Cours Intégration MA62. Université de Reims

Dimension: px
Commencer à balayer dès la page:

Download "Cours Intégration MA62. Université de Reims"

Transcription

1 Cours Intégration MA62 Frédéric Hérau Université de Reims mai 2006

2 Table des matières Introduction 2 1 Préliminaires et Rappels La droite achevée R Rappels sur les fonctions réelles Dénombrabilité Tribus et applications mesurables Tribus, espaces mesurables Applications mesurables Structure des fonctions mesurables Mesures et intégration Mesures Intégration des fonctions positives Théorèmes de convergence et fonctions intégrables Théorèmes de convergence Fonctions Intégrables et ensembles de mesure nulle La mesure de Lebesgue sur R Un théorème de prolongement La mesure de Lebesgue sur R Intégrale de Riemann et intégrale de Lebesgue Espaces de fonctions intégrables Les espace L p Intégrales dépendant d un paramètre Produit d espaces mesurés Produit d espaces mesurables Mesure produit, Théorème de Fubini Changements de variables et intégration

3 Introduction Ce cours est la version écrite d un cours donné partiellement ou en totalité entre 2003 et 2006 à l Université de Reims. Il correspond à 24H de présence devant les étudiants. A l issue de ce cours, les étudiants doivent avoir acquis quelques automatismes d utilisation de l Intégrale de Lebesgue, en particulier l utilisation des Théorèmes fondamentaux suivant : Les Théorèmes de convergence dominée et de convergence monotone, les Théorèmes de Fubini-Tonelli et de Fubini. Cet objectif ne doit pas être abandonné sous prétexte de difficultés passagères à comprendre le cours. En fait la théorie est difficile mais l usage de l intégrale de Lebesgue (1906) est relativement facile. Pour l intégrale de Riemann par contre, les théorèmes d application nécessitent souvent des hypothèses fortes, par exemple de convergence uniforme. Intégrale de Lebesgue Théorie difficile, usage facile Intégrale de Riemann Théorie facile, usage délicat L utilisation du cours est relativement simple. Les Théorèmes, Propositions, Définitions, et Propriétés vus au fil des chapitres sont à connaître. Les Remarques, Lemmes (résultats intermédiaires) ne sont pas à retenir par coeur. Par manque de temps, la construction de l intégrale ne sera que partiellement abordée en cours. Toute remarque sur d éventuelles coquilles ou erreurs est bienvenue. Je tiens à remercier G. Henriet pour m avoir fourni une première version dactylographiée de la seconde partie. Voici ci-dessous une liste quelques documents et livres dont je me suis servi pour l élaboration de ce cours. Les documents en ligne sont accessibles par moteur de recherche (auteur + intégration sous google par exemple) : [1] Bourdarias, C. Intégration et Applications, Université de Savoie, dispo. en ligne, [2] Faraut, J. Calcul Intégral, Belin, [3] Gapaillard, J. Intégration pour la Licence, cours et exercices corrigés, Dunod, [4] Lerner, N. Cours d intégration, Université de Rennes 1, dispo. en ligne, 2002 [5] Revuz, D. Mesure et Intégration, Hermann, collection Méthodes, [6] Rudin, W. Real and complex analysis, McGraw-Hill, New-York,

4 Chapitre 1 Préliminaires et Rappels Dans tout ce chapitre X désigne un ensemble quelconque. 1.1 La droite achevée R Une suite réelle n a pas toujours de valeur d adhérence. Ceci est du au fait que R,. n est pas compact. En ajoutant deux éléments à R on peut en faire un espace compact. Définition On appelle droite achevée l espace topologique noté R obtenu en adjoignant à R deux éléments, notés + et. La topologie de R est alors engendrée par les ouverts de R et les ensembles ]a, + [ {+ }, { } ], a[ (que l on notera respectivement ]a, + [ et [, a[). On définit de manière similaire R + en adjoignant à R + l élément +. La relation d ordre sur R s étend à R en considérant comme plus petit élément et + comme plus grand élément. Cet ordre est compatible avec la topologie puisque les ouverts sont comme pour R des réunions d intervalles. L espace R jouit des propriétés suivantes faciles à vérifier i) R est compacte. En particulier toute partie non vide possède une borne sup et une borne inf. ii) R est homéomorphe à [0, 1]. Il suffit pour cela de par exemple prolonger la fonction tan à l intervalle [ π/2, π/2] et la fonction arctan à [, + ]. (on rappelle que [0, 1] et [ π/2, π/2] sont homéomorphes : une simple application affine envoie continûment l un sur l autre). On peut également remarquer que cet homéomorphisme peut être pris croissant. iii) Toute suite monotone de R est convergente. Nous venons de voir que l ordre de R était compatible avec celui de R. Les opérations usuelles le sont aussi sous les conditions naturelles suivantes : soit x R x + (± ) = (± ), x (± ) = (± ) si x > 0, ( ) sinon. On laisse au lecteur les autres opérations naturelles, dont sont bien sur exclues (+ ) + ( ) et 0 (± ). En fait la bonne manière de considérer ces calculs est de considérer 3

5 le prolongement par continuité de l addition et de la multiplication a R R (privé des cas exclus ci dessus). Mentionnons dès maintenant que par convention, nous poserons systématiquement dans la suite 0 = 0. Une conséquence du fait que R soit compact est en particulier que l ensemble des valeurs d adhérence d une suite n est pas vide (on rappelle que l ensemble des valeur d adhérence Adh(u) d une suite (u n ) est l ensemble des limites des sous-suites de (u n ) qui convergent). On introduit maintenant les limites inférieures et supérieures des suites réelles. Définition Soit (u n ) n N une suite de R. On définit les suites (inf k n u k ) n N et ( ) supk n u k. Ces suites sont clairement monotones donc convergentes dans R (la n N première croît et la seconde décroît). On note alors On a alors la lim inf u n = lim (inf k n u k ) = sup (inf k n u k ) lim sup u n = lim ( sup k n u k ) = inf (infk n u k ) Proposition Soit (u n ) n N une suite de R. Alors lim inf u n (resp lim sup u n ) est la plus petite (resp. la plus grande) valeur d adhérence de la suite. On a lim inf u n lim sup u n et l égalité a lieu si et seulement si la suite converge vers cette valeur Preuve. Avant de commencer rappelons que la limite si elle existe peut-être ± puisque nous travaillons dans R. Considérons donc x R une valeur d adhérence de la suite. Alors il existe une suite extraite (u nk ) k N de (u n ) qui converge vers x, et on a pour k tendant vers l infini x u nk sup u l lim sup u n. l n k La limite à droite provient simplement du fait que la suite de terme général sup l nk u l est une suite extraite de la suite ( sup l n u l ) qui, par définition, converge vers lim sup un. On a donc montré que y lim sup u n et on aurait de même y lim inf u n. Pour montrer que l = lim sup u n est une valeur d adhérence, on va se restreindre au cas où < l < i.e. l R. La preuve dans le cas l = ± est tout à fait semblable. On note (v n ) la suite sup n k u k qui converge donc en décroissant vers l. Alors pour tout ε > 0, et n 0 il existe n ε n tel que l v nε l + ε. Mais par ailleurs, v nε étant un sup, il existe n ε n ε tel que v n ε ε u n ε v n ε d où l on déduit l ε v n ε ε u n ε v n ε l + ε. En résumé on a montré que pour tout ε > 0 et tout N N il existe n(= n ε ici) tel que u n l ε. l est donc une valeur d adhérence de (u n ). Pour finir, si lim inf u n et lim sup u n sont toutes les deux égales à l R, alors pour n tendant vers l infini l inf u k u n sup u k l, k n ce qui prouve le résultat. Un autre résultat qui sera utile dans le cours concerne les sommes doubles dans R. On note R + = [0, + ]. k n 4

6 Lemme Soit (u j,k ) une suite double de R +. Alors ( ) u j,k = u j,k. j k k j Cette somme est simplement notée j,k u j,k. Preuve. On sait déjà que pour j fixé la série k u j,k converge dans R puisque son terme général est positif. Pour la même raison la série j ( k u j,k) converge également, ce qui donne un sens aux séries de l énoncé. Maintenant pour J, K N on a u j,k = u j,k sup u j,k = u j,k sup u j,k = u j,k. j J k K k K j J k K J j J k K j K k K j k j Notons alors S = k j u j,k on vient de montrer que pour tout j, k, u j,k S, j J k K d où il vient en prenant le sup sur K à l intérieur de la somme finie, u j,k S, j J k puis en prenant le sup sur J, u j,k S. j k Par symétrie on obtient l inégalité dans l autre sens, le résultat est alors prouvé. 1.2 Rappels sur les fonctions réelles Soit X et Y deux ensembles, on désigne par F(X, Y ) l ensemble des fonctions de X dans Y. Lorsque Y = R ou R on définit naturellement pour f et g F(X, Y ) les fonctions inf(f, g) et sup(f, g). Par exemple les fonctions parties positives et négatives d une fonction sont les deux fonctions positives définies par f + : x sup(f, 0) et f : x sup( f, 0), pour lesquelles on a f = f + f. Pour une famille de fonctions (f n ) n N dans F(X, R) on a également sup n f n et inf n f n F(X, R). Il en va de même pour les fonctions lim sup f n et lim inf f n définies respectivement sur X par x lim sup f n (x) et x lim inf f n (x). Parmi les fonctions réelles certaines jouent un rôle important en théorie de l intégration, il s agit des fonctions indicatrices d ensemble. 5

7 Définition Soit X un ensemble et A{ X. On appelle fonction indicatrice de A et 1 si x A on note 1 A la fonction définie par 1 A (x) = 0 sinon. { P(X) F(X, R) L application Φ : est injective et a les propriétés suivantes : A 1 A i) A B = 1 A 1 B ; ii) 1 A B = 1 A 1 B ; iii) 1 A B = sup(1 A, 1 B ) ( = 1 A + 1 B si A et B sont disjoints) ; iv) 1 A c = 1 1 A, ou on a noté A c le complémentaire dans X de A ; v) Si (A i ) i I est une partition de X, alors i 1 Ai = 1. Etant donnés deux ensemble A X, B Y, et une fonction f F(X, Y ), on rappelle les définitions d image et d image réciproque d ensemble : f(a) = {f(x); x A}, f 1 (B) = {x X tels que f(x) B}. (1.1) On prendra garde au fait que l emploi des notations f et f 1 ci-dessus constitue bien sur un abus d écriture : la fonction f n est pas définie sur les ensembles et la fonction f 1... n est a priori pas définie du tout! On a alors les propriétés suivantes dont la vérification est laissée au lecteur : B Y, f(f 1 (B)) B, avec égalité quand f est surjective ; A X, f 1 (f(a)) A, avec égalité quand f est injective ; B, B Y, f 1 (B B ) = f 1 (B) f 1 (B ) ; B, B Y, f 1 (B B ) = f 1 (B) f 1 (B ) ; B Y, f 1 (B c )) = (f 1 (B)) c. 1.3 Dénombrabilité La dénombrabilité est également au coeur des processus limites utilisés dans la théorie de l intégration de Lebesgue. On rappelle qu un ensemble D est dit fini ou dénombrable s il est équipotent à une partie de N, c est à dire s il existe une injection ϕ de D dans N. S il est fini il peut être mis en bijection avec un ensemble du type {1,..., n} où n est unique et est appelé nombre d éléments de D. S il est infini alors il est équipotent à N : en effet, on peut grace à l injection ϕ ci-dessus considérer D comme une partie de N, et poser d 1 = min D, d 2 = min(d/ {d 1 }),... d k = min(d/ {d 1,...d k 1 }). Cette définition a bien un sens puisque N est totalement ordonné et que toute partie non vide de N admet un plus petit élément. Il est alors clair que l application k d k constitue une bijection de N sur D. On rappelle ici quelques exemples fondamentaux d ensembles dénombrables : i) N, 2N, Z. Pour les 2 premiers par exemple on peut utiliser les application k k + 1 et resp. k 2k, qui sont des bijections de N sur N, resp. 2N. ii) N N, Q. Pour le premier il suffit de l application (p, q) N N 2 p (2q + 1) 1 N est une bijection. Le fait que Q s injecte dans N N implique alors que Q est dénombrable. On obtient facilemnet que Q n l est également. 6

8 On peut donner une application qui sera utile dans le chapitre suivant au fait que Q est dénombrable. Lemme Soit d un entier. Il existe une famille dénombrable de pavés compacts de R d (produit d intervalle compacts) telle que tout ouvert soit réunion (nécessairement dénombrable) d une sous-famille de ces pavés. On peut choisir ces pavés comme produit d intervalles compacts d extrémités rationnelles. Preuve. Soit donc U un ouvert. Pour tout x = (x 1,...x d ) U, il existe un cube ouvert contenant x et contenu dans U puisque U est ouvert, { } y R d ; y j x j ρ U, pour un ρ non nul (c est dû par exemple à l équivalence des normes sur R d ). Comme Q est dense dans R, il existe p j et q j Q tels que x j ρ < p j < x j < q j < x j + ρ. Donc le compact j=1...d [p j, q j ] contient x et est contenu dans U. L ouvert U est donc réunion d une sous famille de la famille des pavés d extrémités rationnelles. Or cette famille est dénombrable, puisque équipotente à Q 2d qui est dénombrable. Cela complète la preuve. 7

9 Chapitre 2 Tribus et applications mesurables Le but de ce chapitre est de définir les objets que nous seront amenés à mesurer : les ensembles mesurables et les fonctions mesurables. De nouveau X est a priori un ensemble quelconque. 2.1 Tribus, espaces mesurables Définition Soit X un ensemble et M une famille de parties de X. On dit que M est une tribu sur X si (a) A M = A c M, (b) (A n ) n N M = n N A n M, (c) X M. On insiste sur le fait que M n est pas une partie de X, c est une famille de parties. On remarque que la propriété (c) est une conséquence immédiate de (a) et (b), pourvu que M soit non vide. La propriété (b) est appelée stabilité par réunion dénombrable. Finalement, on peut remarquer que (b) implique qu une tribu et stable par intersection dénombrable. (b ) (A n ) n N M = n N A n M. Dans la définition d une tribu on peut remplacer (b) par (b ). Pour finir les axiomes (a) et (c) impliquent que (c ) M. On peut de même échanger (c) et (c ) dans la définition. Pour finir on peut remarquer que dans les axiomes d une topologie autre ensemble de parties fondamental en analyse dont la definition est rappelée en (2.1)) la dénombrabilité ne jouait pas ce rôle central. Ce rôle va se confirmer plus loin. Exemples On peut donner déjà quelques exemples simples de tribus. 1. La tribu triviale : M = {, X} ; 2. La tribu grossière : M = P(X) ; 3. La tribu associée a une partition finie : Si (A i ) i 1,...,n est une partition finie, alors M = { k J A k ; J {1,..., n}} 8

10 est une tribu. En effet notons B(J) = k J A k, on trouve que B(J) c = B(J c ), c est à dire la stabilité par prise du complémentaire. Par ailleurs la stabilité par union dénombrable (en fait finie) est immédiate, et implique que X M. Définition Si X est une ensemble et M est une tribu sur X, le couple (X, M) s appelle espace mesurable. Les éléments de M sont appelés parties mesurables de X. La notion de tribu engendrée permet de définir des tribus sans les décrire explicitement. On commence par remarquer que si (M) i I est une famille de tribu, alors M = i I M i est aussi une tribu : Si (A n ) est une famille dénombrable de parties de M, alors pour tout i I, (A n ) M i, donc par union dénombrable on obtient n N A n M i. Donc n N A n M. Le passage au complémentaire s écrit de la même manière, et X appartient à chaque M i donc à M. Un ensemble C de parties de X étant donné on applique maintenant cette propriété à l ensemble des tribus contenant C, en remarquant qu il en existe au moins une : la tribu grossière P(X). Cela conduit à la définition suivante : Définition Soit X un ensemble et C P(X). On appelle tribu engendrée par C et on note σ(c) la plus petite tribu contenant C : σ(c) = M. M tribu contenant C En général, étant donnés un ensemble de parties C et une tribu M, pour montrer que M = σ(c), il suffit de montrer que toute tribu contenant C contient également M. On remarquera également que M étant une tribu quelconque contenant C, on a σ(c) M, puisque σ(c) est la plus petite. On retourne maintenant à quelques exemples de tribus engendrées. Il est ainsi immédiat de montrer que la tribu associée à une partition est en fait la tribu engendrée par cette partition (exemple 2.1.2). On prendra cependant garde au fait qu en général, la tribu engendrée par un ensemble de parties C ne coincide pas avec l ensemble des unions de parties de C, ni avec l ensemble de ses intersections. Un des exemples fondamentaux de tribus provient de la construction précédente appliquée à une topologie (i.e. l ensemble des ouverts d un espace topologique). Définition Soit X un espace topologique. On appelle tribu borélienne B(X) la tribu engendrée par les ouverts de X. Ses éléments sont appelés boréliens. Il n est peut-être pas inutile de rappeler ce qu est un ouvert : Une famille de parties O de X est une topologie, dont les éléments sont appelés ouverts si (a) U 1, U 2 O = U 1 U 2 O, (b) (U i ) i I O = i I U i O, (c), X O. (2.1) 9

