oui, la calculer. Suites adjacentes EX 26 : (d après bac) On définit les suites et par :, et, pour tout, Soit (D) une droite munie d un repère. Pour tout, on considère les points et d abscisses respectives et Placer les points Soit la suite définie par pour tout. Démontrer que est une suite géométrique de raison dont on précisera le premier terme. Exprimer en fonction de Comparer et.etudier le sens de variation des suites et. Interpréter géométriquement ces résultats.

9 9 sur 9 25/10/ : Démontrer que les suites et sont adjacentes Soit la suite définie par pour tout. Démontrer que est une suite consta En déduire que les segments ont tous le même milieu Montrer que les suites et sont convergentes et calculer leur limite. Interpréter géométriquement ce résultat. EX 27 : Soient les suites et définies sur par : et, pour tout, ; et, et, pour tout,. Pour tout, on pose : Montrer que, pour tout, Montrer que, pour tout, et Montrer par récurrence que, pour tout, Montrer que les suites et sont adjacentes. Que peut-on en déduire? Déterminer la limite de et de. Poster un message SPIP [13596] est un logiciel libre distribué sous lic Pour plus d'informations, voir le site

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 9 avril 008 Document diffusé via le site wwwbacamathsnet de Gilles Costantini fredericdemoulin

Plus en détail

Suites et récurrence

Suites et récurrence Suites et récurrence 1 Suites arithmétiques et géométriques 1.1 Définitions * On dit que la suite (u n ) est arithmétique s il existe un réel r appelé raison tel que, pour tout n dans N, on ait : u n+1

Plus en détail

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2 TS Suites récurrentes Exercices Exercice. Soit u la suite définie par u 0 = 3 et pour tout entier n, + = 4un +.. Démontrer que pour tout entier n, >.. On définit la suite v pour n N par v n = un. Montrer

Plus en détail

Limites de suites. Révisions

Limites de suites. Révisions Limites de suites Révisions Soit ( ) une suite définie pour tout n N par = n 2 + n Exprimer en fonction de n : a b + c + 2 La suite ( ) est-elle arithmétique? 3 Quel est le sens de variation de ( )? 2

Plus en détail

Etude de limites de suites définies par

Etude de limites de suites définies par Etude de limites de suites définies par récurrence u n+1 = f(u n ) I) Généralités 1) Définition Une suite définie par récurrence est une suite définie par son premier terme et par une relation de récurrence,

Plus en détail

Exercices et Annales Maths Terminale S

Exercices et Annales Maths Terminale S Stages intensifs Exercices et Annales Maths Terminale S www.groupe-reussite.fr contact@groupe-reussite.fr 1 Chapitre 1 Fonction exponentielle, logarithme népérien et logarithme décimal 1.1 Exercices préliminaires

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

Fonction homographique - tangente à une courbe - suite récurrente

Fonction homographique - tangente à une courbe - suite récurrente f est la fonction définie sur D = ]- ;3[ ]3 ;+ [ par f(x) = x + 1 3 - x. 1) a) Etudier les variations de f sur D, ses limites aux bornes de D puis construire sa représentation graphique C f dans un repère

Plus en détail

RAISONNEMENT PAR RECURRENCE

RAISONNEMENT PAR RECURRENCE Exemple: RAISONNEMENT PAR RECURRENCE Montrons par récurrence que pour tout n N *, P (n) : i=n i = 1 + + 3 +...+ ( n -1) + n = n n1 n n1 Initialisation : pour n = 1 i =1 et = 111 =1 donc P(1) est vraie.

Plus en détail

EXERCICES VARIATIONS DE FONCTION

EXERCICES VARIATIONS DE FONCTION EXERCICES VARIATIONS DE FONCTION I ) Racine carré Exercice 1 : On a représenté graphiquement dans un repère les fonctions f, g, h et k définies par : f (x)= x+ 2 g (x)= 2 x h(x)= x 2 k(x)= x 2 + 1 Associer

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de u n et v n Déterminer si possible,

Plus en détail

Recueil d annales en Mathématiques. Terminale S - Enseignement obligatoire. Suites numériques

Recueil d annales en Mathématiques. Terminale S - Enseignement obligatoire. Suites numériques Recueil d annales en Mathématiques Terminale S - Enseignement obligatoire Frédéric Demoulin Dernière révision : septembre 2005 fredericdemoulin@voilafr Tableau récapitulatif des exercices indique que cette

Plus en détail

Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites,

Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites, Généralités sur les suites Cours maths Terminale S Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites, la monotonie, la convergence des suites,

Plus en détail

Etude de Fonctions. ] ; (x)=. 2/ a/ étudier les variations de f. b/ en déduire que f admet une fonction réciproque g définie sur IR +.

