1 Notion d expérience aléatoire Définition 1.1 Expérience aléatoire Exemple 1.1 Remarqe. Définition 1.2 Événement Remarqe.

Dimension: px
Commencer à balayer dès la page:

Download "1 Notion d expérience aléatoire Définition 1.1 Expérience aléatoire Exemple 1.1 Remarqe. Définition 1.2 Événement Remarqe."

Transcription

1 Ω = {, 2, 3, 4, 5, 6} A A A B A B A B A B A B A B Ω A B A B A {A, A} Ω {{ω}, ω Ω}

2 A B A B A B A B C {A, B, C} A B A B A B A B = 2652 (7, V ) (V, 7 ) (7, V ) (V, 7 ) ( 52 2 ) = = = 90 (n, n) = 36 (, 6) (6, ) (, 6) (6, ) ( 6 2) + 6 = 2

3 Ω P : P(Ω) [0, ] P(Ω) = A B P(A B) = P(A) + P(B) (Ω, P) Ω P Ω (Ω, P) P( ) = 0 (A, B) P(Ω) 2 P(A B) = P(A) + P(B) P(A B) A P(Ω) P(A) = P(A) (A, B) P(Ω) 2 A B P(A) P(B) S A S P(A) = Ω P Ω P({ω}) = ω Ω (p ω ) ω Ω ω Ω p ω = P Ω P({ω}) = p ω ω Ω

4 Ω = {a, b} P Ω P({a}) = 0 P({b}) = (Ω, P) S P(Ω) A S P(A) = Ω Ω Ω P({ω}) = ω Ω Ω Ω P Ω A P(A) = A Ω A P(A) = 4 52 = 3 B P(B) = 3 52 = 4 (Ω, P) (A, B) P(Ω) 2 P(B) 0 A B P(A B) P B (A) P(A B) P(B)

5 00 B + B + P(B + ) = 7 00 A B R + P(B) = = P(R+) = 00 = B P(B R + 7 ) = = 7 75 P(B+ ) = P(B R + ) = P(R + )P(B R + ) B P(R + B) = = 7 9 P(B+ ) = P(B R + ) = P(B)P(R + B) (Ω, P) B P(Ω) P(B) 0 P B : A P(Ω) P B (A) Ω (Ω, P) (A,..., A n ) P(Ω) n P(A A n ) 0 P(A A n ) = P(A )P(A 2 A )P(A 3 A A 2 )... P(A n A A n ) B i i P(B B 2 B 3 ) P(B ) = 3 0 B P(B 2 B ) = 2 0 B B P(B 3 B B 2 ) = 0 P(B B 2 B 3 ) = P(B )P(B 2 B )P(B 3 B 2 B ) = = 3 500

6 (Ω, P) S B P(B) = A S P(B A)P(A) S A P(B) = P(B A)P(A) + P(B A)P(A) T M P(M) = P(T M) = 00 P(T M) = 00 P(T) = P(T M)P(M) + P(T M)P(M) = ( 00 7 ) = (Ω, P) A B P(A) 0 P(B) 0 P(A B) = P(B A)P(A) P(B) S A B P(B) 0 P(A B) = P(B A)P(A) P(B S)P(S) S S A B A B B A B AV AR BV BR A P(AV BR) P(AV BR) = P(BR AV) P(BR AV)P(AV) + P(BR AR)P(AR) P(AV) = 3 5 P(AR) = 2 5 P(BR AV) = 3 6 P(BR AR) = 4 6 P(AV BR) = = 5 7

7 (Ω, P) A B P(A B) = P(A)P(B) (Ω, P) A B P(B) > 0 A B P(A B) = P(A) B B 2 B B 2 B B 2 (Ω, P) (A i ) i I (A i ) i I J I, P A j = P(A j ) j J j J (A i ) i I A i