11 On remarquera en particulier que l union se fait sur un ensemble infini quelconque, pas forcément dénombrable. Revenons maintenant aux boréliens. D après la définition, un borélien peut avoir une structure compliquée. Par exemple une réunion dénombrable de fermés est un borélien. Ainsi Q, est un borélien de R puisque réunion dénombrable de singletons. R/Q est également un borélien par prise du complémentaire de Q. La tribu des boréliens de R d, pour d 1, satisfait la propriété suivante. Proposition On a i) La tribu B(R) est engendrée par l une quelconque des familles d intervalles : {], a[; a R}, {], a]; a R}, {]a, + [; a R}, {[a, + [; a R} {[a, b]; a, b R}, {]a, b[; a, b R}, {]a, b]; a, b R}, {[a, b[; a, b R}. ii) La tribu B(R d ) est engendrée par les pavés compacts (produits d intervalles fermés). Preuve. On va d abord prouver la troisième assertion. Soit C l ensemble des pavés compacts. On a C B(R d ) donc aussi σ(c) B(R). Pour obtenir l inclusion réciproque, on considère σ(c) la tribu engendrée par les pavés compact. Alors d après le Lemme 1.3.1, tout ouvert U est réunion dénombrable de pavés compacts (que l on peut prendre d extrémités rationelles) donc U σ(c) puisque σ(c) est une tribu. La topologie O toute entière (l ensemble des ouvert) est donc inclue dans σ(c) et on obtient O σ(c) = σ(o) σ(c). Puisque σ(c) est par définition l ensemble des boréliens, on a prouve l inclusion réciproque B(R d ) σ(c) et l égalité en découle. Pour la deuxième assertion, le cas des intervalles fermés du type [a, b] est un cas particulier pour d = 1 de ce qui vient d être prouvé. Par ailleurs pour tout a b R, on a [a, b] = n N ]a 1/n, b + 1/n[ On obtient que les pavés fermés sont dans la tribu des pavés ouverts, et que donc la tribu B(R d ) est aussi engendrée par les pavés ouverts, et par la même procédure par les pavés mixtes. De même on remarque que [a, b] = [a, + [ ], b] = [a, + [ ]b, + [ c = [a, + [ ( n N [b + 1/n, + [) c, donc la tribu B(R d ) est aussi engendrée par les intervalles du type [a, [. Les autres cas se traitent de manière identique. Remarque La même preuve donne également que la tribu B(R) est engendrée par l une quelconque des familles d intervalles suivante : {[, a[; a R}, {[, a]; a R}, {]a, + ]; a R}, {]a, + [; a R}. 10

12 On introduit également les tribus associées à une fonction : Proposition (Tribu image réciproque) Soit X un ensemble, (Y, N ) un espace mesurable et f : X Y une application. Alors l ensemble f 1 (N ) def = { f 1 (B); B N } est une tribu, appelée tribu image réciproque de N par f. (On l appelle également tribu engendrée par f, et elle est parfois notée σ(f).) Preuve. La preuve est une conséquence directe des propriétés sur les images réciproques sur les fonctions rappelées en fin de Section 2.2 : Si B N, alors ( f 1 (B) ) c = f 1 (B c ) f 1 (N ), de plus f 1 (Y ) = X f 1 (N ), et enfin pour (B n ) une suite de parties mesurables de Y on a n N f 1 (B n ) = f 1 ( n N B n ) f 1 (N ), ce qui implique le résultat. Pour finir cette partie sur les tribus on introduit Définition (Tribu produit) Soit (X i, M i ) 1 i n une famille finie d espace mesurables. On appelle tribu produit des M i et on note 1 i n M i la tribu engendrée par la famille des produits 1 i n A i lorsque A i M i. On appelle alors espace produit l ensemble 1 i n X i muni de la tribu 1 i n M i. On le notera parfois 1 i n (X i, M i ). Exemple On pourra par exemple vérifier en exercice que 2.2 Applications mesurables B(R) B(R) = B(R 2 ). Définition Soient (X, M) et (Y, N ) deux espaces mesurables. Une application f : X Y est dite mesurable si pour tout B N, f 1 (B) M. (Ceci s écrit aussi f 1 (N ) M). On remarquera que si M = P(X) ensemble des parties de X, alors toute fonction est mesurable. C est de toute façon la plus grosse tribu possible sur X. Réciproquement on peut se demander quelle est la plus petite tribu sur X rendant f mesurable. c est évidement f 1 (N ), la tribu engendrée par f. Exemple On pourra verifier que si A est un ensemble mesurable, alors la fonction caractéristique 1 A est mesurable (l espace d arrivée est ici R muni de la tribu borélienne). 11

13 En effet, pour B B(R), l ensemble 1 1 A (B) est soit le vide soit A, et dans tout les cas dans M. Remarque Lorsque les espaces X et Y sont des espaces topologiques, ils sont munis naturellement de leur tribu borélienne. Les fonctions mesurables de X dans Y sont alors dites boréliennes. Le cas des fonctions à valeur réelles sera en particulier très important. Les fonctions mesurables se composent bien : Proposition Soient (X, M), (Y, N ) et (Z, ) trois espaces mesurables et X f Y g Z des applications mesurables. Alors g f est mesurable. Preuve. Soit C T. Alors (g f) 1 (C) = f 1 (g 1 (C)) M. La définition de mesurabilité n est a priori pas très maniable. Dans la pratique pour montrer qu une application est mesurable, on utilise souvent le critère suivant Proposition Soient (X, M) et (Y, N ) deux espaces mesurables. On suppose que N = σ(c) pour un ensemble C donné. Pour que f soit mesurable il ( faut et il) suffit que f 1 (C) M. Preuve. Pour montrer que f est mesurable, il faut montrer que pour tout B N, on f 1 (B) M. Considérons donc cet ensemble T = { B N ; f 1 (B) M } N et montrons qu il vaut N tout entier. Pour ça il suffit de montrer que c est une tribu qui contient C ce qui donnera N = σ(c) σ(t ) = T, d où le résultat. Il est clair que cet ensemble contient C puisque f 1 (C) M. Montrons que c est une tribu : Pour B T, on a f 1 (B c ) = (f 1 (B)) c M puisque M est une tribu. De plus, f 1 (Y ) = X M. Enfin si (B n ) est une suite d éléments de T, on a f 1 ( n N B n ) = n N (f 1 (B n )) M. Donc T est une tribu. La première application de cette proposition est fondamentale, ne serait-ce que pour la légitimité de la théorie de la mesure que nous sommes en train de construire. Proposition Soient (X 1, O 1 ) et (X 2, O 2 ) deux espaces topologiques munis de leurs tribus boréliennes respectives. Alors toute fonction continue de X 1 dans X 2 est mesurable. Preuve. La continuité d une fonction signifie que f 1 (O 2 ) O 1 (suivant les conventions d écritures habituelles). Notons B 1 et B 2 les tribus boréliennes associées à X 1 et X 2. On obtient donc que a fortiori que f 1 (O 2 ) B 1. Or σ(o 2 ) = B 2 donc la Proposition implique le résultat. La deuxième application est un critère relativement simple pour montrer la mesurabilité d une fonction à valeur dans R ou R. 12

14 Sauf mention explicite du contraire on supposera lorsque l espace d arrivée est R ( resp. R) qu il est toujours muni de sa tribu des boréliens. Une application sera alors simplement dite mesurable sans référence aux tribus. Proposition Soit (X, M) un espace mesurable et f : X R (resp R) une application. Les énoncés suivants sont équivalent : i) f est mesurable, ii) b R, {f < b} X, iii) b R, {f b} X, iv) b R, {f > b} X, v) b R, {f b} X, (2.2) Preuve. La preuve est immédiate : il suffit de considérer les ensembles générateurs de la tribu des boréliens vus dans le i) de la Proposition et d utiliser la Proposition On fera attention au fait que lorsque l espace d arrivée est R, on a {f < b} = f 1 (], b[) alors que si l espace d arrivée est R, c est f 1 ([, b[). Exemple Considérons une fonction monotone f : X R, où X est une partie mesurable de R, que l on muni de la tribu B(R) X (voir exercices). Pour fixer les idées supposons f par exemple croissante. Pour b R, posons A = f 1 (], b]) On vérifie que si a A, alors pour tout x a, on a f(x) f(a) b donc x A. On vient de montrer que A est un intervalle (de X) du type ], sup A[ X ou ], sup A] X. C est donc un élément de B(R) X. Par suite f est mesurable. En troisième application de la Proposition 2.2.5, on étend le Lemme de composition des fonctions et on étudie la stabilité de l espace des fonctions mesurables vis a vis des opérations usuelles. Proposition Soient (X, M) et (Y, N ) deux espaces mesurables et R d muni de la tribu des Boréliens (resp R d +). Soient alors u 1,..., u d des applications mesurables de X dans R (resp R + ) et Φ une application mesurable de R d (resp R d +) dans Y. Alors l application X x Y Φ(u 1 (x),..., u d (x)) est mesurable. En particulier si f, g : X R (resp R + ) sont mesurables, alors alors f + g, fg, sup(f, g), inf(f, g) le sont aussi. (on fait la convention 0 = 0) De plus, f : X C est mesurable si et seulement si Re (f) et Im (f) le sont et dans ce cas f l est aussi. Si f, g : X C sont mesurables, alors f + g et fg le sont aussi. Preuve. Pour montrer la première partie de la proposition, il suffit de montrer la mesurabilité de l application u : x (u 1 (x),...u d (x)) de X dans R. Vérifions que l image réciproque d un pavé compact est dans M. On a : u 1 [a j, b j ] = u 1 j ([a j, b j ]). 1 j d 13 1 j d

15 Or les u j sont mesurables, donc cet ensemble est dans M. Pour la deuxième partie, la preuve est immédiate : par exemple l addition est continue donc mesurable de R 2 dans R, ce qui donne la mesurabilité de f + g. Pour la multiplication, on a le même résultat. Pour le cas de la droite achevée positive, et avec la convention 0 = 0, l addition est continue donc mesurable et la multiplication est mesurable (attention elle n est pas continue sur R 2 ), ce qui donne le résultat. On fait de même pour les applications à valeur dans C. 2.3 Structure des fonctions mesurables Proposition Soit (X, M) un espace mesurable et (f n ) n N une suite de fonctions mesurables de X dans R. Alors les fonctions sup f n, inf f n, lim sup f n et lim inf f n sont mesurables. En particulier la limite simple d une suite de fonctions mesurables est mesurable. Preuve. Posons g = sup f n. On utilise de nouveau la Proposition fondamentale : Soit b R, on a g 1 (]b, + ]) = n N fn 1 (]b, + ]) M par union dénombrable dans M. En effet pour x dans g 1 (]b, + ]), on a sup f n (x) = g(x) > b n 0 N, tel que f n0 (x) > b. n N D après la remarque 2.1.7, la tribu des boréliens B(R) est engendrée par la famille des intervalles du type ]b, + ], donc sup f n est mesurable. Par ailleurs les identités inf f n = sup( f n ), lim sup f n = inf (sup f k ), n k n lim inf f n = sup( inf f k) n k n assurent la mesurabilité des fonctions correspondantes. Si pour tout x X, f n (x) converge, alors d après la proposition 1.1.3, lim f n (x) = lim sup f n (x) donc la limite simple de f n est mesurable. On a déjà vu qu une fonction caractéristique était mesurable. La famille suivante est importante Définition Soit (X, M) un espace mesurable. Une fonction s est dite étagée sur X si s : X R + est mesurable et ne prend qu un nombre fini de valeurs. Si on note α 1,..., α m les valeurs distinctes prises par s et si on note pour chaque k A k = s 1 ({α k }) = {x X; s(x) = α k }, alors l ensemble des A k forme une partition de X et on appelle écriture canonique l écriture unique suivante s = 1 k m α k 1 Ak. Une fonction étagée s est donc une combinaison linéaire finie de fonctions indicatrices mesurables. Il est facile de vérifier que l ensemble des fonctions étagées forme une algèbre. La Proposition suivante sera très utile pour construire l intégrale d une fonction dans le prochain chapitre : Théoreme Soit (X, M) un espace mesurable et f : X R + une application mesurable. Il existe une suite de fonctions étagées (s n ) n 1 telle que 14

16 i) 0 s 1 s 2.. s n s n+1... f, (suite croissante de fonctions) ii) x X, lim n s n (x) = f(x), (convergence simple), ce que l on notera lim s n = f. Si en plus f est bornée, alors la convergence de s n vers f est uniforme, i.e. lim sup s n (x) f(x) 0. n x X Bien sur la réciproque du point ii) est vraie par simple application de la Proposition : Si f est limite simple d une suite de fonction étagées, alors elle est mesurable. Pour prouver le théorème, on va utiliser la méthode des approximations dyadiques tronquées. Il faut noter que c est la première mise en oeuvre du principe de découpage suivant l espace d arrivée. Preuve. Pour tout n N, on définit la fonction suivante : s n (x) = { k 2 si f(x) [ k n 2, k+1 [ n 2, pour 0 k n2 n 1 (découpage) n n si f(x) n (troncature) ce qui correspond à un découpage à l arrivée de l intervalle [0,n] en n2 n intervalles de même longueur. Pour tout n 1, la fonction s n est étagée, et on a précisément k s n = 2 n 1 { k 2 n f< k+1 2 n } + n1 {f n} 0 k n2 n 1 ce qui implique qu elle est mesurable puisque f l est. Montrons d abord que s n est une suite croissante de fonctions (à ne pas confondre avec une suite de fonctions croissantes...). Soit x X et n N. Si f(x) n = n2n+1 alors 2 n+1 s n+1 (x) vaut soit n + 1 n soit k2n+1 pour un k n, ce qui implique dans les deux cas 2 n+1 s n+1 (x) s n (x). Si maintenant f(x) < n, alors il existe un entier k unique tel que ce qui implique k 2 n f(x) < k 2 n < n, 2k 2k + 1 f(x) < 2n+1 2 n+1 < n ou 2k n+1 f(x) < 2k n+1 < n. Dans le premier cas, s n+1 = 2k = k 2 n+1 2 = s n n (x), et dans le deuxième s n+1 = 2k+1 s n (x). Dans tout les cas on a montré que s n+1 (x) s n (x). > k 2 n+1 2 = n Etablissons ensuite la convergence simple de s n vers f : Soit x fixé, alors si f(x) = +, on a s n (x) = n = f(x) lorsque n tend vers l infini, si f(x) est fini, alors pour n > f(x) on a f(x) 1/2 n s n (x) < f(x), (2.3) donc s n (x) tend vers f(x) par le théorème des gendarmes. Supposons maintenant que f est bornée de borne M. Alors pour tout n M, l inégalité 2.3 est satisfaite pour tout les x, ce qui implique que cela conclue la preuve du Théorème. sup s n (x) f(x) 1 x X 2 n n 0 15

17 Chapitre 3 Mesures et intégration Dans le Chapitre précédent nous avons répertorié les ensembles susceptibles d être mesuré, ainsi que les fonctions mesurables. Il est temps maintenant de leur associer effectivement une quantité à l aide des mesures. 3.1 Mesures Définition Soit (X, M) un espace mesurable. Une mesure positive sur X est une application µ : M R + telle que (a) µ( ) = 0, (b) si (A n ) n N est une suite d éléments de M deux a deux disjoints, alors µ( n N A n ) = n N µ(a n ) (additivité dénombrable). Le triplet (X, M, µ), où simplement X s il n y a pas d ambiguté sur la tribu et la mesure est alors appelé espace mesurable. De plus lorsque X est de mesure finie égale à 1, on dit que µ est une mesure de probabilité. On peut donner quelques exemples simples de telles mesures : Exemples Si X est une ensemble fini, muni de la tribu P(X), on peut considérer la mesure µ 0 définie par µ 0 (A) = Card(A). 2. Si X est une ensemble fini non vide, muni de la tribu P(X), on peut considérer la mesure µ 1 définie par µ 1 (A) = Card(A)/Card(X). On vérifiera alors que µ 1 est une mesure de probabilité. 3. Une extension de la première mesure est la mesure de comptage : Si X est une ensemble quelconque, muni de la tribu P(X), on peut considérer la mesure µ définie par { Card(A) si A est fini, µ 2 (A) = si A est infini. 16

