TS Physique D Aristote à aujourd hui Exercice résolu

Dimension: px
Commencer à balayer dès la page:

Download "TS Physique D Aristote à aujourd hui Exercice résolu"

Transcription

1 P a g e 1 TS Physique Eercice résolu Enoncé -34 avant JC : Aristote déclare qu une masse d or, de plomb ou de tout autre corps pesant tombe d autant plus vite qu elle est plus grosse et, en particulier, qu une boule de fer aura parcouru une distance 100 fois plus grande qu une boule de fer de masse 100 fois inférieure : Galilée lâchant des boules de fer du haut de la tour de Pise (sa ville natale) déclare : «Aristote prétend qu une boule de fer de 100 livres 1 est déjà descendue d une hauteur de 100 coudées quand une boule de fer de 1 livre a parcouru seulement une coudée. J affirme que les deu boules arrivent ensemble et que l écart est de deu largeurs de doigts seulement» : un an après la mort de Galilée, son élève Evangelista Toricelli étudie la chute dans le vide d une plume et d une pomme : dans une enceinte où l air a été etrait, plume et pomme ont des mouvements de chute en tous points identiques. 007 : Sami et Zeina, deu élèves de TS, sont en grande discussion. Sami : «Je vais te demander une chose simple en physique : tu prends une boule de pétanque et une balle de tennis, tu les lâches en même temps, laquelle arrive la première?». Zeina : «La boule de pétanque». Sami : «Et bien non : elles arrivent ensemble, et c est un problème fondamental que l on a mis 000 ans pour comprendre». Dans tous les cas étudiés dans l eercice : - on travaille dans un référentiel terrestre supposé galiléen, - la valeur g du vecteur champ de pesanteur vaut 10 m.s -, - à la date t 0 = 0 s, le centre d inertie G du système étudié est à l origine d un repère (O,i ) d ae O orienté selon g et la valeur v 0 de sa vitesse est nulle, - on néglige l action de la poussée d Archimède dans l air. A. Première partie : «Les travau de Galilée» 1. a) A l aide d une étude analytique complète, montrer que le temps t de chute libre d une boule de centre d inertie G lâchée d une hauteur h est indépendant de sa masse m (il n est pas demandé d application numérique). b) Pour une durée de chute donnée, quelle est la relation mathématique évoquée par Aristote entre la masse et la hauteur de chute? Pourquoi Galilée a-t-il raison contre Aristote? c) Pour une hauteur h = 50 m (hauteur de la tour de Pise), calculer le temps t de chute et la vitesse v du centre d inertie de la boule quand elle arrive au sol.. Galilée trouve cependant un écart de deu doigts lors de la chute des deu boules. a) A quelle force, dont on donnera la direction et le sens, cet écart est-il dû? Cela est-il confirmé par l epérience de Toricelli? b) En supposant cette force f constante, montrer littéralement que le vecteur accélération a G du centre d inertie G de la boule dépend alors de la masse m de cette dernière. 1 : 1 livre = 478 g. : 1 coudée = 50 cm.