8 A A 2 A 3 P(A ) = P(A 2 ) = P(A 3 ) = 2 P(A A 2 ) = P(A A 3 ) = P(A 2 A 3 ) = 4 A A 2 A 3 P(A A 2 A 3 ) = 0 P(A )P(A 2 )P(A 3 ) A A 2 A Ω Ω X(Ω) R S X(Ω) = 2, 2 (Ω, P) X Ω A X(Ω) X (A) Ω X (A) X A A {x} X ({x}) X = x P(X A) P(X = x) X x R P(X ], x]) P(X [x, + [) P(X x) P(X x) X Ω X = x x X(Ω) P(X = x) = x X(Ω)

9 X Ω = {PPP, FPP, PFP, PPF, FFP, FPF, PFF, FFF} X = X ({}) {FPP, PFP, PPF} X 2 X ([2, + [) X ({2, 3}) {FFP, FPF, PFF, FFF} (Ω, P) X Ω X P X : { P(X(Ω)) [0, ] A P(X A) X Y X Y X L X L (Ω, P) X Ω P X X(Ω) (Ω, P) X Ω P X P(X = x) x X(Ω) X Ω P(X A) A P(X(Ω)) P(X = x) x X(Ω) (Ω, P) X Ω X E x E, P(X = x) = E (Ω, P) X Ω {0, } X p [0, ] P(X = ) = p P(X = 0) = p X B(p)

10 X X() = X() = 0 p = P() (Ω, P) A Ω A P(A) (Ω, P) X Ω 0, n X n N p [0, ] P(X = k) = ( n k) p k ( p) n k k 0, n X B(n, p) n p B(n, p) q r n X ( ) ( Y ) X B n, Y B q q+r n, r q+r (Ω, P) X Ω f : X(Ω) E Y = f X Ω Y = f(x) Y = f X (Ω, P) { X Ω f : X(Ω) E Y = f(x) P(Y(Ω)) [0, ] A P(X f (A)) y Y(Ω) P(Y = y) = P(X f ({y})

11 X 2, 2 Y = X 2 {0,, 4} P(Y = 0) = P(X = 0) = 5 P(Y = ) = P(X = ) + P(X = ) = 2 5 P(Y = 4) = P(X = 2) + P(X = 2) = 2 5 (Ω, P) X { Ω B P(Ω) P(B) > 0 P(X(Ω)) [0, ] X B P X B : A P(X A B) X B P(X = x B) x X(Ω) P(X A B) A P(X(Ω)) X Y Ω (X, Y) { Ω X(Ω) Y(Ω) ω (X(ω), Y(ω)) (Ω, P) X Y Ω X Y (X, Y) P (X,Y) (A, B) P(X(Ω)) P(Y(Ω)), P (X,Y) (A B) = P((X, Y) A B) X Y P((X, Y) = (x, y)) (x, y) X(Ω) Y(Ω) (X, Y) P((X, Y) = (x, y)) (x, y) X(Ω) Y(Ω) (X, Y) (X, Y) X Y (Ω, P) X Y Ω X Y x X(Ω), P(X = x) = P((X, Y) = (x, y)) y Y(Ω), P(Y = y) = y Y(Ω) x X(Ω) P((X, Y) = (x, y))

12 2 4 4 U V U V Ω = {{, 2}, {, 3}, {, 4}, {2, 3}, {2, 4}, {3, 4}} U {, 2, 3} V {2, 3, 4} U V (Ω, P) X Y Ω y Y(Ω) X Y = y P X Y=y x X(Ω) Y X = x P Y X=x n (Ω, P) X{,..., X n Ω Ω X (Ω) X (X,..., X n ) n (Ω) ω (X (ω),..., X n (ω)) X,..., X n (X,..., X n ) X,..., X n (Ω, P) X Y Ω X Y (A, B) P(X(Ω)) P(Y(Ω)), P((X, Y) A B) = P(X A)P(Y B) (Ω, P) X Y Ω X Y (x, y) X(Ω) Y(Ω), P((X, Y) = (x, y)) = P(X = x)p(y = y)

13 X Y (X, Y) X Y A B A B (Ω, P) (X i ) i I (X i ) i I (A i ) i I ( ) P(X i (Ω)), P X i A i = P(X i A i ) i I i I i I (Ω, P) (X i ) i I (X i ) i I (x i ) i I ( ) X i (Ω), P X i = x i = P(X i = x i ) i I i I i I X Y {, } Z = XY X, Y, Z (A i ) i I ( Ai ) i I (Ω, P) p [0, ] X,..., X n B(p) X + + X n B(n, p) n p B(n, p) (Ω, P) X Y Ω f g X(Ω) Y(Ω) f(x) g(y)