18 4. Si X est une ensemble non vide, muni de la tribu P(X), et si a est un élément de X fixé, on peut considérer la mesure de Dirac δ a, définie par { 1 si a A, δ a (A) = 0 si a A. On pourra remarquer que formellement au moins, on a la relation µ 2 = a X δ a. 5. L un des but du cours est de construire une mesure sur la tribu B(R) des boréliens de R, qui sera appelée mesure de Borel, avec au moins la propriété naturelle suivante : Pour a b, la mesure de l intervalle [a, b] est donnée par µ([a, b]) = b a. Il est facile d étendre µ à une réunion finie d intervalle, par contre l extension à l ensemble des boréliens de R est difficile et sera abordée au Chapitre On se donne une fonction ν continue et positive sur R. On cherche alors à définir la mesure de densité µ ν sur la tribu des boréliens qui, sur les intervalles, vaut µ ν (]a, b[) = b a ν(t)dt. L intégrale étant celle de Riemann. Il s agit en fait de l extension de l exemple précédent dans lequel on avait ν = 1. De nouveau il est simple de définir µ ν sur les réunions d intervalles, et le prolongement à tout B(R) sera vu plus tard. 7. Nous construirons également la mesure de Borel sur R d. Il s agit d une mesure définie sur les Boréliens et qui sur les pavés 1 j d [a j, b j ] vaut µ [a j, b j ] = (b j a j ) 1 j d 1 j d lorsque a j b j (0 sinon). C est la version d-dimensionnelle de l exemple Probabilité de Cauchy sur R de paramètre α > 0. Il s agit de la mesure positive de densité ν(t) = 1 α π α 2 + t 2. C est une mesure de Probabilité puisque + [ ] 1 + µ(r) = ν(t) = π arctan(t/α) = 1. On peut rappeler la définition de la fonction de répartition d une mesure de probabilité sur (un sous-ensemble de ) R : F ν (t) = µ(], t]) C est une fonction définie sur R, continue à droite, croissante de limite 0 en et 1 en Probabilité de Gauss de moyenne m et écart-type σ. C est la mesure positive de densité ν(x) = 1 σ m)2 exp (x 2π 2σ 2. 17

19 10. Probabilité de Bernouilli de paramètre p [0, 1]. C est une mesure de probabilité sur l ensemble {0, 1} définie par µ = pδ 0 + (1 p)δ Probabilité binomiale de paramètres n N et p [0, 1]. C est une mesure de probabilité sur l ensemble fini {0, 1,..., n} muni de la tribu de ses parties, et définie par µ = Cnp k k (1 p) n k δ k. 0 k n On pourra vérifier que pour A P(N n ), µ(a) = k A C k np k (1 p) n k. 12. Probabilité de Poisson de paramètre λ > 0. C est la mesure de Probabilité sur N muni de la tribu de ses parties, et définie par µ = e λ k N λ k k! δ k. Après la revue de ces exemples, passons aux propriétés des mesures positives. Proposition Soit (X, M, µ) un espace mesuré, où µ est une mesure positive. Les propriétés suivantes sont satisfaites : i) Additivité forte : A, B M, µ(a B) + µ(a B) = µ(a) + µ(b); ii) Monotonie : iii) σ-sous additivité : A, B M, A B = µ(a) µ(b); (A n ) n N M, µ( n N A n ) n N µ(a n ); iv) Continuité croissante : Pour toute suite croissante (A n ) n N d ensembles mesurables on a µ( n N A n ) = lim µ(a n) = sup µ(a n ); n v) Continuité décroissante : Pour toute suite décroissante (A n ) n N d ensembles mesurables, telle que µ(a 0 ) <, on a n 0 µ( n N A n ) = lim n µ(a n) = inf n 0 µ(a n). Preuve. i) On a A B = (A B c ) disj B, donc µ(a B) = µ(a B c ) + µ(b) d où µ(a B) + µ(a B) = µ(a B c ) + µ(a B) +µ(b) } {{ } µ(a) d ou le résultat. 18

20 ii) Provient directement du fait que A disj (A B c ) = B. iii) On définit une suite (B n ) d ensembles de la manière suivante : B 0 = A 0, et n 1, B n = A n \ k n 1 A k. Les ensembles B n sont dans M, deux à deux disjoints et on a n N A n = n N B n. On en déduit µ( n N A n ) = µ( n N B n ) = µ(b n ) µ(a n ) n N n N puisque pour chaque n N, B n A n. iv) On définit une suite (B n ) d ensembles de la manière que pour iii) ce qui donne ici puisque la suite est croissante B 0 = A 0, et n 1, B n = A n \ k n 1 A k. Les ensembles B n sont dans M, deux à deux disjoints et on a de plus pour tout n N, A n = k n A k = k n B k ainsi que n N A n = n N B n. On peut alors écrire µ( n N A n ) = µ( n N B n ) = µ(b n ) = lim µ(b k ) = lim µ(a n) = sup µ(a n ). n n n N k n v) On va se ramener au cas du iv). On pose A = A n On a A 0 \( A n ) = A 0 ( A c n) = n N (A 0 A c } {{ n) }. suite croissante D après iv) appliqué à la suite (A 0 A c n), on obtient que lim µ(a 0 A c n n) = µ(a 0 A c ) = µ(a 0 \A) Par ailleurs A 0 est de mesure finie (c est ici qu on utilise l hypothèse), donc pour chaque k on > µ(a 0 ) = µ(a n ) + µ(a 0 A c n), ainsi que > µ(a 0 ) = µ(a) + µ(a 0 A c ). En particulier µ(a n ), µ(a 0 A c n) et µ(a 0 ) sont des réels ce qui donne n N µ(a n ) = µ(a 0 ) µ(a 0 A c n) Cela termine la preuve. en décroissant µ(a 0 ) µ(a 0 A c ) = µ(a). Remarque Si la mesure est finie on peut appliquer la continuité décroissante sans restriction, puisque pour tout A 0 premier terme d une suite, µ(a 0 ) est fini. 2. Réciproquement on peut étudier la suite d ensembles suivante : soit pour tout n N, A n = {n, n + 1, n + 2,...} N muni de la tribu de ses parties et de la mesure de comptage. C est une suite décroissante et on a = lim µ(a n ) µ( A n ) = µ( ) = 0 La condition portant sur A 0 n est pas satisfaite pour cette suite. On pourra vérifier qu une condition nécessaire et suffisante est en fait qu il existe n 0 tel que µ(a n0 ) <. 19

21 3.2 Intégration des fonctions positives Le but de cette section est de définir l intégrale par rapport à µ des fonctions mesurables positives. Dans un premier temps on va définir l intégrale des fonctions étagées, qui ont été définies en On pourra se rappeler que les ensembles mesurables intervenant dans la définition peuvent être assez compliques, et la tribu M très grosse (elle contient par exemple les réunions dénombrables d intersections dénombrables d ouverts...) Lemme Soit (X, M, µ) un espace mesuré où µ est une mesure positive. Soit s une fonction étagée d écriture canonique s = 1 k m α j 1 Ak (voir la définition 2.3.2). On pose alors I(s) def = α k µ(a k ), (3.1) (avec la convention 0 = 0). On a alors pour s, t étagées et λ 0, ainsi que I(s) = sup I(σ), (3.2) σ étagée,σ s I(s + t) = I(s) + I(t), I(λs) = λi(s), et s t I(s) I(t) (3.3) Preuve. Montrons d abord la première assertion. Considérons deux fonctions étagées σ et s telles que σ s. On sait que l on peut écrire σ = k m β k 1 Bk et s = j n α j 1 Aj où (A j ) et (B k ) forment une deux partitions de X. En particulier on peut écrire que pour chaque k m on a µ(a k ) = j n µ(a k B j ), d où I(σ) = k m β k µ(b k ) = k m, j n β k µ(b k A j ) On constate alors que soit B k A j = qui est de mesure nulle, soit B k A j, auquel cas pour x B k A j on a β k = σ(x) s(x) = α j ce qui donne I(σ) k m, j n α j µ(b k A j ) = j n α j µ(a j ) = I(s) puisque (B k ) est une partition de X. Le dernier point de la proposition est immédiat compte tenu de la définition. Pour la propriété de multiplication par un scalaire, soit λ 0. Si λ = 0 l assertion est triviale, sinon lorsque λ > 0 on écrit que pour s étagée on a I(λs) = I λ α j 1 Aj = I λα j 1 Aj = λα j µ(a j ) = λi(s) j n j n j n 20

22 d après la définition de I. La preuve de la propriété concernant la somme est à peine plus difficile. On considère s et t deux fonctions étagées. Alors la somme s + t est également étagée (elle ne prend qu un nombre fini de valeurs) et mesurable (comme somme de fonctions mesurables). Précisément on peut écrire s = α j 1 Aj, t = β k 1 Bk, s + t = (α j + β k )1 Aj B k j n k m j n,k m où pour s et t on a choisi l écriture canonique. On obtient ainsi que I(s) + I(t) = j n α j µ(a j ) + k m β k µ(b k ) Mais puisque A k et B j forment deux partitions de X on peut écrire I(s) + I(t) = (α j + β k )µ(b k A j ) k m, j n Pour calculer I(s + t) il faut identifier l écriture canonique de s + t. Indexons par l p l ensemble des valeurs différentes γ l prises par α j + β k lorsque j n et k m. On a alors s + t = l p γ l 1 Cl où on a posé C l = (s + t) 1 ({γ l }). On a alors par définition I(s + t) = l p γ l µ(c l ). Mais par ailleurs C l = où l union est finie et disjointe, donc µ(c l ) = j, k, tels que α j + β k = γ l j, k, tels que α j + β k = γ l A j B k µ(a j B k ) ce qui donne finalement I(s + t) = l p = j n, k m j, k, tels que α j + β k = γ l γ l µ(a j β k ) = l p j, k, tels que α j + β k = γ l (α j + β k )µ(a j β k ) = I(s) + I(t), (α j + β k )µ(a j β k ) d où le résultat. Le Lemme est prouvé. Remarques

23 1. La quantité I(s) a été définie en utilisant l écriture canonique de s, en particulier pour chaque k, on a A k = s 1 (α k ) avec des réels positifs α k tous différents. On peut en fait montrer (le faire) sans difficulté que la formule de définition (3.1) est valable même si l écriture de s n est pas canonique. 2. On notera aussi que fonction nulle est étagée et que I(0) = 0. Une alternative pour éviter d avoir affaire appel à la convention 0 = 0 est de ne considérer que les fonctions étagées non nulles et les α k > 0. La fonction nulle n est alors plus étagée et on pose alors I(0) = On voit dans cette définition le point fondamental de la théorie de Lebesgue qui est de découper l ensemble d arrivée et d y regarder les valeurs prises par la fonction (pour les fonctions étagées suivant les valeurs des α j ) puis de considérer les images réciproques (ici les A j ) par la fonction. C est évidement une procédure différente de celle employée pour construire l intégrale de Riemann, où on découpe d abord l espace de départ en intervalles, sur lesquels on regarde les valeurs prises par la fonction à intégrer. Nous verrons plus loin que l intégrale de Lebesgue, construite par la première procédure solutionne un certain nombres de problèmes laissés ouverts par l intégrale de Riemann. On peut maintenant définir l intégrale des fonctions mesurables de X dans R +. Définition Soit (X, M, µ) un espace mesuré où µ est une mesure positive. Pour f : X R + mesurable, on pose Remarque X fdµ = sup I(σ) s étagée, s f 1. On observe évidement tout de suite que si f est étagée, on a fdµ = I(f) X au sens de la définition du lemme Lorsqu il n y a pas d ambiguité sur l espace d intégration, on pourra noter fdµ au lieu de X fdµ. 2. Pour A M, on définit également l intégrale sur A d une fonction f : X R + mesurable, définie par fdµ = f 1 A dµ. A 3. Dans la définition 3.2.3, le sup peut être pris sur une suite croissante de fonctions mesurables étagées positives. C est un résultat important en pratique que l on donne dans le lemme qui suit. On rappelle également que la limite de telles suites caractérise justement les fonctions mesurables positives par le Théorème Le résultat qui vient peut également être considéré comme un premier résultat d interversion de limite et d intégrale. Lemme Soit (X, M, µ) un espace mesuré où µ est une mesure positive. Considérons une suite croissante (s n ) de fonctions étagées positives telles que lim s n = f (limite simple) avec donc f : X R + mesurable. On a alors lim s n dµ = lim s n dµ = fdµ. X 22

24 Preuve. On commence par mentionner que la suite numérique ( s n dµ) converge bien dans R +, étant croissante d après le Lemme D après la Définition 3.2.3, l inégalité lim s n dµ fdµ est immédiate. Prouvons-la dans l autre sens. Pour cela il suffit de montrer que si g f est une fonction étagée, alors gdµ lim s n dµ. (3.4) On considère pour cela 0 < ε 1 un réel, et on pose pour tout n N A n = {s n (1 ε)g} def = {x X; s n (x) (1 ε)g(x)}. Comme (s n ) est une suite croissante de fonctions, (A n ) définit une suite croissante d ensembles mesurables de réunion X puisque s n converge simplement vers f g. On a également grace à la définition des A n que pour tout n s n (1 ε)g 1 An ce qui implique par la propriété de croissance du Lemme que s n dµ (1 ε) g 1 An dµ. Si maintenant g a pour écriture canonique g = 1 k m α k 1 Bk alors g 1 An, qui est également une fonction étagée s écrit 1 k m α k 1 Bk A n et on obtient que g 1 An dµ = µ(a n B k ) µ(b k ) = gdµ lorsque n, k m k m où la convergence vient de la propriété de continuité croissante de la mesure µ, point iv) de la Proposition On a ainsi obtenu que lim s n dµ (1 ε) gdµ ce qui implique (3.4) puisque ε est arbitrairement petit. Le lemme est donc prouvé. Exemples Il est utile de reprendre les exemples du paragraphe précédent, et les intégrales correspondantes. 1. On considère X = {x 1,..., x n } un ensemble fini, muni de la tribu P(X) et de la mesure définie par µ 0 (A) = Card(A) pour A X. Toutes les fonctions sont alors étagées et mesurables, et on obtient pour une telle fonction f fdµ 0 = n f(x j )1 {xj }dµ 0 = j=1 n f(x j ). j=1 23

25 2. Sur le même espace (de cardinal n) muni de la mesure µ 1 définie par µ 1 (A) = Card(A)/n. on obtient fdµ 1 = n f(x j )1 {xj }dµ 0 = j=1 n f(x j )/n. 3. Pour la mesure de comptage µ 2, définie sur X = {x i, i I} quelconque muni de la tribu P(X), on obtient de même fdµ 2 = f(x i ) def = sup f(x i ) i I J fini I i J 4. Si X est une ensemble non vide, muni de la tribu P(X), et si a est un élément de X fixé, on a lorsque µ est la mesure de Dirac δ a, fdµ = f(a) j=1 5. Pour la mesure de Borel m sur R d, que nous verrons au Chapitre 5, on notera l intégrale par le même signe que l intégrale de Riemann R d f(x)dx. On verra que cette intégrale coincide avec l intégrale de Riemann pour les fonctions continues à support compact. Elle permettra cependant aussi d intégrer des fonctions beaucoup plus compliquées, par exemple R d 1 Q (x)dx = m(q) = Losque µ est une mesure de densité ν par rapport à la mesure de Borel, on a fdµ = f(x)ν(x)dx R d R d ce qui justifie la notation infinitésimale dµ = νdx Les mesures de probabilité de Cauchy (sur R) et de Laplace-Gauss (sur R d ) entrent dans la catégorie précédente avec respectivement les densités ν(t)dt et ν(x)dx où ν est défini respectivement par ν(t) = 1 π α α 2 + t 2 et ν(x) = 1 σ m)2 exp (x 2π 2σ Les probabilités de Bernouilli, binomiale et de Poisson sont construites à partir de mesures de Dirac sur des entiers et on obtient sans peine que pf(0) + (1 p)f(1) Bernouilli, paramètre p fdµ = 0 k n Ck np k (1 p) n k f(k) binomiale, paramètres (n, p), e λ k N λk k! f(k) Poisson, paramètre λ. 24