2 P a g e B. Deuième partie : «Un modèle pour la force de frottement» La valeur de la force de frottement est donnée par f = 1.ρ.C.S.v avec : - masse volumique de l air : ρ = 1,3 kg.m -3 - coefficient de trainée d une sphère : C = 0,50 (sans dimension) - section équatoriale de la bille sphérique : S (en m ) - valeur de la vitesse du centre d inertie de la bille : v (en m.s -1 ) section équatoriale 1. Montrer, par une analyse dimensionnelle, que l epression de f est homogène.. a) La valeur de la force de frottement est-elle constante au cours de la chute? b) Comment peut-on comprendre qualitativement l eistence d une vitesse limite v lim? 3. a) En utilisant la seconde loi de Newton, établir l epression littérale de l équation différentielle de la chute d une boule de centre d inertie G, de masse m et de section équatoriale S. b) En déduire l epression littérale de la vitesse limite v lim. C. Troisième partie : «Simulation numérique des mouvements» On a réalisé une simulation des mouvements de chute de trois boules B 1, B et B 3, dont les caractéristiques sont les suivantes : Boule B 1 B B 3 Forme Pleine (100 livres) Pleine (1 livre) Creuse (1 livre) S (m ) 4, , , m (kg) 47,8 0,478 0,478 Les graphes obtenus (en annee) sont représentatifs des fonctions t (t) (graphe 1) et t v(t) (graphe ) avec t en s, en m et v en m.s Sans justifier, déterminer graphiquement (et approimativement) les temps de chute t 1, t et t 3 des trois boules du haut de la tour de Pise.. a) Sans justifier, déterminer graphiquement (et approimativement) les vitesses v 1, v et v 3 des centres d inertie des trois boules quand elles arrivent au sol. b) Pour la boule B 3, vérifier par le calcul la valeur trouvée graphiquement. 3. Conclure sur l influence des actions de l air lors de la chute des trois boules du haut de la tour de Pise. D. Quatrième partie : «Zeina et Sami» Suite à leur discussion, nos deu compères réalisent l epérience suivante : une boule de pétanque de masse 700 g et d un diamètre de 7,5 cm, et une balle de tennis ayant à peu près le même diamètre mais une masse de 58 g, ont été lâchées simultanément et sans vitesse initiale du sommet d une tour de 50 m de hauteur. Ils ont constaté que : - la vitesse de la boule de pétanque est supérieure à celle de la balle de tennis et ce, dès la première seconde de chute et la comparaison des positions des deu objets met également en évidence un écart important, - lorsque la boule de pétanque touche le sol, la balle de tennis se trouve encore à un peu plus de 10 m du sol. 1. Sami s est-il trompé ou a-t-il omis de préciser certaines choses (ne pas justifier) : OUI NON?. Si OUI, reformuler les propos de Sami afin qu ils soient en accord avec l epérience précédente.

3 P a g e 3 Annee Graphe 1 (m) B B B t (s) Graphe v (m/s) B1 30 B B3 t (s)

4 P a g e 4 Corrigé A. Première partie : «Les travau de Galilée» 1. a) A l aide d une étude analytique complète, montrer que le temps t de chute libre d une boule de centre d inertie G lâchée d une hauteur h est indépendant de sa masse m (il n est pas demandé d application numérique). - Système : boule de masse m et de centre d inertie G. - Référentiel : terrestre, supposé galiléen. - Repère : (O, i ) - Conditions initiales : à t 0 = 0, la bille est lâchée du point O sans vitesse. - Bilan des forces etérieures : force de pesanteur (poids) P = mg - Application de la deuième loi de Newton : Σ Fet = P = mag dvg avec ag = : vecteur accélération du centre d inertie de la bille. On a donc : mg = mag => ag = g. En eprimant chaque vecteur en fonction de sa coordonnée cartésienne et du vecteur unitaire i, on obtient : a.i = g.i. Or a G dv G g = et = g => dv = g : c est l équation différentielle du mouvement. D après cette équation différentielle, v est une fonction de primitive de g, nombre constant (champ de pesanteur uniforme). On a donc : v = g.t + k (k : Cte à déterminer). Or, à t 0 = 0, v = v = 0 => k = 0 et v 0 = g.t Les coordonnées cartésiennes du vecteur vitesse étant les dérivées des coordonnées cartésiennes du vecteur position, on a : v = d et est une primitive de v. On a donc : = 1 g.t + k (k : cte à déterminer). Or, à t = 0, = 0 = 0 => k = 0 et = 1 g.t (équation horaire du mouvement). Si la boule est lâchée du haut de la tour de Pise, on a donc : h = 1 g.t => t = La durée de la chute est donc indépendante de la masse de la boule. b) Pour une durée de chute donnée, quelle est la relation mathématique évoquée par Aristote entre la masse et la hauteur de chute? Pourquoi Galilée a-t-il raison contre Aristote? Aristote affirme que la distance parcourue est proportionnelle à la masse de la boule. Galilée a raison puisqu il prétend, à contrario d Aristote, que des boules de masses différentes arriveront en même temps. c) Pour une hauteur h = 50 m (hauteur de la tour de Pise), calculer le temps t de chute et la vitesse v du centre d inertie de la boule quand elle arrive au sol. t = = 3, s et v = 10 3, = 3 m.s -1. a) A quelle force, dont vous donnerez la direction et le sens, cet écart est-il dû? Cela est-il confirmé par l epérience de Toricelli? Il s agit de la force représentative des frottements entre la boule et l air. Cette force est verticale et dirigée vers le haut. h g