14 (Ω, P) X Ω X E(X) = P({ω})X(ω) = P(X = x)x ω Ω x X(Ω) X X X X (Ω, P) A P(Ω) E( A ) = P(A) (Ω, P) X Ω X E(X) = 0 X X E(X) (Ω, P) X Y Ω (λ, µ) R 2 E(λX + µy) = λe(x) + µe(y) X Ω X E(X) 0 X Y Ω X Y E(X) E(Y) X E(X) E( X ) R Ω (Ω, P) X Ω c R E(X) = c X E R E(X) = E x p [0, ] X Ω B(p) E(X) = p n N p [0, ] X Ω B(n, p) E(X) = np x E

15 (Ω, P) X Ω f X(Ω) R E(f(X)) = P({ω})f(X(ω)) = P(X = x)f(x) ω Ω x X(Ω) X, n E(2 X ) (X, Y) f X(Ω) Y(Ω) R E(f(X, Y)) = f(x, y)p(x = x, Y = y) (x,y) X(Ω) Y(Ω) = x X(Ω) y Y(Ω) = y Y(Ω) x X(Ω) f(x, y)p(x = x, Y = y) f(x, y)p(x = x, Y = y) (Ω, P) X Y Ω X Y E(XY) = E(X)E(Y) X {, } Y = X (Ω, P) X Ω k N k X E ( X k) k X E ( (X E(X)) k) (Ω, P) X Y Ω X Y (X, Y) = E ((X E(X)) (Y E(Y))) = E(XY) E(X)E(Y)

16 (Ω, P) X Y Ω (X, Y) = (Y, X) X Y Z Ω (λ, µ) R 2 (λx + µy, Z) = λ (X, Z) + µ (Y, Z) (X, λy + µz) = λ (X, Y) + µ (Y, Z) X Ω (X, X) 0 R Ω (Ω, P) X Y Ω X Y (X, Y) = 0 X Y { X P(X = 0) = P(X = ) = P(X = ) = 3 Y = X = 0 0 X 0 (X, Y) = 0 X Y Y X P((X, Y) = (0, 0)) = 0 P(X = 0)P(Y = 0) 0 (X, Y) = 0 X Y (Ω, P) X Ω X ( V(X) = (X, X) = E (X E(X)) 2) = E(X 2 ) E(X) 2 X σ(x) = V(x) 2 V(X) = P({ω}) (X(ω) E(X)) 2 = P(X = x) (x E(X)) 2 ω Ω ( ) V(X) = P({ω})X(ω) 2 E(X) 2 = ω Ω x X(Ω) x X(Ω) P(X = x)x 2 E(X) 2

17 (Ω, P) X Y Ω V(X + Y) = V(X) + V(Y) + 2 (X, Y) V(X Y) = V(X) + V(Y) 2 (X, Y) (X + Y, X Y) = V(X) V(Y) (X, Y) = 2 (V(X + Y) V(X) V(Y)) = 2 (V(X) + V(Y) V(X Y)) = (V(X + Y) V(X Y)) 4 (Ω, P) X Y Ω (X, Y) V(X) V(Y) = σ(x)σ(y) (X,Y) σ(x)σ(y) X Y (Ω, P) X,..., X n Ω V(X + + X n ) = V(X ) + + V(X n ) (Ω, P) X Ω c R V(X) = 0 p [0, ] X Ω B(p) V(X) = p( p) n N p [0, ] X Ω B(n, p) V(X) = np( p) (Ω, P) X Ω X V(X) = (Ω, P) X Ω (a, b) R 2 V(aX + b) = a 2 V(X) (Ω, P) X Ω σ(x) > 0 X E(X) σ(x)