26 On passe maintenant en revue quelques propriétés fondamentales de l intégrale d une fonction positive. Compte tenu de leur importance, les Théorèmes de convergence seront vus dans un chapitre dédié. Proposition Soit (X, M, µ) un espace mesuré où µ est une mesure positive. On a alors pour f et g : X R + des fonctions mesurables et λ 0, λfdµ = λ fdµ, (f + g)dµ = fdµ + gdµ et f g fdµ gdµ. (On rappelle que l on utilise toujours la convention 0 = 0). Preuve. Compte tenu du travail précédent la preuve est assez courte. On considère deux suites de fonctions étagées (s n ) et (t n ) convergeant en croissant vers respectivement f et g. C est possible grace au Lemme On a alors lim (s n + t n ) = f + g, et lim λs n = λf. On obtient ainsi grace au Lemmes et que λfdµ = lim λs n = lim λ s n dµ = λ fdµ. De la même manière on peut écrire que (f + g)dµ = lim (s n + t n ) = lim ( s n dµ + t n dµ) = fdµ + gdµ. Le dernier point est une conséquence directe du premier. Cela conclue la preuve de la Proposition. 25

27 Chapitre 4 Théorèmes de convergence et fonctions intégrables Dans le Chapitre précédent, on a pu définir l intégrale d une fonction mesurable à valeur dans R +. Nous allons principalement dans ce chapitre établir des Théorèmes d interversion d intégrale et de limite sous des hypothèses faible de convergence. C est un des atouts majeurs de l intégrale de Lebesgue. 4.1 Théorèmes de convergence Le premier théorème que nous présentons concerne les suites croissantes de fonctions et est à mettre en parallèle avec le Lemme Théoreme Théorème de convergence monotone dit de Beppo-Levi. Soit (X, M, µ) un espace mesuré où µ est une mesure positive. Considérons une suite croissante def (f n ) de fonctions mesurables de X dans R + telles que lim f n = f (limite simple), avec donc f : X R + mesurable. On a alors lim f n dµ = lim f n dµ = fdµ. Preuve. Un examen attentif de l énoncé aura permit de se rendre compte qu il est identique a celui du Lemme sauf que l on a remplacé la suite (s n ) par ici la suite (f n ). Pour la preuve de ce théorème il en est exactement de même, quitte à faire appel à la Proposition au lieu du Lemme quand il y est fait référence. On pourra remarquer que l hypothèse de convergence est réduite a la convergence simple. Evidement sans l hypothèse de croissance le résultat est faux (voir plus loin le contre exemple donné en 4.1.6). On donne maintenant un corollaire concernant la convergence des séries de fonctions positives. Corollaire Soit (X, M, µ) un espace mesuré où µ est une mesure positive. Considérons une suite (f n ) de fonctions mesurables de X dans R +. On pose pour tout x X, S(x) = 26

28 n 0 f n(x). Alors S est mesurable positive et on a f n dµ = f n dµ = n N n N Sdµ. Preuve. La mesurablité de S est une conséquence de la Proposition 2.3.1, puisque S est limite simple de la suite des fonctions sommes partielles définies pour tout n N par S n (x) = f k (x). k n Bien sur chaque S n est mesurable comme somme finie de fonctions mesurables en vertu de la Proposition Comme lim S n = S, on peut appliquer le Théorème de Beppo-Levi qui donne Sdµ B.L. = lim n S n dµ = lim n f k dµ k n Prop = lim n k n f k dµ = k 0 f k dµ. Les égalités ci dessus on lieu dans R + et la Proposition est utilisée pour écrire que l intégrale d une somme finie est la somme des intégrales. Le résultat est prouvé. Une deuxième application du Théorème de Beppo-Levi concerne les mesures à densité. Corollaire Soit (X, M, µ) un espace mesuré où µ est une mesure positive. Considérons une fonction ν mesurable de X dans R +. Pour tout A M, on définit λ(a) = A νdµ. Alors λ est une mesure positive définie sur M, et si f est une fonction mesurable positive, on a fdλ = fνdµ. On notera dλ = νdµ et on dira que dλ est la mesure de densité ν par rapport à la mesure dµ. Remarque On prendra garde au fait que le produit des deux fonctions mesurables fν ci dessus est bien défini dans R + avec la convention 0. = Cette construction répond aux exemples 6 et 7 de la série d exemples et : une mesure étant construite (ici µ), il est direct de construire toute une famille de mesures, dites à densité par rapport à la première. Dans le cas réel, deux mesures étant données, les rapports entre l une et l autre (par exemple l une est-elle a densité par rapport à l autre?) font l objet d un théorème difficile, le Théorème de Radon Nikodym, vu en Master. Preuve du Corollaire. Montrons que λ est une mesure. D après la Proposition 3.2.7, on a trivialement λ( ) = νdµ = 0. Considérons maintenant une suite d éléments deux à deux disjoints (A n ) n N de M. On a alors d après le Corollaire Cor λ( n N A n ) = νdµ = ν.1 An dµ = ν 1 An dµ = λ(a n ). n N A n X n N n N 27 n N X

29 On en déduit donc que λ est une mesure. Montrons maintenant la deuxième partie du Corollaire. Considérons d abord une fonction étagée s = n j=1 α j 1 Aj, où on peut supposer que les α j sont tous strictement positifs. Alors X sdλ def = α j λ(a j ) = j n j n X ν 1 Aj dµ = ν 1 Aj dµ = X j n X sνdµ (4.1) d après la Proposition donnant l intégrale d une somme finie de fonctions. Dans le cas général, pour f fonction mesurable de X dans R +, soit (s k ) une suite croissante de fonctions étagée convergeant en croissant vers f, donnée par le Théorème On a alors également lim s k.ν = f.ν et on peut alors écrire fdλ B.L. = lim k X X s k dλ s k étagée = lim k X s k νdµ B.L. = X f.νdµ. Lemme Lemme de Fatou. Soit (X, M, µ) un espace mesuré où µ est une mesure positive. Considérons une suite (f n ) de fonctions mesurables de X dans R +.On a alors ( ) (lim inf f n )dµ lim inf f n dµ. (4.2) n n Preuve. On rappelle d abord que d après la Proposition 2.3.1, la fonction f = lim inf n f n est mesurable positive. Par ailleurs, rappelons que lim inf n f n = sup n N inf k n f n par définition et que donc f = sup g n où g n = inf n. n N k n Les fonctions g n sont mesurables de X dans R + d après la Proposition 2.3.1, et on a lim g n = f. Le Théorème de Beppo-Levi donne donc lim g n dµ = fdµ. (4.3) Par ailleurs de la Proposition 3.2.7, on a pour tout n g n f n = g n d où l on déduit lim inf n X X X g n lim inf et donc le résultat d après (4.3), puisque lim inf g n dµ = lim g n dµ = fdµ. X f n, f n, 28

30 Exemple L inégalité dans le Lemme de Fatou peut être stricte, comme le montre l exemple suivant. Considérons X =]0, [ et définissons pour tout n N, f n (x) = ne nx, pour x > 0. Alors on a X f n(x)dx = 1 et pourtant pour tout x > 0, lim n f n (x) = 0 qui est donc d intégrale nulle. L inégalité (4.2) du Lemme s écrit donc 0 1 et est donc stricte. On peut remarquer que cet exemple constitue également une illustration de la nécessité de l hypothèse de croissance dans le Théorème de Beppo-Levi. En effet la suite (f n ) converge simplement vers 0 mais pas en croissant, ce qui explique que la conclusion du Théorème de Beppo-Levi ne soit pas vérifiée (elle se traduit ici par 0 1, mais elle pourrait ne même pas avoir de sens dans le cas général). Nous allons maintenant donner un sens à l intégrale de fonctions complexes, et pas seulement positives : Définition-Théorème Soit (X, M, µ) un espace mesuré où µ est une mesure positive. On dira qu une fonction f mesurable de X dans C est intégrable si f dµ <. X L ensemble des fonctions intégrables est noté L 1 (µ) et l intégrale d une fonction f L 1 (µ) est définie par fdµ = (Re f) + dµ (Re f) dµ + i (Im f) + dµ i (Im f) dµ. (4.4) X X X X L espace L 1 (µ) est une espace vectoriel sur C et f X fdµ est une forme linéaire sur cet espace. Preuve. La formule (4.4) a bien un sens puisque les inégalités (Re f) ± f et (Im f) ± f impliquent par la Proposition que chaque terme de (4.4) est fini, et donc que la somme est un élément de C. Montrons ensuite que L 1 (µ) est un espace vectoriel : Pour cela soient f et g L 1 (µ) et α, β C. on a alors αf + βg α f + β g et la Proposition implique que ce dernier élément est d intégrale finie. Donc αf + βg L 1 (µ). Montrons enfin que la prise de l intégrale est une forme linéaire sur L 1 (µ). Soient f = f 1 + if 2 et g = g 1 + ig 2 deux fonctions de L 1 (µ) décomposées en partie réelle et imaginaires. On souhaite d abord montrer que (f + g)dµ = fdµ + gdµ. (4.5) Pour montrer cela, on écrit d après la définition de l intégrale Re (f + g)dµ = (f 1 + g 1 ) + dµ (f 1 + g 1 ) dµ. (4.6) Mais par ailleurs Re (f + g) = (f 1 + g 1 ) + (f 1 + g 1 ) = (f 1 ) + (f 1 ) + (g 1 ) + (g 1 ), 29

31 d ou cette égalité entre fonctions positives (éventuellement infinies) : (f 1 + g 1 ) + + (f 1 ) + (g 1 ) = (f 1 + g 1 ) + (f 1 ) + + (g 1 ) +. On peut appliquer la Proposition sur l intégrale de la somme de fonctions positives, qui donne (f 1 + g 1 ) + dµ + (f 1 ) dµ + (g 1 ) dµ = (f 1 + g 1 ) dµ + (f 1 ) + dµ + (g 1 ) + dµ. D après 4.6 on obtient Re (f + g)dµ = (f 1 ) + dµ + (g 1 ) + dµ def = (Re f)dµ + (Re g)dµ, (f 1 ) dµ + (g 1 ) dµ où la dernière égalité provient de la définition de l intégrale. Exactement de la même manière, on montre que Im (f + g)dµ = (Im f)dµ + (Im g)dµ. Ces deux résultats donnent (f + g)dµ = (Re f)dµ + (Re g)dµ + i = fdµ + gdµ, (Im f)dµ + i (Im g)dµ où de nouveau la dernière égalité provient de la définition de l intégrale d une fonction dans L 1 (µ). L égalité (4.5) est montrée. Il reste à étudier la multiplication par un scalaire. Soit f = f 1 + if 2 L 1 (µ) et α = α 1 + iα 2 C. D après le résultat précédent sur la somme de deux (donc quatre) fonctions, on peut écrire αfdµ = α 1 f 1 α 2 f 2 dµ + iα 1 f 2 dµ + iα 2 f 1 dµ. D après la Proposition 3.2.7, on a α 1 f 1 dµ = α 1 f1 dµ lorsque α 1 0 et lorsque α 1 < 0 il suffit d écrire α 1 f 1 dµ def. = ( α 1 f 1 )dµ = ( α 1 )f 1 dµ Prop = ( α 1 ) f 1 dµ = α 1 f 1 dµ. Il reste à montrer que if 1 dµ = i f 1 dµ mais ceci est une conséquence immédiate de la définition. On a donc αfdµ = α fdµ et ceci conclue la preuve du Théorème. On termine cette Section par un des Théorèmes les plus important de la théorie de l intégration de Lebesgue. 30

32 Théoreme Théorème de convergence dominée dit de Lebesgue. Soit (X, M, µ) un espace mesuré où µ est une mesure positive. Considérons une suite (f n ) de fonctions mesurables de X dans C telles que lim n f n = f (limite simple), avec donc f mesurable. Si il existe une fonction g : X R + intégrable telle que x X, n N, f n (x) g(x), (4.7) alors f est intégrable et on a lim n f n f dµ = 0, et lim n f n dµ = fdµ. Preuve. Quitte à séparer partie réelle et partie imaginaire, la mesurabilité de f est une conséquence de la Proposition Par ailleurs puisque f g on obtient que f est intégrable grace au dernier point de la Proposition De cette Proposition de nouveau et de la linéarité prouvée au Théorème-définition 4.1.7, on obtient que pour tout n N, f n dµ fdµ f n f dµ. La dernière assertion est donc une conséquence de l avant-dernière. On va maintenant appliquer le lemme de Fatou à la suite de fonctions h n = 2g f n f n 2g (limite simple). On écrit 2gdµ = lim inf(2g f n f )dµ F atou lim inf (2g f n f )dµ = 2gdµ lim sup f n f dµ. On en déduit donc que lim sup f n f dµ = 0, et par positivité lim n f n f dµ = 0. le résultat est prouvé. 4.2 Fonctions Intégrables et ensembles de mesure nulle Les ensembles de mesure nulle sont transparents en théorie de l intégration de Lebsgue. C est ce que nous allons préciser dans cette Section. On commence par une définition, ou plutôt une terminologie. Définition Soit (X, M, µ) un espace mesuré où µ est une mesure positive. On dira d une propriété qu elle est vraie µ-presque partout, ou presque partout s il n y a pas d ambiguité sur la mesure lorsqu elle est vraie en dehors d un ensemble de mesure nulle. 31

33 On notera pp. en abrégé. En particulier pour f et g deux fonctions mesurables, on dira que f = g pp. si µ({x X; f(x) g(x)}) = 0. L égalité presque partout de deux fonctions est une relation d équivalence Preuve du dernier point. Il s agit juste de vérifier les trois points caractérisant une relation d équivalence. Pour f, g et h mesurables, on a f = f pp., et f = g pp. µ({f g}) = 0 µ({g f}) = 0 g = f pp. Par ailleurs si f = g pp. et g = h pp., alors on déduit de l inclusion {f h} {f g} {g h} que d où le résultat. µ({f h}) µ({f g}) + µ({g h}) = 0, Exemples On sait que Q est dénombrable donc de mesure nulle pour la mesure de Borel que nous construirons au prochain chapitre. On obtient ainsi que 1 Q = 0 pp. et 1 R/Q = 1 pp. Donnons un autre exemple concernant des ensembles : A et B sont deux ensembles mesurables, la propriété A B pp. signifie µ(a B c ) = 0. Concernant l intégration des fonctions positives on a le résultat suivant : Proposition Soit (X, M, µ) un espace mesuré où µ est une mesure positive, et soient f et g deux fonctions mesurables de X dans R +. On a alors i) f = 0 pp. fdµ = 0 ; ii) f = g pp. = fdµ = gdµ ; iii)f g pp. = fdµ gdµ ; iv) fdµ < = f < pp. Preuve. La preuve utilise le résultat suivant qui peut avoir un intérêt en soit : pour tout α > 0, on a µ({f > α}) 1 fdµ. (4.8) α En effet, posons E α = {f > α}, alors f α1 Eα et donc d après la proposition fdµ α1 Eα dµ Prop = α 1 Eα dµ = αµ(e α ), d où le résultat. Montrons maintenant le point i). Si fdµ = 0, alors pour tout n N on a µ(e 1/n ) n fdµ = 0. 32