Etude de Fonctions. ] ; (x)=. 2/ a/ étudier les variations de f. b/ en déduire que f admet une fonction réciproque g définie sur IR +. Eercice : A/ On considère l application f définie sur ]0,4[ par f ( 4 ) ; 4 ² on désigne par sa courbe représentative dans un repère orthonormé(o,, j ) /a) étudier les variations de f b) montrer que f

Plus en détail

Mathématiques 11ème Sciences Production de Mathematikos Votre Ticket pour l Excellence en Maths. Exemple. Exemple

Mathématiques 11ème Sciences Production de Mathematikos Votre Ticket pour l Excellence en Maths. Exemple. Exemple Classe : 11 ème Sciences CHAPITRE 5 SUITES NUMÉRIQUES Domaine : Sciences, Mathématiques et Technologies Compétences : Résoudre une situation problème Composantes : Diagnostiquer la situation problème,

Plus en détail

Annales Logarithme népérien

Annales Logarithme népérien Annales Logarithme népérien Antilles Guyane Juin 2012 (5 points) Commun à tous les candidats Soit la suite définie pour tout entier naturel non nul par 1) Calculer et. 2) a) Démontrer que, pour tout entier

Plus en détail

Terminale S Problème de synthèse n 5 Fonctions trigonométriques - Suites géométriques - Suites adjacentes - Intégrales

Terminale S Problème de synthèse n 5 Fonctions trigonométriques - Suites géométriques - Suites adjacentes - Intégrales Partie A a est un nombre réel appartenant à l intervalle [0 ;π]. On considère la suite géométrique (u n ) de premier terme u 0 cos a et de raison sin a. 1) Exprimer u n en fonction de n et déterminer la

Plus en détail

Easy-Maths. Théorème des accroissements finis et suites numériques

Easy-Maths. Théorème des accroissements finis et suites numériques Easy-Maths Njionou Patrick, S pnjionou@yahoofr Lycée de Japoma BP : 7297, Douala, Cameroun Théorème des accroissements finis et suites numériques EXERCICE 1 Soit h la fonction définie sur R par : h(x)

Plus en détail

Convergence de suites. Suites récurrentes

Convergence de suites. Suites récurrentes Convergence de suites Les suites dont on donne ci-dessous le terme général sont-elles convergentes? cos n + 3n a) ln n + 2n g) sin n n b) 4n 2 + 5n + 6 2n c) en n h) 2 n ( 1) n n 2 d) sin n e n e) n 1

Plus en détail

Convergence des suites monotones

Convergence des suites monotones Convergence des suites monotones Suites majorée, minorée, bornée Définition Une suite (u # ) est majorée par un nombre réel M si pour tout n N, u # M Une suite (u # ) est minorée par un nombre réel m si

Plus en détail

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6.

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6. Exercice 1 : Dire en justifiant si les suites (u n ) définies ci-dessous sont arithmétiques, géométriques ou ni l'un ni l'autre. Dans le cas où elles sont arithmétiques ou géométriques, préciser le premier

Plus en détail

Raisonnement par récurrence. Limite d une suite

Raisonnement par récurrence. Limite d une suite Exercices 2 octobre 2014 Raisonnement par récurrence. Limite d une suite Raisonnement par récurrence Exercice 1 Prouver que pour tout entier n, 4 n + 5 est un multiple de 3. Exercice 2 Prouver que pour

Plus en détail

RAISONNEMENT PAR RECURRENCE

RAISONNEMENT PAR RECURRENCE Exemple: Montrons par récurrence que pour tout n Initialisation : pour n = 1 RAISONNEMENT PAR RECURRENCE i=1 i =1 et i=1 N i=n *, P (n) : i = 1 + + 3 +...+ ( n -1) + n = n n 1 i=1 n n 1 Hérédité : supposons