18 (Ω, P) X Ω a R + X P(X a) E(X) a P( X a) E( X ) a (Ω, P) X Ω α R + P ( X E(X) ε) V(X) ε 2 = σ(x)2 ε 2 X,..., X n m σ X n = n X k V( n X n ) = σ2 n ε R + k= P ( Xn m ε ) σ2 nε 2 P ( Xn m ε ) = 0 n +

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Loi d une variable discrète

Loi d une variable discrète MATHEMATIQUES TD N : VARIABLES DISCRETES - Corrigé. P[X = k] 0 k point de discontinuité de F et P[X = k] = F(k + ) F(k ) Ainsi, P[X = ] =, P[X = 0] =, P[X = ] = R&T Saint-Malo - nde année - 0/0 Loi d une

Plus en détail

MA6.06 : Mesure et Probabilités

MA6.06 : Mesure et Probabilités Année universitaire 2002-2003 UNIVERSITÉ D ORLÉANS Olivier GARET MA6.06 : Mesure et Probabilités 2 Table des matières Table des matières i 1 Un peu de théorie de la mesure 1 1.1 Tribus...............................

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

EI - EXERCICES DE PROBABILITES CORRIGES

EI - EXERCICES DE PROBABILITES CORRIGES EI 1 EI - EXERCICES DE PROBABILITES CORRIGES Notations 1 Les coefficients du binôme sont notés ( n p 2 Un arrangement de n objets pris p à p est noté A p n 3 Si A est un ensemble fini, on notera A ou card

Plus en détail

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,

Plus en détail

Probabilités et statistique. Benjamin JOURDAIN

Probabilités et statistique. Benjamin JOURDAIN Probabilités et statistique Benjamin JOURDAIN 11 septembre 2013 2 i ii À Anne Préface Ce livre est issu du polycopié du cours de probabilités et statistique de première année de l École des Ponts ParisTech

Plus en détail

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 Université PARIS 6 2008/2009 Jean BERTOIN 1 Table des Matières ( ) ces parties peuvent ^etre omises en première lecture, et ne feront pas

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles

Plus en détail

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles Chapitre 3 Événements indépendants et Probabilités conditionnelles Indépendance Indépendance Probabilité conditionnelle Definition Deux événements A et B sont dits indépendants si P(A B) = P(A).P(B) Attention

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

Probabilité 2 Ω = { P, F } Lancer un sou deux fois. Ω = { PP, PF, FP, FF} Ω = { 2, 3, 4,..., as }

Probabilité 2 Ω = { P, F } Lancer un sou deux fois. Ω = { PP, PF, FP, FF} Ω = { 2, 3, 4,..., as } . Définitions préliminaires Probabilité. Définitions préliminaires La théorie des probabilités utilise un langage emprunté à la théorie des ensembles. Il sera nécessaire de définir les éléments de ce langage

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

4. Martingales à temps discret

4. Martingales à temps discret Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les

Plus en détail

1 TD1 : rappels sur les ensembles et notion de probabilité

1 TD1 : rappels sur les ensembles et notion de probabilité 1 TD1 : rappels sur les ensembles et notion de probabilité 1.1 Ensembles et dénombrement Exercice 1 Soit Ω = {1, 2, 3, 4}. Décrire toutes les parties de Ω, puis vérier que card(p(ω)) = 2 4. Soit k n (

Plus en détail

Variables Aléatoires. Chapitre 2

Variables Aléatoires. Chapitre 2 Chapitre 2 Variables Aléatoires Après avoir réalisé une expérience, on ne s intéresse bien souvent à une certaine fonction du résultat et non au résultat en lui-même. Lorsqu on regarde une portion d ADN,

Plus en détail

Calculs de probabilités avec la loi normale

Calculs de probabilités avec la loi normale Calculs de probabilités avec la loi normale Olivier Torrès 20 janvier 2012 Rappels pour la licence EMO/IIES Ce document au format PDF est conçu pour être visualisé en mode présentation. Sélectionnez ce

Plus en détail

3. Caractéristiques et fonctions d une v.a.

3. Caractéristiques et fonctions d une v.a. 3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

ILT. Interfacultair Instituut voor Levende Talen. T@@lvaardig. Actes de communication. Serge Verlinde Evelyn Goris. Katholieke Universiteit Leuven