34 Or {f > 0} = n N E 1/n et l union étant dénombrable on obtient µ({f > 0}) = 0 d où le résultat. Réciproquement si µ(e) = 0 avec E = {f > 0} alors pour toute fonction étagée s f, on a s = 0 sur E c. Si s admet pour écriture s = n j=1 α j 1 Aj, alors pour tout j, A j E et donc µ(a j ) = 0. Cela donne sdµ = I(s) = 0 d après la définition 3.1 et fdµ = 0 d après la défintion de l intégrale On pourra remarquer que le résultat reste vrai même si f prend la valeur + là où elle n est pas nulle. Montrons maintenant le point ii). On pose cette fois E = {f > g} et l énoncé implique µ(e) = 0. Par ailleurs on a l inégalité immédiate suivante entre fonctions positives : f g + (f g)1 E qui implique par la Proposition que fdµ gdµ + (f g)1 E dµ. Or 0 (f g)1 E = 0 pp. donc cette fonction est d intégrale nulle d après i), et on on obtient le résultat. Le point iii) est une application immédiate du point ii) et du fait que f = g pp. est impliqué par f g pp. et g f pp.. Pour le dernier point iv), on pose E = {f = } et on remarque que µ(e) > 0 implique que pour tout n N, on a fdµ nµ({f > n}) nµ(e) n + d après (4.8), d où le résultat. Avec cette notion, on peut légèrement affaiblir les hypothèses du Théorème de convergence dominée, en ignorant les ensembles de mesure nulle : Théoreme Théorème de convergence dominée dit de Lebesgue (version II). Soit (X, M, µ) un espace mesuré où µ est une mesure positive. Considérons une suite (f n ) de fonctions mesurables de X dans C telles que presque pour tout x X, lim f n(x) = f(x). n Si il existe une fonction g : X R + intégrable telle que presque pour tout x X, n N, f n (x) g(x), (4.9) alors f (qui n est en général définie que presque partout) est intégrable et on a lim f n f dµ = 0, et lim f n dµ = fdµ. n n Preuve. Il s agit juste dans un premier temps de préciser l énoncé ; la fonction f définie presque partout peut être définie partout de la façon suivante : Soit N défini par son complémentaire N c def = {x X, f n (x) converge }. 33

35 L ensemble N est de mesure nulle. On pose alors f def = lim n 1 N cf n ce qui donne la convergence simple de la série de fonctions (1 N cf n ) n N vers f, et en particulier que f est mesurable. On a évidement 1 N cf n g et on peut donc appliquer le Théorème de Lebesgue déjà énoncé qui donne que f est intégrable et que lim n 1 N cf n f dµ = 0, et lim n 1 N cf n dµ = fdµ. Evidement les fonctions 1 N cf n f et f n f diffèrent sur un ensemble de mesure nulle, ce qui donne l égalité des intégrales correspondantes d après la Proposition Il en est de même pour les intégrales 1 N cf n dµ et f n dµ, grace à la linéarité de l intégrale et la Proposition On obtient ainsi le résultat en remarquent enfin que f n a également besoin de n être connue qu en dehors d un ensemble de mesure nulle (ici N), et que les intégrales la faisant intervenir ne changent pas si on lui assigne sur cet ensemble une autre valeur, toujours d après la Proposition Remarque Les autres énoncés de ce chapitre concernant les interversion limiteintégrale peuvent eux aussi admettre leur version II, où les ensembles de mesure nulle sont négligés. On laisse le soin au lecteur d écrire leurs énoncés. Pour finir le chapitre nous introduisons maintenant une notion élargie d ensemble mesurable qui trouvera une application naturelle avec la mesure de Lebesgue. On commence par une définition. Définition On dit que l espace mesuré (X, M, µ) est complet si toute partie d un ensemble de mesure nulle est mesurable (et donc également de mesure nulle). En général ce n est pas forcément le cas. Cependant si un espace mesurable n est pas complet, il est possible de le completer de la manière suivante. On définit la tribu complétée M comme suit : une partie E de X appartient à M si il existe deux ensembles A et B M tels que A E B et µ(b/a) = 0. (4.10) On prolonge alors la mesure µ à M de la manière suivante On a alors µ (E) def = µ(a). (4.11) Proposition Soit (X, M, µ) un espace mesuré, alors le triplet (X, M, µ ) défini par (4.10) et (4.11) est un espace mesuré complet. Preuve. Montrons que M satisfait les axiomes d une tribu. On a directement M M. Par ailleurs si E M et A et B sont définis par (4.10) alors on a B c E c A c et µ(a c /B c ) = µ(b/a) = 0, 34

36 puisque une inspection rapide donne B/A = A c /B c. L ensemble de parties M est donc stable par prise du complémentaire. Regardons la stabilité par union dénombrable, dernier point à vérifier d après la définition d une tribu Soit (E n ) une suite d ensembles de M. Pour tout n N, il existe des ensembles A n et B n de M tels que On a alors puisque A n E n B n et µ(b n /A n ) = 0. n N A n n N E n n N B n et µ( n N B n / n N A n ) = 0, n N B n / n N A n = n N (B n /A n ), qui est donc réunion dénombrable d ensemble de mesure nulle et donc de mesure nulle. M est donc une tribu. On laisse au lecteur le soin de vérifier que µ est alors une mesure sur (X, M ). Remarque On pourra remarquer que la tribu complétée est exactement la tribu engendrée par la tribu elle-même et les sous-ensembles d ensembles de mesure nulle. 35

37 Chapitre 5 La mesure de Lebesgue sur R Plusieurs constructions de l intégrale sont possibles. Nous présentons ici une construction ensembliste qui répond aux exemples 5 et 6 des remarques et En particulier on souhaite construire une mesure λ sur l ensemble des boréliens de R qui soit telle que λ([a, b]) = b a pour tout a b R. Quelques résultats sur la construction ne seront qu énoncés, et on renvoie par exemple pour les preuves complètes au livre de J. Faraut [2]. 5.1 Un théorème de prolongement On commence par une définition Définition Soit X un ensemble et U une famille de parties de X. On dit que U est une algèbre de Boole sur X si (a) A U = A c U, (b) A, B U = A B U, (c) X M. On appellera ensemble élémentaire un élément de l algèbre et fonction élémentaire une combinaison linéaire de fonctions indicatrices d ensembles élémentaires. On peut tout de suite voir que la définition d une algèbre est proche de celle d une tribu. Seule la stabilité par union dénombrable a été remplacée par la stabilité par union finie. Un exemple fondamental pour la suite est donné par les intervalles de R : Exemple L ensemble des réunions finies d intervalles de R est une algèbre de Boole U, la vérification des points a, b, et c étant immédiate. De plus en appliquant la Proposition et la définition d une tribu, on en déduit que σ(u) = B(R), tribu des boréliens de R. De même dans R d, la tribu engendrée par les réunions finies de pavés (c est une algèbre de Boole) est la tribu des boréliens de R d. On énonce maintenant un Théorème de prolongement. 36

38 Théoreme Soit X un ensemble et U une algèbre de Boole sur cet ensemble. Soit µ : U R + une application vérifiant la propriété suivante : si (A n ) n N est une suite d éléments de U deux à deux disjoints, telle que n N A n U alors µ( n N A n ) = n N µ(a n ) (additivité dénombrable). Si en plus µ est σ-finie (i.e. il existe une suite d ensembles X n de réunion X tels que pour tout n N, µ(x n ) < ), alors µ se prolonge en une mesure unique (encore notée µ) sur la tribu M engendrée par U. Idée de la preuve. Pour l unicité, considérons deux mesures µ 1 et µ 2 prolongeant µ sur l espace mesurable (X, M). Alors on vérifie que l ensemble {A X; µ 1 (A) = µ 2 (A)} est une tribu qui contient l ensemble U et sur laquelle µ 1 et µ 2 coincident. Comme la tribu engendrée par U est σ(u) = M, les mesures µ 1 et µ 2 coincident aussi sur M. Elles sont donc égales. Donnons une idée de la preuve de l existence du prolongement. C est une démonstration assez longue, qui est basée sur une définition de la mesure extérieure : Pour A X, on définit µ (A) = inf µ(a n ). (A n ) n N U A A n N n Dans cette définition les A n forment donc un recouvrement de A par des ensembles élémentaires. On vérifie que lorsque A est un ensemble élémentaire on a µ (A) = µ(a), puis on sélectionne parmi toutes les parties de X celles qui sont proches des ensembles élémentaires au sens suivant : On dira que A X est intégrable s il existe une suite (A n ) d ensembles élémentaires tels que µ (A n A) 0 (5.1) où pour chaque n N, A n A def = (A n /A) (A/A n ) est appelée différence symétrique de A n et A. Bien sur les ensmbles élémentaires sont intégrables. Il est aisé de montrer que si A et B sont des ensembles intégrables, alors A B, A B, A/B le sont aussi. On a également la propriété de fermeture suivante : Si A X est tel qu il existe une suite (A n ) d ensembles intégrables tels que µ (A n A) 0, alors A est intégrable. En fait on a le résultat suivant : L ensemble M des ensembles intégrables est une tribu, et la fonction µ restriction de µ à M est une mesure sur M. 37

39 La fin est alors directe. Puisque M et une tribu qui contient les ensembles élémentaires, alors elle contient aussi M = σ(u). La mesure µ est alors définie comme la restriction à M de µ. Remarque D après la définition d ensemble intégrable, et donc a fortiori pour un ensemble A M, on a µ(a) = µ (A) = inf µ(a n ). (A n ) n N U A A n N n En particulier pour tout ε > 0, il existe d après la définition de la borne inférieure une suite (A n ) d ensembles intégrables tels que A n N A n et n N µ(a n) µ(a) + ε. En fait directement de (5.1) on sait qu il existe un ensemble élémentaire A ε proche de A au sens où µ(a ε A) ε. 2. Considérons maintenant une fonction intégrable f pour la mesure µ. On peut alors l approcher par une fonction élémentaire. Soit en effet ε > 0. D après le Théorème de convergence dominée et le Théorème 2.3.3, on sait qu il existe une fonction étagée s telle que f s dµ ε/2. Par ailleurs une fonction étagée est combinaison linéaire finie de fonctions indicatrices d ensembles mesurables, donc d après la remarque précédente, il existe une fonction élémentaire g telle que s g dµ ε/2. On a ainsi obtenu f g dµ ε (g est proche de f en moyenne). 5.2 La mesure de Lebesgue sur R Dans cette section nous allons appliquer le Théorème de prolongement aux objets définis dans l exemple 5.1.2, c est à dire à U l algèbre de Boole engendrée par les intervalles (i.e. les réunions finies d intervalles) ; { U R + la fonction λ : n j=1 (a j, b j ) n j=1 (b j a j ), où pour les intervalles (a j, b j ) les parenthèses remplacent soient [ soit ]. Le résultat est alors le suivant : Théoreme Il existe une unique mesure λ sur B(R) telle que λ([a, b]) = b a pour tout a b R. Idée de la preuve. Nous sommes dans la situation présentée dans le Théorème de prolongement On remarque d abord que la tribu engendrée par les intervalles est justement la tribu des Boréliens, d après la Proposition Pour pouvoir prolonger λ, vérifions qu elle satisfait les hypothèses du Théorème. On remarque d abord qu elle est σ-finie. En effet on peut écrire R = n N [ n, n], avec λ([ n, n]) = 2n <. Donnons quelques éléments de la preuve de l additivité dénombrable. 38

40 Considérons d abord I 1, I 2,..., I N des intervalles disjoints de reunion I intervalle. Alors de la définition et en réordonnant les intervalles on a N λ(i n ) = λ(i). (5.2) n=1 Avec un peu de travail il est possible de montrer que cette relation s étend aux suites d intervalles (I n ) n N disjoints de reunion I également : λ(i n ) = λ(i). (5.3) n=1 Ce résultat étant établi, passons aux ensembles élémentaires. Soit donc (A n ) une suite d éléments élémentaires de réunion A un ensemble élémentaire. Puisque chaque A n est réunion finie d intervalles, on peut supposer que les A n sont chacun des intervalles en utilisant (5.2). De même A est un ensemble élémentaire, donc de la forme A = K k=1 I k, où les intervalles I k sont disjoints. On a alors d après (5.3) pour k K, mais également pour tout n N, λ(i k ) = λ(a n ) = λ(i k A n ), n=1 K λ(i k A n ) k=1 d où λ(a) = n=1 λ(a n) par regroupement. Remarque Dans le cas particulier de R muni de la tribu de ses Boréliens et de la mesure λ la remarque implique les résultats suivant : Si A est un Borélien de R et ε > 0, alors il existe une suite (I n ) d intervalles tels que A n N I n et n N λ(i n) λ(e) + ε. De plus si f est intégrable et ε > 0, il existe une fonction en escalier telle que f g dλ ε. (Rappelons qu une fonction en escalier est de la forme g = N j=1 α j 1 (xj 1,x j ), où les x j sont ordonnés). Parmi toutes les mesures définies sur la tribu des Boréliens (il y en a beaucoup, par exemple les mesures de Dirac, de comptage...) la mesure de Lebesgue est la seule a preserver la propriété d invariance par translation de la tribu : Proposition La tribu borélienne B(R) est invariante par translation. De plus si µ est une mesure sur (R, B(R)) invariante par translation et pour laquelle la mesure d un intervalle borné est finie, alors elle est proportionnelle à la mesure de Lebesgue. Preuve. On sait que l ensemble des intervalles est invariant par translation (i.e. si I est un intervalle, alors pour a R, l ensemble a + I def = {a + x; x I} est également un intervalle. On en déduit que si I est l ensemble des intervalles, B(R) = σ(i) = σ(a + I) = a + σ(i) = a + B(R). 39

41 L invariance par translation de la mesure de Lebesgue est claire d après sa construction et sa valeur sur les intervalles. Considérons maintenant une mesure µ satisfaisant les hypothèses de la Proposition et posons c = µ([0, 1]). Des propriétés d invariance par translation et d additivité de la mesure on obtient pour tout n N, µ([0, 1/n]) = c/n ainsi que le fait que la mesure d un singleton est nulle. On en déduit alors que pour tout a, b rationnels µ([a, b]) = c(b a), et la Proposition vient du fait que les intervalles de ce type engendrent la tribu des boréliens, d après la (preuve de la) Proposition Remarque On appelle souvent mesure de Lebesgue la mesure λ complétée sur la tribu complétée de celle des boréliens, i.e. celle a laquelle on a rajouté à tous les ensembles des parties d ensembles de mesure nulle (cf. définition 4.2.7). Remarque On peut également montrer le résultat suivant que nous ne faisons qu énoncer : si A est mesurable, alors i) λ(a) = inf {λ(u); U ouvert, A U} ; ii) λ(a) = sup {λ(k); K compact, K A}. 5.3 Intégrale de Riemann et intégrale de Lebesgue On rappelle d abord une construction de l intégrale au sens de Riemann sur un intervalle [a, b]. Elle est basée sur l approximation des fonctions par des fonctions en escalier. Soit u une telle fonction définie sur [a, b]. Alors il existe une subdivision a = x 0 < x 1 <... < x n = b et des réels α 0,..., α n 1 telle que pour tout x ]x j, x j+1 [ on ait u(x) = α j. On définit alors l intégrale de Riemann de u par b a n 1 u(x)dx = α j (x j+1 x j ). j=1 On vérifie que cette définition est indépendante de la subdivision choisie, que l intégrale ainsi définie est linéaire sur l espace des fonctions en escalier. Pour une fonction f définie sur [a, b] à valeurs réelles et bornée, on pose { b I R (f) = sup a { b J R (f) = inf a } u(x)dx ; u en escalier, u f } (5.4) v(x)dx ; v en escalier, v f La fonction f est dite intégrable au sens de Riemann si I R (f) = J R (f). Dans ce cas on appelle intégrale de Riemann de f le nombre b a f(x)dx def = I R (f) = J R (f). 40

42 Pour qu une fonction soit intégrable au sens de Riemann, il faut et il suffit que pour tout ε > 0, il existe deux fonctions en escalier u et v telles que u f v et (v(x) u(x))dx ε. On passe maintenant à l intégrale de Lebesgue sur l intervalle [a, b]. On considère pour cela la tribu de Borel sur [a, b] complétée, muni de la mesure de Lebesgue. Pour une fonction f définie sur [a, b] à valeurs réelles et bornées, on pose { b I L (f) = sup a { b J L (f) = inf a } u(x)dx ; u étagée, u f } v(x)dx ; v étagée, v f. (5.5) Lorsque f est mesurable positive, on reconnait la définition de l intégrale fdλ = I L (f) donnée en En fait avec un peu de travail on peut montrer que si f est mesurable bornée alors on a fdλ = I L (f) = J L (f). On peut même montrer la réciproque, à savoir que si I L (f) = J L (f) pour une fonction réelle bornée, alors elle est mesurable, et intégrable d intégrale I L (f). On retrouve donc une situation tout a fait identique à celle proposée ci dessus pour l intégrale de Riemann : Pour qu une fonction soit (mesurable et) intégrable au sens de Lebesgue, il faut et il suffit que pour tout ε > 0, il existe deux fonctions étagées u et v telles que u f v et (v u)dλ ε. On peut alors comparer les deux intégrales. La remarque principale est la suivante : Les fonction en escalier sont étagées. [a,b] Alors il est clair que lorsque u est en escalier, on a [a,b] udλ = b a u(x)dx. On obtient donc que pour toute fonction f réelle bornée on a I R (f) I L (f) J L (f) J R (f). On en déduit donc que si f est intégrable au sens de Riemann, alors elle est mesurable et intégrable au sens de Lebesgue et que les deux intégrales coincident. Pour finir on peut mentionner qu il existe des fonctions qui sont intégrables au sens de Lebesgue et pas au sens de Riemann. C est le cas de la fonction indicatrice 1 Q. En effet pour cette fonction sur l intervalle [0, 1] on a 0 = I R (f) < I L (f) = J L (f) = J R (f) = 1, par simple inspection et grace au fait que 1 Q = 1 pp. 41