Plus en détail

Lycée Privé Catholique Maintenon TERMINALE FASCICULE MATHEMATIQUES M. MAGNE

Lycée Privé Catholique Maintenon TERMINALE FASCICULE MATHEMATIQUES M. MAGNE Lycée Privé Catholique Maintenon TERMINALE FASCICULE --------------- DE --------------- MATHEMATIQUES DEVOIRS MAISON Année 2010/2011 M. MAGNE Thème : Les Fonctions Devoir Maison à rendre le : Partie A

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Terminale Scientifique (S) : Cours de mathématiques (Terminale S) I. Chapitre 01 : Les suites 1. Etude globale d une suite A. Les suites majorées, minorées, bornées La suite ( ) est majorée si et seulement

Plus en détail

Terminale S Suites numériques

Terminale S Suites numériques Terminale S Suites numériques Raisonnement par récurrence. Introduction En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel n. Par exemple, la n(n + ) somme des entiers naturels

Plus en détail

Annales Calcul intégral

Annales Calcul intégral Annales Calcul intégral Polynésie - Juin 2012 (5 points) Commun à tous les candidats Le plan est rapporté à un repère orthonormal On considère les points et et la droite d équation. On note la fonction

Plus en détail

Terminale S3 DS de Mathématiques le 30/09/2016. Durée : 4 heures. OBLIGATOIRE. Les calculatrices sont autorisées.

Terminale S3 DS de Mathématiques le 30/09/2016. Durée : 4 heures. OBLIGATOIRE. Les calculatrices sont autorisées. Terminale S3 DS de Mathématiques le 30/09/2016 Durée : 4 heures. OBLIGATOIRE Les calculatrices sont autorisées. Le sujet est composé de quatre exercices indépendants. La qualité et la précision de la rédaction

Plus en détail

TS Rappels sur les suites Cours. Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m

TS Rappels sur les suites Cours. Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m 1 TS Rappels sur les suites Cours I. Définitions Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m L image u(n) de l entier n est notée

Plus en détail

exercices types sur limite de suites

exercices types sur limite de suites exercices types sur ite de suites 1. Utiliser la définition de la ite finie d une suite : a. Démonter que la suite définie par a pour ite 0. On doit démontrer que tout intervalle ouvert contenant 0 contient

Plus en détail

Chapitre 3 - Fonctions exponentielles

Chapitre 3 - Fonctions exponentielles Chapitre 3 - Fonctions exponentielles I Fonctions exponentielles de base q TD1 : Du discret au continu On étudie la croissance d une population de bactéries dans une culture. Le nombre de bactéries (exprimé

Plus en détail

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire Terminale S Problème de synthèse n f est la fonction définie sur par f() = orthonormal (O; i ; j )(unité graphique : 2 cm). A. Etude de la fonction f + - et C sa courbe représentative dans un repère ²

Plus en détail

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans DST n 4 - Corrigé Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans l'ensemble des nombres réels, et de construire une suite qui

Plus en détail

Les suites numériques

Les suites numériques Les suites numériques chapitre 4 I Premier regard Définition : suite numérique Une suite numérique est une liste de nombres réels, numérotés généralement par des indices, entiers naturels consécutifs 0,

Plus en détail

Baccalauréat S Amérique du Sud 16 novembre 2011

Baccalauréat S Amérique du Sud 16 novembre 2011 Durée : 4 heures Baccalauréat S Amérique du Sud 6 novembre 20 Exercice Soit f la fonction définie sur l intervalle ] ; + [ par : On considère la suite définie pour tout n N par : f x)=3 4 x+. { u0 = 4

Plus en détail

x = x Dans la suite de l exercice, on admettra que cette équation a une unique solution dans l intervalle [0 ; 1]. On note a cette solution.

x = x Dans la suite de l exercice, on admettra que cette équation a une unique solution dans l intervalle [0 ; 1]. On note a cette solution. EXERCICE 1 Soit f une fonction définie sur l intervalle [ ; 1], continue et positive sur cet intervalle, et a une réel tel que < a < 1. On note : C la courbe représentative de la fonction f dans un repère