ILT. Interfacultair Instituut voor Levende Talen. T@@lvaardig. Actes de communication. Serge Verlinde Evelyn Goris. Katholieke Universiteit Leuven IL If I L S V Ey G Khk U L 13/02/02 pé? xp qé xp pz à pz p héhq pé p à q z p à p héhq fé à p à q pz xp q 'p (è) f, '-à- p. x. ' é ff. N xp à py qq' q z b ( f) P xp pô pp L p - pé pz ': z qq', q -? Bj,

Plus en détail

NOTES DE COURS STT1700. Introduction à la statistique. David Haziza

NOTES DE COURS STT1700. Introduction à la statistique. David Haziza NOTES DE COURS STT1700 Introduction à la statistique David Haziza Automne 008 Qu est ce que la statistique? La statistique est la science dont le but est de donner un sens aux données. L étude statistique

Plus en détail

Intégration sur des espaces produits

Intégration sur des espaces produits Chapitre 5 Intégration sur des espaces produits 5.1 Produit de deux mesures Étant donnés deux espaces mesurés (Ω 1, F 1, µ 1 ) et (Ω 2, F 1, µ 2 ), le but de cette section est de construire une mesure

Plus en détail

Probabilités conditionnelles

Probabilités conditionnelles Probabilités conditionnelles Exercice Dans une usine, on utilise conjointement deux machines M et M 2 pour fabriquer des pièces cylindriques en série. Pour une période donnée, leurs probabilités de tomber

Plus en détail

Bases : Probabilités, Estimation et Tests.

Bases : Probabilités, Estimation et Tests. Université René Descartes LMD Sciences de la Vie et de la Santé UFR Biomédicale, M1 de Santé Publique 45 rue des Saints-Père, 75 006 Paris Spécialité Biostatistique M1 COURS de BIOSTATISTIQUE I Bases :

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

9 5 2 5 Espaces probabilisés

9 5 2 5 Espaces probabilisés BCPST2 9 5 2 5 Espaces probabilisés I Mise en place du cadre A) Tribu Soit Ω un ensemble. On dit qu'un sous ensemble T de P(Ω) est une tribu si et seulement si : Ω T. T est stable par complémentaire, c'est-à-dire

Plus en détail

Probabilités et Statistique

Probabilités et Statistique Ricco Rakotomalala Probabilités et Statistique Notes de cours Université Lumière Lyon 2 Avant-propos Ce document est un support de cours pour les enseignements des probabilités et de la statistique. Il

Plus en détail

Cours de Calcul stochastique Master 2IF EVRY. Monique Jeanblanc

Cours de Calcul stochastique Master 2IF EVRY. Monique Jeanblanc Cours de Calcul stochastique Master 2IF EVRY Monique Jeanblanc Septembre 26 2 Contents 1 Généralités 7 1.1 Tribu............................................... 7 1.1.1 Définition d une tribu.................................

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de l espérance d utilité Olivier Bos olivier.bos@u-paris2.fr

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX 1. EXPERIENCE 1 : APPLICATION DE LA LOI FONDAMENTALE DE LA DYNAMIQUE a) On incline d un angle α la table à digitaliser (deuxième ou troisième cran de la table).

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N ENS de Lyon TD 7-8 septembre 0 Introduction aux probabilités Exercice Soit (u n ) n N une suite de nombres réels. On considère σ une bijection de N dans N, de sorte que (u σ(n) ) n N est un réordonnement

Plus en détail

Bases de données Cours 5 : Base de données déductives

Bases de données Cours 5 : Base de données déductives Cours 5 : ESIL Université de la méditerranée Odile.Papini@esil.univmed.fr http://odile.papini.perso.esil.univmed.fr/sources/bd.html Plan du cours 1 Introduction 2 approche sémantique approche axiomatique

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Ecole Nationale de la Statistique et de l Administration Economique Théorie de la Mesure et Intégration Xavier MARY 2 Table des matières I Théorie de la mesure 11 1 Algèbres et tribus de parties d un ensemble

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Que faire lorsqu on considère plusieurs variables en même temps?