43 Chapitre 6 Espaces de fonctions intégrables 6.1 Les espace L p Dans toute la suite, K désigne le corps R ou C. On commence par une définition. Définition Soit (X, M, µ) un espace mesuré où µ est une mesure positive. Soit 1 p et f : X K une application mesurable. On dira que f L p (µ) si f p dµ < pour p < et, pour p =, si il existe M > 0 tel que µ{x X; f(x) > M} = 0. Les fonctions dans ces espaces peuvent avoir une structure compliquée. Les ensembles de mesure nulle ont un rôle particulier qui sera précisé plus loin. Exemple Considérons la fonction f définie par f : R R { 1 si x Q x x si x Q. On vérifie d abord que cette fonction est mesurable sur la tribu des boréliens de R en appliquant la Proposition : Pour a < 1 on a f 1 (]a, + ]) = Q ]a, + [ et lorsque a 1 on obtient f 1 (]a, + ]) = Q c ]a, + [. Les ensembles obtenus sont des boréliens (intersection ou union de boréliens) ce qui donne le résultat. On constate par ailleurs que f est non bornée. Montrons cependant qu elle appartient à L (λ), où λ est la mesure de Lebesgue. En effet on a {x R ; f(x) > 1} = Q [ 1, 1] c, donc en prenant la mesure de cet ensemble on obtient λ {x R ; f(x) > 1} λ(q) = 0. (On rappelle que Q est une réunion dénombrable de singletons, qui sont de mesure nulle, donc est lui-même de mesure nulle). On en déduit que f L (λ) ( ici M = 1 convient). Proposition Soit (X, M, µ) un espace mesuré où µ est une mesure positive. Soient f et g deux fonctions mesurables et p ]1, + [. Considérons p l exposant conjugué de p 42

44 définit par 1/p + 1/p = 1. Alors on a les deux inégalités suivantes : i) ii) ( ( fg dµ ) 1/p ( f p dµ) 1/p ( f + g dµ) p ) 1/p g p dµ 1/p ( f dµ) p + (Hölder), g p dµ) 1/p (Minkowski). Preuve. i) Montrons d abord l inégalité de Hölder. Il suffit de montrer l inégalité dans le cas où f et g sont à valeur dans R + puisque ce sont les modules qui interviennent. On peut supposer également que f p dµ > 0 et g p dµ > 0. En effet si l un de ces deux termes est nul, alors d après la Proposition on a f = 0 pp. ou g = 0 pp. et donc fg = 0 pp. ce qui implique toujours par la Proposition que fg dµ = 0. L inégalité se réduit alors à 0 = 0 et est donc vraie. On peut enfin supposer que f p dµ < et g p dµ < sinon l inégalité est évidente puisque le terme de droite est infini. On pose alors ( A = 1/p ( f dµ) p, B = ) 1/p g p dµ, F = f/a, et G = g/b. On vérifie que F p dµ = G p dµ = 1 grace à la normalisation. Nous allons utiliser l inégalité de convexité élémentaire suivante : x, y R +, α ]0, 1[, x α y 1 α αx + (1 α)y, qui se prouve en prenant le logarithme de l inégalité et en utilisant la concavité du Logarithme. Dans notre cas on prend α = 1/p, 1 α = 1/p et on applique l inégalité à x = F p (t) et y = G p (t) pour chaque t X. On obtient l inégalité entre fonctions F G = (F p ) 1/p (G p ) 1/p 1 p F p + 1 p Gp, ce qui donne en intégrant F Gdµ 1 p F p dµ + 1 p G p dµ 1 p + 1 p = 1. Finalement fgdµ AB ce qui est le résultat cherché. ii) Montrons maintenant l inégalité de Minkowski. On commence par remarquer que l inégalité n a d intérêt que si f et g sont dans L p (µ), sinon le membre de droite est infini (et le membre de gauche n est pas forcément défini). Dans ce cas la Proposition implique que les fonctions f et g sont finies presque partout et que donc la somme f + g est définie et finie presque partout. On peut en particulier intégrer f + g. Par ailleurs l inégalité f + g f + g implique qu il suffit de montrer l inégalité lorsque f et g sont 43

45 à valeurs positives. On a alors (f + g) p dµ = (f + g)(f + g) p 1 dµ = f(f + g) p 1 dµ + g(f + g) p 1 dµ, d où en appliquant deux fois l inégalité de Hölder avec α = 1/p ( (f + g) p dµ ) 1/p ( f p dµ ( ( 1/p ( f dµ) p + ) 1/p ( (f + g) (p 1)p dµ + ) 1/p ( g p dµ ) 1/p ( ) 1/p g dµ) p (f + g) p dµ, ) 1/p (f + g) (p 1)p dµ (6.1) où pour obtenir la dernière inégalité on a utilisé le fait que (p 1)p = p 1 1 1/p = p. Regardons le résultat suivant la valeur du membre de gauche C = (f + g) p dµ. Si C = 0 alors l inégalité de Minkowski est prouvée. On remarque ensuite que l inégalité de convexité ( ) f + g p f p + g p 2 2 et le fait que f et g appartiennent à L p (µ) impliquent que C < en intégrant. On peut donc simplifier l expression 6.1 et on obtient le résultat. Les inégalités précédentes sont fondamentales dans le cadre des espaces L p que nous introduisons maintenant : Définition-Théorème Pour p [1, + ] on définit L p (µ) = L p (µ)/ où est la relation d équivalence définie par f g si f = g pp. (c est l égalité presque partout introduite en 4.2.1). L p (µ) est un espace vectoriel normé pour la norme définie par ( 1/p f L p = dµ) f p si p [1, + [, { ( f L = inf M R + ; µ f ) } > M = 0, (6.2) où dans les membres de droite f est n importe quel représentant dans L p (µ) de f L p (µ). On identifiera souvent f et f. Preuve. Le fait que soit une relation d équivalence a déjà été prouvé en Les quantités introduites en (6.2) sont clairement indépendantes du représentant choisi d après la Proposition C est encore une illustration du fait que les ensembles de mesure nulle sont transparents en théorie de l intégration. Montrons finalement que les espaces définis sont bien des espaces vectoriels. Considérons d abord α, β sont deux scalaires et f, g deux éléments de L p (µ) de représentants f et g. Alors f et g sont finies presque partout d après la Proposition

46 point iv) si p <, et d après la définition dans la cas p =. Cela permet de définir la somme α f + β g presque partout, et donc la classe de fonctions αf + βg comme l ensemble des fonctions qui lui sont égales presque partout. Cette somme étant définie, vérifions la fin du Théorème. Cas 1 p < : On vient de voir que α f + β g était fini presque partout. On peut alors appliquer l inégalité de Minkowski qui donne ici ( 1/p ( α f + β g dµ) p 1/p ( α dµ) f p + ) 1/p β g p dµ Le membre de droite étant fini, on en déduit que α f + β g L p (µ) et que donc αf + βg L p (µ). On applique alors la définition 6.2 avec α = β = 1, ce qui donne l inégalité triangulaire f + g L p f L p + g L p. On a également pour α C ( αf L p = 1/p ( α dµ) f p = α f p dµ) 1/p = α f L p d après la linéarité de l intégrale de fonctions positives prouvée en Proposition Considérons enfin une (classe de) fonction f L p (µ) telle que f = 0. Alors f L p = 0 f p Prop dµ = 0 f = 0 pp. f = 0 dans L p (µ). On a donc montré que L p (µ) est un espace vectoriel dans le cas p <. Cas p = : Considérons d abord f L (µ) et f un représentant de f dans L. Alors k N on a ( ) µ x R, f(x) > 1/k + f L = 0, { } puisque par définition f L = inf M tel que µ( f > M) = 0 et que donc M = f L + 1/k convient. Comme { } { } f > f L = k N f > f L + 1/k, on obtient par sous-additivité dénombrable que ( µ f ) > f L ( f ) > f L + 1/k = 0. k N µ Cela implique le résultat suivant intéressant en soit : f(x) f L pp.x X (6.3) Montrons que L (µ) est un espace vectoriel : soient f, g L (µ), f, g des représentants, alors on a l inclusion d ensembles { f } f L { g g L } { f } + g f + g, 45

47 donc en passant au complémentaire : { f > f L } { g > g L } { f + g > f L + g }. L ensemble de gauche est de mesure nulle donc ( µ f ) + g > f L + g L = 0. On en déduit donc que f + g L (µ) et que f + g L f L + g L. C est l inégalité triangulaire. On prouve de manière immédiate que si α C, on a αf L (µ) et que donc L (µ) est une espace vectoriel. Précisément on a { ( αf L = inf M R + tel que µ α f ) } > M = 0 { ( = inf α N R + tel que µ f ) } > N = 0 = α f L. Considérons enfin f L (µ) tel que f L = 0. Alors µ( f > 0) = 0 et donc f = 0 presque partout, ce qui implique f = 0 dans L (µ). On a bien montré que L (µ) est un espace vectoriel normé avec la norme définie en (6.2). On vient de voir que l inégalité de Minkowski correspondait à l inégalité triangulaire dans les L p (µ). L inégalité de Hölder se lit ainsi : Proposition Soient p, p [1, + ] deux exposants conjugués. Alors pour tout f L p (µ), g L p (µ), on a fg L 1 (µ) et fg 1 f p g p ( Hölder). Preuve. Lorsque p, p ]1, + [ on obtient directement le résultat en appliquant l inégalité de Hölder a des représentants de f et g. Pour p = 1 ( et donc p = + ) considérons f, g des représentants de f et g. On a alors f(x) g(x) f(x) g L pp.x X, d après la formule (6.3). Comme f L 1 (µ) on obtient que le produit f g également d après le dernier point de la Proposition Précisément on a ( ) f g dµ f dµ g L <, ce qui implique fg L 1 (µ) et fg L 1 f L 1 g L. On passe maintenant au Théorème le plus important de ce chapitre : Théoreme Soit (X, M, µ) un espace mesuré où µ 0, p [1, + ]. Alors L p (µ) est un espace de Banach et L 2 (µ) est un espace de Hilbert. 46

48 Preuve. Pour montrer que c est un espace de Banach il suffit de montrer qu il est complet. Considérons (f n ) une suite de Cauchy dans L p (µ). Cela s écrit ε > 0, N ε tel que n, m N ε, f n f m L p ε. Nous allons séparer de nouveau les cas. Cas 1 p < : On va construire une suite d indices (n k ) k N tel que k N, f nk+1 f nk L p 2 k. (6.4) Procédons par réccurence. Puisque (f n ) est de Cauchy, il existe n 1 N tel que p N, f n1 +p f n1 L p 2 1 et de même il existe p 1 N tel que p N, f n1 +p 1 +p f n1 +p 1 L p 2 2. On pose alors n 2 = n 1 + p 1 (alors f n2 f n1 L p < 2 1 )) Par récurrence sur k N, supposons construits n 1 n 2 n k tel que p N, et j [1, k] on ait f nj +p f nj L p 2 j. (6.5) On remarque en particulier que cela implique f nj f nj 1 L p 2 (j 1) dès que j [2, k]. De la propriété de Cauchy on déduit qu il existe p k N tel que p 0, f nk +p k +p f nk +p k 2 (k+1). On pose alors n k+1 = n k + p k et on obtient (6.5) pour j = k + 1, ce qui termine la récurrence. Puisque les n k sont ordonnés, (6.5) implique également le résultat cherché (6.4). On construit alors les (classes de) fonctions positives suivantes g k = k f nj+1 f nj, et g = j=1 f nj+1 f nj. Alors g k L p (µ) comme somme finie de fonctions dans L p (µ), puisque L p (µ) est un espace vectoriel. On identifie pour la suite de la preuve les fonctions dans L p (µ) et un de leur représentant. On a alors g k L p k f nj+1 f L nj p j=1 j=1 k 2 j 1. d après (6.4). On remarque ensuite que g est mesurable comme limite d une suite de fonctions mesurables (la valeur est permise). On en déduit directement que g p est également mesurable d après la Proposition Son intégrale vaut g p dµ = lim g k p dµ = j=1 lim inf g k p dµ F atou lim inf g k p dµ 1, par le lemme de Fatou On a donc g L p (µ) et g L p 1. Le point iv) de la Proposition implique alors que g p < presque partout, ce qui signifie exactement que pour presque tout x X, la série numérique k j=1 (f n j+1 (x) f nj (x)) converge absolument 47

49 dans R. Soit A l ensemble sur lequel cette limite existe, qui est donc tel que µ(a c ) = 0. On définit alors pour tout x X f(x) par la série télescopique suivante f(x) = f n1 (x) + (f nj+1 (x) f nj (x)) 1 A (x). j=1 Alors pour tout x X, on a f(x) = lim j f nj (x)1 A (x) donc la fonction f est mesurable. C est un bon candidat pour être la limite de la suite (f n ) : Montrons d abord que f L p (µ). Soit m N, alors x A, donc en intégrant f f m p dµ = f(x) f m (x) = lim k f n k (x) f m (x), lim f n k f m p dµ = k lim inf f nk f m p dµ F atou lim inf f nk f m p dµ. Or (f j ) est de Cauchy dans L p (µ) donc ε, N ε tel que m N ε et n k N ε on ait fnk f m p dµ ε p. On en déduit que pour un tel ε et m N ε on a f f m p ε p. (6.6) En particulier, on obtient f f m L p (µ) et donc f = f f m + f m L p (µ) puisque L p (µ) est un espace vectoriel. Enfin on a également obtenu que m N ε, f f m L p ε ce qui implique que f m f dans L p (µ). On a montré que la suite (f n ) converge dans L p (µ) et donc que L p (µ) est un espace de Banach pour p [1, + [. Cas p = 2. Montrons que L 2 (µ) est un espace de Hilbert. On sait déjà que L 2 (µ) est un espace de Banach pour la norme f L 2 = ( f 2 dµ) 1/2. Il reste juste à verifier que cette norme est associée à un produit Hermitien. Pour cela on introduit pour f, g L 2 (µ) l application suivante B(f, g) = fgdµ. Cette application est bien définie sur L 2 (µ) à valeur dans C grace à l inégalité de Hölder. elle est bien linéaire par rapport à la première variable, semi-linéaire par rapport à la deuxième et vérifie B(g, f) = B(f, g). C est donc une forme sesquilinéaire. Elle est clairement positive puisque B(f, f) = f 2 L 2 0. Enfin soit f L 2 (µ) telle que B(f, f) = 0. Alors f 2 L 2 = 0 et comme f 0 cela implique d après le point i) de la Proposition que f = 0 pp. si f est un représentant de f. Finalement f = 0 dans L 2 (µ). C est donc un espace de Hilbert. Cas p =. Considérons de nouveau la suite de Cauchy (f n ) cette fois-ci dans L (µ). On identifie de nouveau les classes de fonctions et leurs représentants. On pose pour tout n, m N, A n = {x X; f n (x) > f n }, et B n,m = {x X; f n (x) f m (x) > f n f m }. 48