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre V : Suites numériques 1 Un peu de topologie de R On a vu dans le chapitre

Plus en détail

Commun à tous les candidats. Le graphique de l annexe sera complété et remis avec la copie. Soit la fonction f définie sur l intervalle [0; 2] par

Commun à tous les candidats. Le graphique de l annexe sera complété et remis avec la copie. Soit la fonction f définie sur l intervalle [0; 2] par EXERCICE (6 points ) Commun à tous les candidats Le graphique de l annexe sera complété et remis avec la copie Soit la fonction f définie sur l intervalle [0; ] par f(x) x + x + ) Etudier les variations

Plus en détail

2de Variations de fonctions Cours

2de Variations de fonctions Cours 2de Variations de fonctions Cours I. Fonction croissante, fonction décroissante Transmath : Activité 1 page 23 1. Définitions ( la courbe «monte» de gauche à droite, plus La courbe «descend» de gauche

Plus en détail

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où :

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où : DST 3 Corrigé Exercice 1 (4 points) Avant le début des travaux de construction d une autoroute, une équipe d archéologie préventive procède à des sondages successifs en des points régulièrement espacés

Plus en détail

Convergence des suites

Convergence des suites Convergence des suites Cours maths Terminale S Dans ce module consacré à l étude de la convergence d une suite, on commence par redéfinir rigoureusement la notion de limite finie d une suite. Ensuite,

Plus en détail

Chapitre I : LES SUITES

Chapitre I : LES SUITES Chapitre I : LES SUITES I- Généralités sur les suites 1) Définition et notations Définition 1 : 1) Définir une suite par une formule explicite, c est donner une relation entre le terme et l entier, pour

Plus en détail

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan.

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. Polynésie juin 005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. 1 a) Déterminer les limites de la fonction aux bornes de

Plus en détail

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES Terminales S - S2 N. Chiffot S. Coursaget J. Giovendo Durée : 4 heures. Nombre de pages : 7. L utilisation de la calculatrice est autorisée. Corrigé TS - TS2

Plus en détail

Exercices sur les fonctions 2013

Exercices sur les fonctions 2013 Pondichéry 3 5 points Partie On s'intéresse à l'évolution de la hauteur d'un plant de maïs en fonction du temps. Le graphique en annexe représente cette évolution. La hauteur est en mètres et le temps

Plus en détail

Chapitre 1 : Les suites

Chapitre 1 : Les suites Chapitre : Les suites I. Exercices supplémentaires Partie A : Récurrence Exercice La suite est définie par et +2+ pour tout entier naturel. Démontrer par récurrence que pour tout. La suite est définie

Plus en détail

Sujet du baccalauréat S Asie 18 juin 2008

Sujet du baccalauréat S Asie 18 juin 2008 Sujet du baccalauréat S Asie 8 juin 2008 www.mathoman.com Exercice Commun à tous les candidats 4 points A - Vrai ou faux? Pour chacune des propositions suivantes, indiquer si elle est vraie ou fausse et

Plus en détail

Interprétation graphique ] [ + tous les termes de la suite à partir d un certain rang appartiennent à cet intervalle ]a;b[ b) Limite infinie

Interprétation graphique ] [ + tous les termes de la suite à partir d un certain rang appartiennent à cet intervalle ]a;b[ b) Limite infinie SUITES NUMERIQUES 2 ème partie I- Limite d une suite a) Limite finie Définition Soit (U n ) une suite de nombres réels. On dit que la suite (U n ) admet pour limite, si tout intervalle ]a ;b[ contenant

Plus en détail

Suites : récurrence, limites

Suites : récurrence, limites TS : Suites : récurrence, ites page 1 Suites : récurrence, ites I. Rappels sur les suites (A) Mode de génération d une suite Définition 1 Une suite numérique u ou ( ) n N est une fonction définie sur N

Plus en détail

I) Sens de variation d une suite numérique.