5 P a g e 5 b) En supposant cette force f constante, montrer littéralement que le vecteur accélération a G du centre d inertie G de la boule dépend alors de la masse m de cette dernière. L application de la deuième loi de Newton donne : P + f = Le vecteur accélération a G dépend de la masse m. m. a G => a G = g + f m B. Deuième partie : «Un modèle pour la force de frottement» 1. Montrer, par une analyse dimensionnelle, que l epression de f est homogène. [f] = [ρ].[c].[s].[v] [ρ] = M.L -3 ; [C] = 1 ; [S] = L ; [v] = L.T -1 ; [f] = M.L.T - Donc : [ρ].[c].[s].[v] = M.L -3.L.L.T - = M.L.T - = [f] L epression de f est homogène. a) La valeur de la force de frottement est-elle constante au cours de la chute? Non car elle dépend de v qui augmente au cours de la chute : donc f augmente au cours de la chute. b) Comment peut-on comprendre qualitativement l eistence d une vitesse limite v lim? Dans les premiers instants de la chute on a P > f. Mais f augmente et il va arriver un moment où f = P. A partir de cette date, le système est pseudo isolé et son centre d inertie est alors animé d un mouvement rectiligne uniforme. 3. a) En utilisant la seconde loi de Newton, établir l epression littérale de l équation différentielle de la chute d une boule de centre d inertie G, de masse m et de section équatoriale S. Système, référentiel, repère et conditions initiales à ceu définis dans la question A.1.a. Bilan des forces etérieures : - force de pesanteur (poids) P = mg - force de frottement : f = - 1.ρ.C.S.v. v Deuième loi de Newton : P + f = m.ag Projection dans le repère (O, i ) : P + f = m.ag soit P + f = m. a G avec : P = P = m.g ; f = - f = - 1.ρ.C.S.v.v dv ; Or ag = et v = v => m.g - 1 dv.ρ.c.s.v = m. => dv = g - 1 ρ.c.s.v. m b) En déduire l epression littérale de la vitesse limite v lim. Quand la vitesse limite est atteinte : dv = 0 => 1 ρ.c.s.v. lim m = g => v lim.g.m = => v lim = ρ.c.s..m.g ρ.c.s C. Troisième partie : «Simulation numérique des mouvements» 1. Déterminer graphiquement (et approimativement) les temps de chute t 1, t et t 3 des trois boules du haut de la tour de Pise. Sur le graphe n 1, on cherche pour chaque courbe l abscisse du point d ordonnée = h = 50 m. On trouve t 1 légèrement inférieur à 3, s, t égal à 3, s et t 3 égal à environ 4 s.. a) Déterminer graphiquement (et approimativement) les vitesses v 1, v et v 3 des centres d inertie des trois boules quand elles arrivent au sol. Sur le graphe n, on cherche sur les courbes des boules B 1 et B l ordonnée du point d abscisse 3, s. On trouve des valeurs respectivement légèrement inférieures à 3 m.s -1 et à 31 m.s -1 pour v 1 et v et environ égale à 19 m.s -1 pour v 3.