50 Alors d après la remarque faite en (6.3), on a µ(a n ) = 0 et µ(b n,m ) = 0. Cela implique que l ensemble A c = ( A n ) ( B n,m ) n n,m est de mesure nulle comme union dénombrable d ensembles de mesure nulle. D après les définitions précédentes, on a pour tout x A f n (x) f m (x) f n f m L et f n (x) f n L. (6.7) Nous utiliserons ces majorations plus loin. On remarque ensuite que l inégalité triangulaire implique f n L f m L f n f m L. Comme (f n ) est de Cauchy dans L p (µ), on en déduit que la suite réelle ( f n L ) n N est de Cauchy dans R par simple majoration. En particulier elle est bornée par un réel M 0 0. D après l inégalité (6.7), on obtient que pour tout x A on a f n (x) M 0. Pour tout x A, on a alors d après l inégalité triangulaire f n (x) f m (x) f n (x) f m (x) f n f m L. On en déduit que pour tout x A, (f n (x)) est de cauchy dans C donc converge. Introduisons alors la fonction définie pour x X par f(x) = lim n (f n(x)1 A (x)). Elle est est mesurable comme limite et produit de fonctions mesurables. Par ailleurs x A, f n (x) M 0 donc f(x) M 0 ce qui implique f L (µ) et f L M 0. L Montrons enfin que f n f. On sait que x A, on a (f(x) f m (x))1 A (x) = lim n (f n(x) f m (x))1 A (x) lim n f n f m L. (6.8) Or (f n ) est de Cauchy, donc pour tout ε > 0, N ε tel que n, m N ε, f n f m ε. L inégalité (6.8) implique donc que m N ε et x A, (f(x) f m (x))1 A (x) ε, donc f f m L ε puisque µ(a) = 0. On vient de montrer que f m f et donc que L (µ) est complet. La preuve est terminée. Au cours de la preuve, on a également montré le résultat suivant : Proposition Soit (X, M, µ) un espace mesuré ou µ est une mesure positive. Soit p [1, + ] et (f n ) une suite de fonctions convergeant vers une fonction f dans L p (µ). Alors il existe une sous suite (f nk ) k N telle que f nk f presque partout. De nouveau on a identifié les classes de fonctions et un de leur représentants. Précisément on peut rappeler que si fn et f sont des représentants respectifs de f n et f, alors f n f presque partout signifie qu il existe un ensemble A tel que µ(a c ) = 0 et x A, f j (x) f(x) dans C. On signale également que par exemple dans L 1 (µ) il existe des suites (f n ) telles que (f n (x)) diverge pour tout x X. Le processus d extraction d une sous-suite est donc indispensable. 49 L

51 6.2 Intégrales dépendant d un paramètre On va montrer dans cette section deux Théorèmes de continuité et de derivation sous le signe intégrale. Ce sont essentiellement des applications du Théorème de convergence dominée, et les preuves sont remarquablement courtes. Théoreme (Continuité) Soit (X, M, µ) un espace mesuré où µ est une mesure positive. Soit Y un espace métrique, y 0 Y et f : X Y C une application vérifiant : { X C a) y Y, l application L x f(x, y) 1 (µ) ; { Y C b) pour µ-presque tout x, est continue en y y f(x, y) 0 ; c) il existe une fonction 0 g L 1 (µ) telle que pour presque tout x X, y Y, f(x, y) g(x). Alors la fonction définie sur Y par F (y) = f(x, y)dµ est continue en y 0. Précisons un peu les hypothèses avant de commencer la preuve. On commence par remarquer que a) permet de donner un sens à la fonction F. b) signifie qu il existe un ensemble N mesurable { tel que µ(n) = 0 (N indépendant du paramètre y) et x N c Y C fixé, la fonction est continue en y y f(x, y) 0. L hypothèse c) est une hypothèse de domination. Elle signifie qu il existe un autre ensemble N tel que µ(n ) = 0, et x N c, y Y on a f(x, y) g(x). Preuve. Soit (y n ) y 0 dans Y. Alors n N, F (y n ) F (y 0 ) = (f(x, y n ) f(x, y 0 )) dµ. } {{ } f n (x) Le point b) implique que f n (x) 0 presque pour tout x X. Par ailleurs, le point c) implique que f n (x) = f(x, y n ) f(x, y 0 ) f(x, y n ) + f(x, y 0 ) 2g(x) pp. x X. Le Théorème de convergence dominée version II implique directement que F (y n ) F (y 0 ) a une limite qui est lim f n (x)dµ = lim f n (x)dµ = 0. Le Théorème est prouvé. Remarque La continuité est une propriété locale. Pour obtenir la continuité en un point y 0, il suffit de prendre un voisinage quelconque de y 0 à la place de Y. Pour la même raison, si dans la condition b) on suppose que la fonction utilisée est continue partout au lieu de l être juste en y 0 alors la fonction F elle même devient également continue partout. De même il peut être utile de restreindre Y. Théoreme (différentiabilité) Soit (X, M, µ) un espace mesuré où µ est une mesure positive. Soit Y un ouvert de R n et f : X Y C une application vérifiant : { X C a) y Y, L x f(x, y) 1 (µ) 50

52 { Y C b) pour µ-presque tout x, y f(x, y) est différentiable sur Y ; c) il existe une fonction 0 g L 1 (µ) telle que pour presque tout x X, y Y, d y f(x, y) g(x). Alors la fonction F définie sur Y par F (y) = d y f(x, y)dµ est différentiable et sa différentielle est donnée par df (y) = d y f(x, y)dµ. De nouveau précisons les hypothèses. On rappelle que pour x X et y Y fixés, d y f(x, y) est l application linéaire de C n dans C de composantes f (x, y),, f (x, y). y 1 y n Cela signifie que pour un vecteur h C n on a d h f(x, y).h = f y 1 h f y n. De plus pour tout y Y la fonction x d y f(x, y) est mesurable. En effet elle est limite d une suite de fonctions mesurables, puisque pour h C n on a d y f(x, y).h = lim k f(x, y + h/k) f(x, y). 1/k L Hypothèse c) est de nouveau une hypothèses de domination. Elle implique en particulier que y Y, d y f(x, y) dµ < + et que donc d y f(x, y) L 1 (µ) (ie. les composantes de d y f(x, y) sont dans L 1 (µ)). Preuve. Soit y Y et r > 0 tel que B(y, r) Y et soit 0 h B(y, r). Un développement de Taylor de f en y à l ordre 1 donne alors F (y + h) F (y) = (f(x, y + h) f(x, y))dµ = (d y f(x, y).h + ε x,y (h). h ) dµ. Comme les fonctions x f(x, y + h), x f(x, y) et x d y f(x, y).h sont mesurables et même dans L 1 (µ) on obtient que x ε x,y (h) est également mesurable et dans L 1 (µ). Cela permet d utiliser la linéarité de l intégrale pour obtenir ( ) ( ) F (y + h) F (y) = d y f(x, y)dµ.h + ε x,y (h)dµ. h. D après l inégalité des accroissements finis on a alors pour presque tout x X, ε x,y (h) h = f(x, y + h) f(x, y) d y f(x, y) sup d y f(x, y + θh). h + d y f(x, y). h θ [0,1] 2g(x) h. (6.9) C est une hypothèse de domination. Par ailleurs f étant différentiable dans la variable y d après l hypothèse c) on obtient pour presque tout x X et y fixés que ε x,y (h) h

53 Soit alors (h k ) k N une suite telle que tel que h k 0. Alors la fonction ε k définie pour y Y par ε k (x) = ε x,y (h k ) converge presque partout vers 0 et est uniformément majorée par 2g d après (6.9). Le Théorème de Lebesgue version II implique donc que lim k ε x,y (h k )dµ = lim ε x,y(h k )dµ = 0. k On peut donc écrire que pour tout y Y on a F (y + h) = F (y) + d y f(x, y).hdµ + E(y, h). h avec E(y, h) def = ε x,y (h)dµ. On vient de montrer que E(y, h) h 0 différentielle celle proposée par l énoncé. Le résultat est prouvé. 0 ce qui implique que F est différentiable de 52

54 Chapitre 7 Produit d espaces mesurés 7.1 Produit d espaces mesurables. On rappelle d abord ce que donne la Définition dans le cas du produit de 2 espaces. Définition Soit (X 1, M 1 ), (X 2, M 2 ) deux espaces mesurables. On appelle tribu produit notée M 1 M 2 sur X 1 X 2 la tribu engendrée par les rectangles (i.e. les ensembles du type A 1 A 2 où A 1 M 1 et A 2 M 2 ). On peut remarquer que la tribu M 1 M 2 est la plus petite tribu rendant mesurables les application coordonnées { { X1 X Π 1 : 2 X 1 X1 X et Π (x 1, x 2 ) x 2 : 2 X 1. 1 (x 1, x 2 ) x 2 En effet, supposons d abord que Π 1 est mesurable. Alors pour A 1 M 1, Π 1 1 (A 1) = A 1 X 2 M 1 M 2. Réciproquement supposons que T est une tribu sur X 1 X 2 qui rende Π 1 et Π 2 mesurables, alors pour A 1 M 1, A 2 M 2, on a Π 1 1 (A 1) = A 1 X 2 T et Π 1 2 (A 2) = X 1 A 2 T donc (A 1 X 2 ) (X 1 A 2 ) = A 1 A 2 T. On vient de montrer que T contient les rectangles donc M 1 M 2 T d après la définition d une tribu engendrée Remarque Soit f 1 : X 1 C et f 2 : X 2 C deux fonctions mesurables. On définit alors { X1 X f 1 f 2 : 2 C (x 1, x 2 ) f 1 (x 1 )f 2 (x 2 ). La fonction f 1 f 2 est alors mesurable. En effet f 1 f 2 = f 1 Π 1 f 2 Π 2 et donc f 1 f 2 est produit et composée de fonctions mesurables, ce qui implique le résultat d après les Propositions et On donne maintenant un résultat sur les générateurs d une tribu produit. La preuve est laissée en exercice. 53

55 Proposition Soient (X 1, M 1 ) et (X 2, M 2 ) deux espaces mesurables. Si C 1 M 1 def engendre M 1 et contient X 1, et si C 2 M 2 engendre M 2 et contient X 2, alors C 1 C 2 = {C 1 C 2 ; C 1 C 1, C 2 C 2 } engendre M 1 M 2. Remarque Les résultats précédents s étendent au cas du produit de n espaces X 1 X n muni de la tribu M 1 M n. On pourra en particulier remarquer que le produit tensoriel des tribus est associatif. Ansi on peut vérifier que le produit (M 1 M d ) (M d+1 M n ) ne dépend pas de d et est égal à M 1 M n. En fait on sait d après le début de ce chapitre que (M 1 M d ) (M d+1 M n ) est la plus petite tribu rendant mesurable l application (x 1,, x n ) (x 1,, x d ) et (x 1,, x n ) (x d+1,, x n ). C est aussi la plus petite tribu rendant mesurables les projections définies pour tout j [1, n] par (x 1,, x n ) x j. C est donc également M 1 M n par simple vérification. Exemple Grace à la Proposition on retrouve ainsi le fait que le produit de d exemplaires de (R, B(R)) est (R d, B(R d )). On retourne maintenant au cas de deux espaces. Proposition Soient (X 1, M 1 ), (X 2, M 2 ) et (Y, N ) trois ensembles mesurables. Une application f : Y X 1 X 2 est mesurable si et seulement si les applications coordonnées f 1 = Π 1 f et f 2 = Π 2 f le sont. Preuve. Supposons d abord f mesurable. Alors f 1 et f 2 sont également mesurables comme composées de fonctions mesurables. Réciproquement supposons que f 1 et f 2 soient mesurables. Puisque les pavés engendrent la tribu produit, il suffit d après la Proposition de montrer que l image réciproque d un pavé par f est mesurable. Soient donc A 1 M 1 et A 2 M 2, alors f 1 (A 1 A 2 ) = f 1 ((A 1 X 2 ) (X 1 A 2 )) = f 1 ( Π 1 1 (A 1) Π 1 2 (A 2) ) = f 1 ( Π 1 1 (A 1) ) f 1 ( Π 1 2 (A 2) ) = (Π 1 f) 1 (A 1 ) (Π 2 f) 1 (A 2 ) = f 1 1 (A 1) f 1 2 (A 2) N, (7.1) puisque M est une tribu. On a utilisé les propriétés des fonctions réciproques rappelées après (1.1). On a ainsi montré que f est mesurable. Cela conclue la preuve. Regardons pour finir cette section les propriétés de quelques fonctions et ensembles particuliers. Proposition Soit (X 1, M 1 ), (X 2, M 2 ) deux espaces mesurables, alors : a) Si (Y, N ) est mesurable et si f : X 1 X 2 Y est mesurable alors pour tout x 1,0 X 1 et x 2,0 X 2 fixés, les fonctions suivantes sont mesurables : { { X2 Y f x1,0 : x 2 f(x 1,0, x 2 ), et f X1 Y x 2,0 : x 1 f(x 1, x 2,0 ). 54

56 b) Si A M 1 M 2, alors x 1,0 X 1 et x 2,0 X 2 fixés, les ensembles suivants sont mesurables : A x1,0 = {x 2 X 2 ; (x 1,0, x 2 ) A} et A x2,0 = {x 1 X 1 ; (x 1, x 2,0 ) A}. (7.2) Preuve. Pour a) on remarque que pour x 1,0 X 1 fixé on a f x1,0 = f h x1,0 où { X2 X h x1,0 : 1 X 2 x 2 (x 1,0, x 2 ). Pour cette fonction les applications coordonnées sont la fonction constante x 2 x 1,0 et l application Identité Id X2 : x 2 x 2. Elles sont clairement mesurables et donc d après la proposition 7.1.6, la fonction h x1,0 aussi. La Proposition implique alors que la composée f x1,0 est également mesurable. On obtient de même que f x2,0 est mesurable en échangeant le rôle des variables. Cela prouve le point a). Pour montrer le point b), prenons f = 1 A et donc f x1,0 = f(x 1,0,.) = 1 Ax1,0. Or f x1,0 est mesurable par a) donc A x1,0 = fx 1 1,0 ({1}) aussi. On obtient de même que A x2,0 est mesurable en échangeant les rôles des variables. Cela conclue la preuve. 7.2 Mesure produit, Théorème de Fubini. Définition-Proposition Soit (X 1, M 1, µ 1 ), (X 2, M 2, µ 2 ) deux espaces mesurés où les mesures µ j sont positives et finies (resp. σ-finies). Alors il existe une unique mesure notée µ 1 µ 2 sur (X 1 X 2, M 1 M 2 ) telle que A 1 M 1, A 2 M 2, µ 1 µ 2 (A 1 A 2 ) = µ 1 (A 1 ) µ 2 (A 2 ), (7.3) et cette mesure est finie (resp. σ-finie). Le triplet (X 1 X 2, M 1 M 2, µ 1 µ 2 ) est appelé espace mesuré produit. On renvoie au Théorème pour la définition d une application σ finie. Pour la preuve de cette Proposition, on va avoir besoin du résultat suivant, dont la preuve un peu technique est omise. Lemme Sous les hypothèses de la Proposition 7.2.1, considérons A M 1 M 2. Alors l application ϕ A 1 : { X1 R + x 1 µ 2 (A x1 ) est mesurable. Preuve de la Proposition. On vient de voir que A M 1 M 2, ϕ A 1 est mesurable. On pose alors µ 1 µ 2 (A) def = ϕ A 1 (x 1 )dµ 1. X 1 (7.4) L application µ 1 µ 2 est bien définie sur M 1 M 2 et à valeur dans R +. Montrons que c est une mesure. On observe d abord que µ 1 µ 2 ( ) = µ 2 ( )dµ 1 = 0, 55