I) Sens de variation d une suite numérique. Comportement d une suite, Problèmes I) Sens de variation d une suite numérique. 1) Définitions : Soit, une suite numérique. On dit que cette suite est : croissante si pour tout, ; strictement croissante

Plus en détail

LES SUITES RÉELLES. = L > Montrer que, si L > 1, alors lim u n = +. , ln(n), n. n!nn n) 2 n.

LES SUITES RÉELLES. = L > Montrer que, si L > 1, alors lim u n = +. , ln(n), n. n!nn n) 2 n. LES SUITES RÉELLES Exercice Soit (u n ) et (v n ), deux suites convergeant respectivement vers α et β. On pose : pour tout n N, m n = min(u n, v n ) et M n = max(u n, v n ) : ces deux suites convergent-elles

Plus en détail

Exercices sur la fonction logarithme népérien - Corrigé

Exercices sur la fonction logarithme népérien - Corrigé Lycée Secondaire El Ksour Année Scolaire 213-214 Exercices sur la fonction logarithme népérien - Corrigé ExerciceN 1 Soient et les fonctions définies sur l intervalle par et On note C et C les courbes

Plus en détail

Novembre 2008 Nouvelle Calédonie

Novembre 2008 Nouvelle Calédonie Novembre 2 Nouvelle Calédonie Pondichéry Avril 2 Centres étrangers Juin 2 Amérique du nord juin 2 Inde Pondichéry avril 2ds vos annales p 6) Sujets : Novembre 2 Nouvelle Calédonie PARTIE A On considère

Plus en détail

BAC BLANC. Epreuve de Mathématiques obligatoire. Durée 4 heures

BAC BLANC. Epreuve de Mathématiques obligatoire. Durée 4 heures BAC BLANC Terminale S Epreuve de Mathématiques obligatoire Coefficient 7 Durée 4 heures Le sujet comporte 7 pages. L utilisation de la calculatrice est autorisée. Aucun document n est permis. Le candidat

Plus en détail

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR.

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. I Notion de suite réelle ) Définition : Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. Le réel U(n) est noté U n il est appelé terme général

Plus en détail

Sujets de bac : Intégration

Sujets de bac : Intégration Sujets de bac : Intégration Sujet n 1 : Liban juin 2006 Partie A : étude d une fonction Soit la fonction définie sur l intervalle 0; par ln 1 Sa courbe représentative dans un repère orthogonal ; ; est

Plus en détail

LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence.

LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence. LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence. Pré-requis : Suites numériques : monotonie, convergence, divergence ; Théorème des valeurs intermédiaires ; R est complet :

Plus en détail

Terminale ES Rappels sur les suites I Qu est-ce qu une suite? Définition : liste ordonnée de nombres réels,

Terminale ES Rappels sur les suites I Qu est-ce qu une suite? Définition : liste ordonnée de nombres réels, I Qu est-ce qu une suite? Définition : Rappels sur les suites Une suite de nombres réels est une liste ordonnée de nombres réels, finie ou infinie. On note ( ) la suite u 0, u 1, u 2,..,, +1, Le nombre

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

La fonction exponentielle

La fonction exponentielle Exercices 16 octobre 014 La fonction exponentielle Opération sur la fonction exponentielle Exercice 1 Simplifier les écritures suivantes : a) (e x ) 3 e x b) ex 1 e x+ e) e 3x f) ex e y (e x ) e x e x

Plus en détail

Suites numériques Raisonnement par récurrence

Suites numériques Raisonnement par récurrence Chapitre Suites numériques Raisonnement par récurrence I. Suites numériques : rappels et coméments 1. Modes de génération d une suite Soit n 0 un entier naturel. Une suite numérique u une fonction qui

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie EXERCICE 1 : 5 points Le plan complexe est rapporté à un repère orthonormal direct (0; u, v). Partie A : Restitution organisée de connaissances

Plus en détail

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1 Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Calculer avec la fonction exponentielle Simplifier les expressions suivantes où x est un réel quelconque : a) e1+x

Plus en détail

Intégrale d une fonction : Exercices Corrigés en vidéo avec le cours sur jaicompris.com

Intégrale d une fonction : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Intégrale et aire On considère la fonction affine f dont la courbe ci-contre passe par les points A et B. ) Déterminer l epression de f(). ) En déduire une primitive F de f. ) a) Déterminer l intégrale

Plus en détail

Première STMG. Suites numériques. sguhel

Première STMG. Suites numériques. sguhel Première STMG Suites numériques sguhel ... 0 Chapitre 3 : Suites numériques... 2 1 Introduction... 2 1.1 Activité 1... 2 1.2 Activité 2... 2 2 Modes de génération d une suite... 4 2.1 Suite numérique...