Que faire lorsqu on considère plusieurs variables en même temps? Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites

Plus en détail

MARTINGALES POUR LA FINANCE

MARTINGALES POUR LA FINANCE MARTINGALES POUR LA FINANCE une introduction aux mathématiques financières Christophe Giraud Cours et Exercices corrigés. Table des matières I Le Cours 7 0 Introduction 8 0.1 Les produits dérivés...............................

Plus en détail

Molécules et Liaison chimique

Molécules et Liaison chimique Molécules et liaison chimique Molécules et Liaison chimique La liaison dans La liaison dans Le point de vue classique: l approche l de deux atomes d hydrogd hydrogènes R -0,9-1 0 0,5 1 1,5,5 3 3,5 4 R

Plus en détail

P1 : Corrigés des exercices

P1 : Corrigés des exercices P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

Cours de probabilité et statistique

Cours de probabilité et statistique Cours de probabilité et statistique 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0-4 -3-2 -1 0 1 2 3 4 Denis Bichsel 1 1 Probabilité et statistique 1.1 Introduction Le calcul des probabilité semble avoir son origine

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP

Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP Master IMA - UMPC Paris 6 RDMM - Année 2009-200 Fiche de TP Préliminaires. Récupérez l archive du logiciel de TP à partir du lien suivant : http://www.ensta.fr/~manzaner/cours/ima/tp2009.tar 2. Développez

Plus en détail

Bougez, protégez votre liberté!

Bougez, protégez votre liberté! > F a Bgz, pégz v bé! www.a-. CAT.ELB.a240215 - Cé ph : Fa Daz à v p aé N az p a v gâh a v! Aj h, p g évq v ; Pa, p 4 aça q, v, éq qaé v. Ca ax é ç, b pa évé ax p âgé a h a p j. E pè v, h pa épagé. Pa

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Méthode de Monte Carlo pour le calcul d'options

Méthode de Monte Carlo pour le calcul d'options Méthode de Monte Carlo pour le calcul d'options LADIAS Elie, WANG Shuai 7 juin 2013 1 Table des matières 1 Méthode de Monte-Carlo et Calcul d'intégrales 4 1.1 Description de la méthode....................

Plus en détail

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

ÉTUDE ASYMPTOTIQUE D UNE MARCHE ALÉATOIRE CENTRIFUGE

ÉTUDE ASYMPTOTIQUE D UNE MARCHE ALÉATOIRE CENTRIFUGE ÉTUDE ASYMPTOTIQUE D UNE MARCHE ALÉATOIRE CENTRIFUGE JEAN-DENIS FOUKS, EMMANUEL LESIGNE ET MARC PEIGNÉ J.-D. Fouks. École Supérieure d Ingénieurs de Poitiers. 40 avenue du Recteur Pineau, 860 Poitiers

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

RDV E-commerce 2013 Mercredi 6 Mars, Technopark

RDV E-commerce 2013 Mercredi 6 Mars, Technopark RDV E-mm 2013 Md 6 M, Thpk Smm 1 P q E 2 Q x p? 3 Q v? 4 d é d 2 0 1 5 p 2 0 1 3 6 h g 7 d f é 1 Pq E-mm? Pq S E-Cmm? D d d Md IT XCOM gé dp 2009 phé E-mm.m F à mhé p, XCOM h d déd E-mm, Pm éq, E-Mkg Chff

Plus en détail

Cours de méthodes de scoring

Cours de méthodes de scoring UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-

Plus en détail

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

Probabilités (méthodes et objectifs)

Probabilités (méthodes et objectifs) Probabilités (méthodes et objectifs) G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Probabilités (méthodes et objectifs) 10 juin 2007 1 / 19 1 Déterminer la loi de probabilité d

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Incorporé au 3 e régiment d infanterie coloniale

Incorporé au 3 e régiment d infanterie coloniale Ax 59 : ch u u c u C B L ch u u c u C B 1 N A Fç Adu Eugè Gg [979?] Au C Afd A Luc Lu Augu M Aub Luc Muc Auc Augu E Auc Lu Auy Ru Auz Rhë Mu D u d c Pf Su N 15 cb 1886 à P N 8 b 1879 à P N 13 û 1885 à

Plus en détail

AOT 13. et Application au Contrôle Géométrique

AOT 13. et Application au Contrôle Géométrique AOT 13 Géométrie Différentielle et Application au Contrôle Géométrique Frédéric Jean Notes de cours Édition 2011/2012 ii Table des matières 1 Variétés différentiables 1 1.1 Variétés différentiables............................