57 puisque lorsque A = on a A x1 = dans X 2. Montrons ensuite l additivité dénombrable. On considère (A j ) j N M 1 M 2 une suite d ensembles mesurables disjoints et on pose A = j N A j. Alors on observe d une part que X 2 A x1 = ( A j ) x1 = (A jx1 ) et d autres part que les A jx1 sont disjoints puisque les A j le sont. On écrit alors µ 1 µ 2 (A) = µ 2 (A x1 )dµ 1 = Beppo Levi = j N ( ) ensembles disjoints µ 2 j N A jx1 dµ1 = µ 2 (A jx1 )dµ 1 = j N µ 1 µ 2 (A j ). µ 2 (A jx1 )dµ 1 j N (7.5) Ici le Théorème de Beppo-Levi s applique aux fonctions positives x 1 n j=1 µ 2(A jx1 ) qui convergent en croissant vers la somme j N µ 2(A jx1 ). C est le résultat cherché. Pour finir montrons la dernière propriété. Pour A 1 M 1 et A 2 M 2, on a µ 1 µ 2 (A 1 A 2 ) = µ 2 ((A 1 A 2 ) x1 )dµ 1 = µ 2 (A 2 ) 1 A1 (x 1 )dµ 1 (7.6) = µ 2 (A 2 ) 1 A1 (x 1 )dµ 1 = µ 2 (A 2 )µ 1 (A 1 ) En particulier, si µ 1 et µ 2 sont finies (resp. σ finies), alors µ 1 µ 2 aussi. Par ailleurs M 1 M 2 est engendré par les rectangles sur lesquels µ 1 µ 2 a une valeur donnée par l énoncé donc elle est uniquement déterminée sur M 1 M 2 tout entier d après le Théorème de prolongement Elle est donc unique. La preuve est finie. On peut maintenant aborder les Théorèmes de Fubini-Tonelli et de Fubini, qui font partie des résultats fondamentaux du cours. Théoreme (de Fubini-Tonelli) Soit (X 1, M 1, µ 1 ), (X 2, M 2, µ 2 ) deux espaces mesurés où les mesures µ j sont positives et σ finis. Alors pour toute fonction f mesurable sur X 1 X 2 à valeur dans R +, les fonctions F 1 : { { X1 R + x 1 X2 R + et F X 2 f(x 1, x 2 )dµ 2 : 2 x 2 X 1 f(x 1, x 2 )dµ 1 sont mesurables positives et on a ( ) f(x 1, x 2 )dµ 1 µ 2 = f(x 1, x 2 )dµ 2 dµ 1 = X 1 X 2 X 2 X 1 X 2 ( ) f(x 1, x 2 )dµ 1 dµ 2. X 1 (Précisons que dans le premier terme le signe intégrale double est une convention d écriture pour rappeler que l intégration se fait sur un espace produit) Preuve. On regarde d abord le cas d une fonction indicatrice. Soit A M 1 M 2 et considérons f = 1 A. Pour cette fonction f on a alors pour tout x 1 X 1, F 1 (x 1 ) = 1 A (x 1, x 2 )dµ 2 = µ 2 (A x1 ) = ϕ A 1 (x 1 ). X 2 56

58 La fonction ϕ A 1 est mesurable d après le lemme admis De plus, déf. (7.4) fdµ 1 µ 2 = 1 A dµ 1 µ 2 = µ 1 µ 2 (A) = ϕ A 1 dµ 1 = F 1 dµ 1. En échangeant les rôles de x 1 et x 2, on obtient par unicité de la mesure produit que { µ 1 µ 2 (A) = ϕ A 2 (x 2 )dµ 2 où ϕ A X2 R 2 : + X 2 x 2 µ 1 (A x2 ). (7.7) On rappelle que A x2 a été défini en (7.2). On obtient alors de manière similaire que si f = 1 A alors F 2 = ϕ A 2 et F 2 (x 2 )dµ 2 = µ 1 µ 2 (A). Le cas des fonctions étagées s en déduit alors par somme finie. Pour le cas général, on travaille d abord sur les fonctions étagées. Soit s k une suite de fonctions étagées positives tendant en croissant vers f. On définit S k,1 (x 1 ) = s k (x 1, x 2 )dµ 2 X 2 et S k,2 (x 2 ) = s k (x 1, x 2 )dµ 1. X 1 Alors d après le résultat précédemment prouvé sur les fonctions étagées on a : S k,1 dµ 1 = S k,2 dµ 2 = s k dµ 1 µ 2 (7.8) X 1 X 2 On va appliquer plusieurs fois le Théorème de Beppo-Levi. On a d abord BL s k dµ 1 µ 2 fdµ 1 µ 2 (7.9) µ 1 µ 2 Ensuite on a 0 S k,1 = X 2 s k (., x 2 )dµ 2 donc 0 S k,1 F 1 en croissant avec k, ce qui implique BL s k1 (x 1 )dµ 1 F 1 dµ 1. (7.10) pour µ 1 On en déduit (7.9) fdµ 1 µ 2 = lim k (7.8) s k dµ 1 µ 2 = lim k (7.10) S k,1 (x 1 )dµ 1 = F 1 dµ 1. C est le résultat cherché pour F 1. Le même résultat s obtient pour F 2 en échangeant le rôle des variables. La preuve est complète. Exemple Un exemple basique d interversion d intégrale est donnée par l égalité a n,p = a n,p = a n,p n p p n n,p (dans R + ) pour a n,p R +. C est le Théorème de Fubini-Tonelli sur (N, P(N)) muni de la mesure de comptage. Souvent dans les applications, le Théorème de Fubini-Tonelli sert à démontrer qu une fonction est dans L 1 (µ 1 µ 2 ). Le Théorème de Fubini qui va suivre sert alors à calculer explicitement son intégrale. 57

59 Théoreme (de Fubini) Soit (X 1, M 1, µ 1 ), (X 2, M 2, µ 2 ) deux espaces mesurés, où les mesures sont positives et σ finies. Soit f : X 1 X 2 C une fonction mesurable. Alors : a) Si X 1 ( X 2 f(x 1, x 2 ) dµ 2 ) dµ 1 <, alors f L 1 (µ 1 µ 2 ). b) Si f L 1 (µ 1 µ 2 ) alors pour presque tout x 1 X 1 on a f(x 1,.) L 1 (µ 2 ), de plus F 1 : x 1 f(x 1, x 2 )dµ 2 est intégrable sur X 1. On obtient de même en échangeant les rôles de x 1 et x 2. Enfin toutes les intégrales sont égales, i.e. : ( ) ( ) f(x 1, x 2 )dµ 2 dµ 1 = f(x 1, x 2 )dµ 1 dµ 2 X 1 X 2 X 2 X 1 (7.11) = f(x 1, x 2 )dµ 1 µ 2. X 1 X 2 Preuve. Le point a) est une conséquence directe du Théorème de Fubini-Tonelli appliqué à la fonction positive f. Pour le point b), on considère dans un premier temps une fonction f à valeur réelle, pour laquelle on écrit f = f + f. Appliquons le Théorème de Fubini-Tonelli à la fonction positive f + f. On obtient ( ) F ubini T onelli f + (x 1, x 2 )dµ 2 dµ 1 = f + dµ 1 µ 2 f dµ 1 µ 2 <. X 2 X 1 puisque f L 1 (µ 1 µ 2 ). Posons alors F +,1 : x 1 X 2 f + (x 1, x 2 )dµ 2. D après la Proposition le fait que X 1 F +,1 dµ 1 < implique F +,1 < µ 1 presque partout, c est à dire f(x 1,.) L 1 (µ 2 ) pour presque tout x 1. En privilégiant la variable x 2 au lieu de la variable x 1 on obtient de même X 2 ( X 1 f + (x 1, x 2 )dµ 1 ) F ubini T onelli dµ 2 = f + dµ 1 µ 2 <. ce qui prouve (7.11) avec f + au lieu de f. En utilisant le fait que 0 f f on obtient de même (7.11) avec f au lieu de f. Les intégrales étant toutes finies on peut sommer et utiliser la linéarité, ce qui donne finalement (7.11) pour f. Dans le cas où f est complexe, on écrit f = f + f +ig + ig et on obtient le résultat en utilisant que 0 f ± f et 0 g ± f. Le Théorème est démontré. 7.3 Changements de variables et intégration On se place dans cette courte section sans preuve sur R d muni de la tribu des boréliens et de la mesure de Lebesgue. On rappelle que pour U et V deux ouverts de R d, une application ϕ : U V est un C 1 difféomorphisme si elle est bijective, C 1 et de réciproque C 1. Une telle application est aussi appelée changement de variables. Commençons par un rappel du cours de calcul différentiel : 58

60 Proposition Soit U ouvert de R d. Alors une application ϕ : U R d est un C 1 difféomorphisme de U sur ϕ(u) si et seulement si : i) ϕ est injective ; ii) ϕ est C 1 ( les dérivées partielles le sont) ; iii) x U, J(ϕ) = det(ϕ (x)) 0. Le Théorème suivant se montre par récurrence sur la dimension grace à un argument de localisation. La preuve est omise. Théoreme Soit U et V deux ouverts de R d et ϕ un C 1 difféomorphisme de U sur V. Alors pour toute fonction positive f sur V on a : f(y)dy = f ϕ(x) J(ϕ)(x) dx et f ϕ(x)dx = f(y) J(ϕ 1 )(y) dy. V U En particulier, λ(ϕ(a)) = A J(ϕ)(x) dx (λ est la mesure de Lebesgue). U V Exemples Changement de variables linéaire Si ϕ est définie par ϕ(x) = αx + β, α R, β R d, alors J(ϕ) = α d et on a V f(y)dy = U f(αx + β) α d dx. 2 Coordonnées Polaires Soit f une fonction borélienne définie sur B R = {(x, y); x 2 + y 2 < R}. Alors la fonction f pol : (r, θ) f(r cos θ, r sin θ) définie sur ]0, R[ ]0, 2π[ est mesurable positive, et si f intégrable alors f pol aussi. De plus on a l égalité f(x, y)dxdy = f(r cos θ, r sin θ)rdrdθ = f pol (r, θ)drdθ, B R [0,2π] [0,R] où on a utilisé le changement de variables suivant [0,2π] [0,R] ϕ : { ]0, R[ ]0, 2π[ BR \ [0, R[ {0} (r, θ) (x, y). On pourra remarquer que pour la mesure produit, le segment [0, R[ {0} est de mesure nulle, et peut être enlevé du domaine d intégration de f. 59

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 & UE LM365 Intégration 2 Année 2010 11 Théorie de la Mesure et Intégration Responsable des cours : Amaury LAMBERT

Plus en détail

Théorie de la mesure. S. Nicolay

Théorie de la mesure. S. Nicolay Théorie de la mesure S. Nicolay Année académique 2011 2012 ii Table des matières Introduction v 1 Mesures 1 1.1 Sigma-algèbres................................. 1 1.2 Mesures.....................................

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Ecole Nationale de la Statistique et de l Administration Economique Théorie de la Mesure et Intégration Xavier MARY 2 Table des matières I Théorie de la mesure 11 1 Algèbres et tribus de parties d un ensemble

Plus en détail

Intégrale de Lebesgue

Intégrale de Lebesgue Intégrale de Lebesgue L3 Mathématiques Jean-Christophe Breton Université de Rennes 1 Septembre Décembre 2014 version du 2/12/14 Table des matières 1 Tribus (σ-algèbres) et mesures 1 1.1 Rappels ensemblistes..............................

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

THÉORIE DE LA MESURE ET DE L INTÉGRATION.

THÉORIE DE LA MESURE ET DE L INTÉGRATION. THÉORIE DE LA MESURE ET DE L INTÉGRATION. THIERRY GALLAY Transcrit par Tancrède LEPOINT 29 UNIVERSITÉ JOSEPH FOURIER, GRENOBLE TABLE DES MATIÈRES Avant-propos Biographie sommaire...........................................

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Mesure et Intégration (Notes de cours de L3)

Mesure et Intégration (Notes de cours de L3) Mesure et Intégration (Notes de cours de L3) Ahmed Zeriahi Version préliminaire-octobre 2011 Avertissement : Ceci est une version préliminaire des notes du cours que l auteur a dispensé en troisème année

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Mesures et Intégration

Mesures et Intégration Mesures et Intégration Marc Troyanov - EPFL - Octobre 2005 30 avril 2008 Ce document contient les notes du cours de Mesure et Intégration enseigné à l EPFL par Marc Troyanov, version 2005-2006. Table des

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Construction de l'intégrale de Lebesgue

Construction de l'intégrale de Lebesgue Université d'artois Faculté des ciences Jean Perrin Mesure et Intégration (Licence 3 Mathématiques-Informatique) Daniel Li Construction de l'intégrale de Lebesgue 10 février 2011 La construction de l'intégrale

Plus en détail

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours MSUR T INTÉGRATION N UN DIMNSION Notes de cours André Giroux Département de Mathématiques et Statistique Université de Montréal Mai 2004 Table des matières 1 INTRODUCTION 2 1.1 xercices.............................

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 Université PARIS 6 2008/2009 Jean BERTOIN 1 Table des Matières ( ) ces parties peuvent ^etre omises en première lecture, et ne feront pas

Plus en détail

Problèmes de Mathématiques Filtres et ultrafiltres

Problèmes de Mathématiques Filtres et ultrafiltres Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

MA6.06 : Mesure et Probabilités

MA6.06 : Mesure et Probabilités Année universitaire 2002-2003 UNIVERSITÉ D ORLÉANS Olivier GARET MA6.06 : Mesure et Probabilités 2 Table des matières Table des matières i 1 Un peu de théorie de la mesure 1 1.1 Tribus...............................

Plus en détail

Intégration sur des espaces produits

Intégration sur des espaces produits Chapitre 5 Intégration sur des espaces produits 5.1 Produit de deux mesures Étant donnés deux espaces mesurés (Ω 1, F 1, µ 1 ) et (Ω 2, F 1, µ 2 ), le but de cette section est de construire une mesure

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : [email protected] Mots-clés : équation fonctionnelle, série

Plus en détail

CHAPITRE IV. L axiome du choix

CHAPITRE IV. L axiome du choix CHAPITRE IV L axiome du choix Résumé. L axiome du choix AC affirme qu il est légitime de construire des objets mathématiques en répétant un nombre infini de fois l opération de choisir un élément dans

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

4. Martingales à temps discret

4. Martingales à temps discret Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Cours de Probabilités et de Statistique

Cours de Probabilités et de Statistique Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Produits d espaces mesurés

Produits d espaces mesurés Chapitre 7 Produits d espaces mesurés 7.1 Motivation Au chapitre 2, on a introduit la mesure de Lebesgue sur la tribu des boréliens de R (notée B(R)), ce qui nous a permis d exprimer la notion de longueur

Plus en détail

Mesures gaussiennes et espaces de Fock

Mesures gaussiennes et espaces de Fock Mesures gaussiennes et espaces de Fock Thierry Lévy Peyresq - Juin 2003 Introduction Les mesures gaussiennes et les espaces de Fock sont deux objets qui apparaissent naturellement et peut-être, à première

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

1 Définition et premières propriétés des congruences

1 Définition et premières propriétés des congruences Université Paris 13, Institut Galilée Département de Mathématiques Licence 2ème année Informatique 2013-2014 Cours de Mathématiques pour l Informatique Des nombres aux structures Sylviane R. Schwer Leçon

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

Premiers exercices d Algèbre. Anne-Marie Simon

Premiers exercices d Algèbre. Anne-Marie Simon Premiers exercices d Algèbre Anne-Marie Simon première version: 17 août 2005 version corrigée et complétée le 12 octobre 2010 ii Table des matières 1 Quelques structures ensemblistes 1 1.0 Ensembles, relations,

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices Lycée Pierre de Fermat 2012/2013 MPSI 1 Feuille d exercices Manipulation des relations d ordre. Relation d ordre Exercice 1. Soit E un ensemble fixé contenant au moins deux éléments. On considère la relation

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

Corps des nombres complexes, J Paul Tsasa

Corps des nombres complexes, J Paul Tsasa Corps des nombres complexes, J Paul Tsasa One Pager Février 2013 Vol. 5 Num. 011 Copyright Laréq 2013 http://www.lareq.com Corps des Nombres Complexes Définitions, Règles de Calcul et Théorèmes «Les idiots

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

TIQUE DE FRANCE NILSYSTÈMES D ORDRE 2 ET PARALLÉLÉPIPÈDES

TIQUE DE FRANCE NILSYSTÈMES D ORDRE 2 ET PARALLÉLÉPIPÈDES Bulletin de la SOCIÉTÉ MATHÉMATIQUE DE FRANCE NILSYSTÈMES D ORDRE 2 ET PARALLÉLÉPIPÈDES Bernard Host & Alejandro Maass Tome 135 Fascicule 3 2007 SOCIÉTÉ MATHÉMATIQUE DE FRANCE Publié avec le concours du

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions HQ = He 1 He 2 He 3 He 4 HQ e 5 comme anneaux (avec centre Re 1 Re 2 Re 3 Re 4

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

Axiomatique de N, construction de Z

Axiomatique de N, construction de Z Axiomatique de N, construction de Z Table des matières 1 Axiomatique de N 2 1.1 Axiomatique ordinale.................................. 2 1.2 Propriété fondamentale : Le principe de récurrence.................

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Objets Combinatoires élementaires

Objets Combinatoires élementaires Objets Combinatoires élementaires 0-0 Permutations Arrangements Permutations pour un multi-ensemble mots sous-ensemble à k éléments (Problème du choix) Compositions LE2I 04 1 Permutations Supposons que

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. DÉVELOPPEMENT 32 A 5 EST LE SEUL GROUPE SIMPLE D ORDRE 60 Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. Démonstration. On considère un groupe G d ordre 60 = 2 2 3 5 et

Plus en détail