Plus en détail

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ).

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ). Exercice 75 p 55 exercices sur les suites Symbole Belin 0 On s intéresse aux suites définies sur V et vérifiant la relation de récurrence u n+ = + u n². Une telle suite sera déterminée par son premier

Plus en détail

Baccalauréat blanc S - 4 heures Lycée Descartes - Rabat - février 2006

Baccalauréat blanc S - 4 heures Lycée Descartes - Rabat - février 2006 Baccalauréat blanc S - 4 heures Lycée Descartes - Rabat - février 006 L utilisation de la calculatrice est autorisée EXERCICE Le plan complexe P est rapporté à un repère orthonormal direct graphique est

Plus en détail

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES EABJM Bac Blanc Novembre 009 MATHÉMATIQUES Terminales S - S N. Chiffot S. Coursaget J. Giovendo Durée : 4 heures. Nombre de pages : 7. L utilisation de la calculatrice est autorisée. Le présent sujet devra

Plus en détail

Terminale S Problème de synthèse n 10 Famille de fonctions - Méthode des rectangles - Suites - Suite d'intégrales

Terminale S Problème de synthèse n 10 Famille de fonctions - Méthode des rectangles - Suites - Suite d'intégrales Terminale S Problème de synthèse n n est un entier naturel, n. On note f n la fonction définie sur I = ] ;+ [ par f n (x) = (ln x)n et C x² n.sa courbe représentative dans un repère orthonormal (O; i ;

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 4 heures Coefficient : 7 Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

LEÇON N 56 : 56.1 Monotonie de la suite

LEÇON N 56 : 56.1 Monotonie de la suite LEÇON N 56 : Étude de suites de nombres réels définies par une relation de récurrence u n+1 = f(u n ) et une condition initiale. L exposé pourra être illustré par un ou des exemples faisant appel à l utilisation

Plus en détail

Méthodes sur les suites

Méthodes sur les suites Méthodes sur les suites G. Petitjean Lycée de Toucy 19 juin 2007 G. Petitjean (Lycée de Toucy) Méthodes sur les suites 19 juin 2007 1 / 41 1 Déterminer par le calcul et graphiquement les premiers termes

Plus en détail

Suites numériques. Introduction. Exercice 1 1 er terme. 2 ième terme 1 ère série ième série ième série

Suites numériques. Introduction. Exercice 1 1 er terme. 2 ième terme 1 ère série ième série ième série Introduction Exercice 1 1 er terme 2 ième terme 1 ère série 3 4 5 6 2 ième série 2-4 8 32 Formule de récurrence Formule explicite 3 ième série 0 1 3 6 15 4 ième série 0 1 4 9 5 ième série 4 0-2 -6 6 ième

Plus en détail

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0 Savoir calculer avec des logarithmes Simplifier les expressions suivantes : Fonction logarithme : Exercices Corrigés en vidéo avec le cours sur jaicompris.com a) ln 6 ln 2 b) ln e 2 c) ln 1 e x d) e ln

Plus en détail

Thème 7 Limites de suites

Thème 7 Limites de suites Terminale S 2016 2017 Exercices Thème 7 Limites de suites Vérification des acquis Savoir utiliser les théorèmes de comparaison pour déterminer la limite d une suite. Savoir étudier la limite d une somme,

Plus en détail

Baccalauréat S Pondichéry 13 avril 2011

Baccalauréat S Pondichéry 13 avril 2011 Baccalauréat S Pondichéry 13 avril 2011 Le sujet est composé de 3 exercices indépendants. Le candidat doit traiter tous les exercices. EXERCICE 1 Commun à tous les candidats 10 points Partie I Sur le graphique