Plus en détail

Cours de gestion des risques d assurances et de théorie de la ruine. Stéphane Loisel

Cours de gestion des risques d assurances et de théorie de la ruine. Stéphane Loisel Cours de gestion des risques d assurances et de théorie de la ruine Stéphane Loisel ISFA, 2005-2006 Table des matières I Modélisation de la charge sinistre : du modèle individuel au modèle collectif 5

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Fiabilité des Systèmes et des Logiciels

Fiabilité des Systèmes et des Logiciels Ensimag - 3ème année Fiabilité des Systèmes et des Logiciels Notes de cours Olivier Gaudoin 2 Table des matières 1 Problématique de la sûreté de fonctionnement des systèmes informatiques 5 1.1 Contexte.....................................

Plus en détail

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Jen-Pierre Dedieu, Jen-Pierre Rymond ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Institut de Mthémtiques Université Pul Sbtier 31062 Toulouse cedex 09 jen-pierre.dedieu@mth.univ-toulouse.fr jen-pierre.rymond@mth.univ-toulouse.fr

Plus en détail

Compilation. Algorithmes d'analyse syntaxique

Compilation. Algorithmes d'analyse syntaxique Compilation Algorithmes d'analyse syntaxique Préliminaires Si A est un non-terminal et γ une suite de terminaux et de non-terminaux, on note : A γ si en partant de A on peut arriver à γ par dérivations

Plus en détail

3 : «L amitié éternelle» 4 : «L amour» 5 à 11 : Le Dossier 12 : Loisirs 13 : Fin d année en beauté

3 : «L amitié éternelle» 4 : «L amour» 5 à 11 : Le Dossier 12 : Loisirs 13 : Fin d année en beauté L c - 3 : «L mé é» 4 : «L m» 5 à 11 : L D 12 : L 13 : F é bé L J éèv Lycé L P, èm égé éèv, é f é c 2013-2014, D éc ccé à c ; x c ô, c éê vfé qq é. L - émé chz j? C mé év qq, é à c m q... B... c! LC, c.

Plus en détail

MATHEMATIQUES APPLIQUEES Equations aux dérivées partielles Cours et exercices corrigés

MATHEMATIQUES APPLIQUEES Equations aux dérivées partielles Cours et exercices corrigés MATHEMATIQUES APPLIQUEES Equations aux dérivées partielles Cours et exercices corrigés Département GPI 1ère année Avril 2005 INPT-ENSIACET 118 route de Narbonne 31077 Toulouse cedex 4 Mail : Xuan.Meyer@ensiacet.fr

Plus en détail

CALCUL DES PROBABILITES

CALCUL DES PROBABILITES CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les

Plus en détail

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio Exercices : Martine Quinio Exo7 Probabilité conditionnelle Exercice 1 Dans la salle des profs 60% sont des femmes ; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle

Plus en détail

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Options et Volatilité (introduction)

Options et Volatilité (introduction) SECONDE PARTIE Options et Volatilité (introduction) Avril 2013 Licence Paris Dauphine 2013 SECONDE PARTIE Philippe GIORDAN Head of Investment Consulting +377 92 16 55 65 philippe.giordan@kblmonaco.com

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

THÉORIE DE LA MESURE ET DE L INTÉGRATION.

THÉORIE DE LA MESURE ET DE L INTÉGRATION. THÉORIE DE LA MESURE ET DE L INTÉGRATION. THIERRY GALLAY Transcrit par Tancrède LEPOINT 29 UNIVERSITÉ JOSEPH FOURIER, GRENOBLE TABLE DES MATIÈRES Avant-propos Biographie sommaire...........................................

Plus en détail