Plus en détail

Correction Devoir à la maison commun Saint-Charles La Cadenelle

Correction Devoir à la maison commun Saint-Charles La Cadenelle Correction Devoir à la maison commun Saint-Charles La Cadenelle Exercice On considère les matrices 0 5 0 0 5 0 0 0 0 0 0 4 ; 0 2 ; 0 2 0 ; 0 0 4 0 4 0 0 2 0 0 2 0 0 0 ) Soit la matrice 4 0 4 2 a) Prouver

Plus en détail

e x lim f k (x) = (x + 1)e kx.

e x lim f k (x) = (x + 1)e kx. EXERCICE 4 (7 points ) (Commun à tous les candidats) Partie A. Restitution organisée de connaissances On suppose connu le résultat suivant : Démontrer que lim x + xe x =. e x lim x + x = +. Partie B. Restitution

Plus en détail

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité )

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) BACCALAUREAT BLANC Session avril 2015 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures coefficient : 7 MATERIEL AUTORISE OU NON

Plus en détail

1 Raisonnement par récurrence. 2 Suites arithmétiques, géométriques. ISEL - Année 1. Mathématiques. Suites - Rappel

1 Raisonnement par récurrence. 2 Suites arithmétiques, géométriques. ISEL - Année 1. Mathématiques. Suites - Rappel ISEL - Année Mathématiques Suites - Rappel Raisonnement par récurrence Soit une propriété P (n) dépendant d'un entier naturel n. Pour montrer que cette propriété est vraie à partie de l'entier n 0 :. on

Plus en détail

Suites numériques Limites et raisonnement par récurrence

Suites numériques Limites et raisonnement par récurrence Suites numériques Limites et raisonnement par récurrence 1] Limite d une suite a) Limite infinie Définition : Dire qu une suite a pour limite quand tend vers signifie que tout intervalle de la forme avec,

Plus en détail

BAC BLANC. Bac Blanc wicky-math.fr.nf Février Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : 2 cm).

BAC BLANC. Bac Blanc wicky-math.fr.nf Février Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : 2 cm). Bac Blanc wicky-math.fr.nf Février 0 BAC BLANC Exercice. Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : cm). Partie A On considère l équation : (E) : z + 6z +

Plus en détail

Bac S Polynésie juin 2010

Bac S Polynésie juin 2010 Bac S Polynésie juin 2010 EXERCICE 1 (5 points) Le plan complexe est rapporté à un repère orthonormal direct O u v. Partie A - Restitution organisée de connaissances Prérequis Soit z un nombre complexe

Plus en détail

Géométrie. δmaths BAC MATHS. M. Ezeddine ABDA DeltaMaths

Géométrie. δmaths BAC MATHS. M. Ezeddine ABDA DeltaMaths Géométrie BAC MATHS δmaths M. Ezeddine ABDA DeltaMaths Nombres complexes * +. Si, alors il existe un unique couple tel que. est la forme algébrique du nombre complexe. : la partie réelle de. : la partie

Plus en détail

Suites numériques (exercices)

Suites numériques (exercices) Suites numériques (exercices) Exercice 1 : u est la suite définie sur IN par u n = n 2-4n+5. 1. Déterminer une fonction f telle que :pour tout n IN u n = f(n) 2. Dans un repère tracer la courbe représentative

Plus en détail

Épreuve de Mathématiques - Série S - Durée : 4 heures Vendredi 13 janvier Calculatrice Autorisée

Épreuve de Mathématiques - Série S - Durée : 4 heures Vendredi 13 janvier Calculatrice Autorisée Épreuve de Mathématiques - Série S - Durée : 4 heures Vendredi 13 janvier Calculatrice Autorisée Le sujet comporte 4 exercices : Les élèves n ayant pas choisi l option Mathématiques en spécialité traiteront

Plus en détail

Devoir surveillé de terminales S1-Samedi 22 février durée 3h

Devoir surveillé de terminales S1-Samedi 22 février durée 3h Devoir surveillé de terminales S1-Samedi 22 février durée 3h Exercice 1 : Une urne A contient quatre boules rouges et six boules noires. Une urne B contient une boule rouge et neuf boules noires. Les boules

Plus en détail

, on construit un rectangle de hauteur f 0 Sur l intervalle 1 4. , on construit un rectangle de hauteur f Sur l intervalle 3 4

, on construit un rectangle de hauteur f 0 Sur l intervalle 1 4. , on construit un rectangle de hauteur f Sur l intervalle 3 4 Exercices intégration Exercice 1 On considère la fonction f définie sur par f x x e x. On note C la courbe représentative de la fonction f dans un repère orthogonal. 1) Étude de la fonction f. a) Déterminer

Plus en détail

Bac Blanc de mathématiques du lycée Saint Sernin Page 1

Bac Blanc de mathématiques du lycée Saint Sernin Page 1 BAC BLANC DE MATHEMATIQUES DU LYCEE SAINT SERNIN Terminale S Durée : 4 heures février 01 Sujet : mathématiques L utilisation d une calculatrice est autorisée. Le sujet est composé de 4 exercices indépendants.

Plus en détail

Exercices. Rappels sur les suites. Récurrence. u0 = 2, u 1 = 4. u n+2 = 4u n+1 u n

Exercices. Rappels sur les suites. Récurrence. u0 = 2, u 1 = 4. u n+2 = 4u n+1 u n Exercices. Rappels sur les suites. Récurrence Exercice 1 : Généralités sur les suites 1) La suite (v n ) est telle que : v 0 = 1 et pour tout n, v n+1 = 3v n 1. Calculer v 2, v 3. Exprimer v n+2 en fonction

Plus en détail

SUITES ET RÉCURRENCE

SUITES ET RÉCURRENCE SUITES ET RÉCURRENCE En première : une suite ( ) est une fonction particulière : son ensemble de définition est constitué d'entiers, on peut donc parler (contrairement aux fonctions en général) de l'image

Plus en détail

2 ) Justifier que f est dérivable et calculer f'(x).

2 ) Justifier que f est dérivable et calculer f'(x). Eercice 1: Soit f la fonction définie sur IR - {-2 ; 0 } par f() = ( + 1) 2 2 + 2 1 ) Donner les limites de f au bornes de son ensemble de définition 2 ) Justifier que f est dérivable et calculer f'()

Plus en détail

Page 1

Page 1 LSEl Riadh Eponentielles Mr Zribi Eercice : Partie I Soit g la fonction définie sur [ ; + [ par g() = e a) Montrer que, pour tout >, on a g () > En déduire le sens de variation de g sur [ ; + [ b) Calculez

Plus en détail

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1 Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Calculer avec la fonction exponentielle Simplifier les expressions suivantes où x est un réel quelconque : a) e1+x

Plus en détail

Lycée la Folie Saint James. Fiche de cours : Généralités sur les suites

Lycée la Folie Saint James. Fiche de cours : Généralités sur les suites Lycée la Folie Saint James T ale S Fiche de cours : Généralités sur les suites Notion de suite. Définitions Une suite numérique réelle est une fonction u définie sur l ensemble N ou sur une partie de N

Plus en détail

T. D. n o 3 Suites numériques. Limite d une suite numérique.

T. D. n o 3 Suites numériques. Limite d une suite numérique. T. D. n o 3 Suites numériques. Limite d une suite numérique. Exercice : D après le concours d inspecteur du trésor, épreuve 2, 2004.. Étudier la fonction de la variable réelle x définie par : f(x) = ln

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques 0 - - de terminale S Suites s LPO de Chirongui 20 mai 2016 1 - Introduction- Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel

Plus en détail

Terminale S Exemples d exercices comportant une restitution organisée de connaissances

Terminale S Exemples d exercices comportant une restitution organisée de connaissances Terminale S Exemples d exercices comportant une restitution organisée de connaissances À partir de la session 2005, pour l épreuve écrite de mathématiques du baccalauréat S, sera mise en œuvre complètement

Plus en détail

BAC BLANC TS ELEVES SUIVANT L ENSEIGNEMENT DE SPECIALITE MATHS

BAC BLANC TS ELEVES SUIVANT L ENSEIGNEMENT DE SPECIALITE MATHS BAC BLANC TS ELEVES SUIVANT L ENSEIGNEMENT DE SPECIALITE MATHS La qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l appréciation des copies. Exercice 1

Plus en détail