6 P a g e 6 b) Pour la boule B 3, vérifier par le calcul la valeur trouvée graphiquement. 0, La boule B 3 a atteint sa vitesse limite donc : v 3 = 1,3 0,5 4,00 10 = 19 m.s Conclure sur l influence des actions de l air lors de la chute des trois boules du haut de la tour de Pise. Les boules B 1 et B arrivent au sol quasiment en même temps et les résultats de la simulation numérique correspondent à ceu de la chute libre. On en déduit que, dans les conditions de l epérience il est possible de négliger les actions de l air sur ces deu boules. Par contre, le centre d inertie de la boule B 3 atteint sa vitesse limite avant d arriver au sol. Les actions de l air sur cette boule ne sont donc pas négligeables D. Quatrième partie : «Zeina et Sami» 1. Sami s est-il trompé ou a-t-il omis de préciser certaines choses (ne pas justifier) : OUI. Si OUI, reformuler les propos de Sami afin qu ils soient en accord avec l epérience précédente. «Tu prends une boule de pétanque et une balle de tennis et tu les lâches dans des conditions telles qu il est possible de négliger les actions de l air : laquelle arrive la première? Aucune des deu : elles arrivent ensemble».

ARISTOTE, GALILÉE ET NEWTON (6 points)

ARISTOTE, GALILÉE ET NEWTON (6 points) ARISTOTE, GALILÉE ET NEWTON (6 points) Pour cet exercice, l'utilisation de la calculatrice est autorisée Trois siècles avant notre ère, le célèbre savant grec Aristote affirmait qu "une masse d or, de

Plus en détail

DS n o 5 TS1 2012 Chutes des boulets (8 points, 1h45)

DS n o 5 TS1 2012 Chutes des boulets (8 points, 1h45) DS n o 5 TS1 2012 Chutes des boulets (8 points, 1h45) Exercice 1 Galilée à Pise (5,5 points) O i Selon la légende, Galilée (1564-1642) aurait étudié la chute des corps en lâchant divers objets du sommet

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section : i-prépa annuel -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section : i-prépa annuel - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section : i-prépa annuel - 61 Chapitre 7 : Chute d une bille dans un fluide I. Deux nouvelles forces : a) la Poussée d Archimède : Tout corps

Plus en détail

Epreuve de physique chimie tronc commun : (Durée 3h30)

Epreuve de physique chimie tronc commun : (Durée 3h30) Bac blanc Avril 2012 Lycée de la Côtière Epreuve de physique chimie tronc commun : (Durée 3h30) L usage de la calculatrice n est pas autorisé. Pour faciliter le travail des correcteurs, rédiger chaque

Plus en détail

TS Physique Satellite à la recherche de sa planète Exercice résolu

TS Physique Satellite à la recherche de sa planète Exercice résolu P a g e 1 Phsique atellite à la recherche de sa planète Exercice résolu Enoncé Le centre spatial de Kourou a lancé le 1 décembre 005, avec une fusée Ariane 5, un satellite de météorologie de seconde génération

Plus en détail

Lancer de poids. TS Chimie aux championnats du monde. Exercice résolu

Lancer de poids. TS Chimie aux championnats du monde. Exercice résolu P a e 1 TS Chimie Le lancer de poids aux championnats du monde Exercice résolu Enoncé Lors des championnats du monde d'athlétisme qui eurent lieu à Paris en août 3, le ainqueur de l'épreue du lancer du

Plus en détail

EXERCICES. Exercice 3 : Soit f la fonction définie sur ]0; + [ par f (x) = 1 5 ln(x). 1. Déterminer les limites suivantes : lim f (x) et lim f (x)

EXERCICES. Exercice 3 : Soit f la fonction définie sur ]0; + [ par f (x) = 1 5 ln(x). 1. Déterminer les limites suivantes : lim f (x) et lim f (x) EXERCICES LN Eercice : Soit f la fonction définie sur ]0;+ [ par f ()=+ ln(). On note C sa courbe représentative dans un repère orthogonal.. a. Calculer f () b. Déterminer l équation de la tangente T à

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Gravitation universelle

Gravitation universelle Chapitre 7 Gravitation universelle Révision et Résumé Où commencer? En plus de l apprentissage du cours, que vous devez recopier, réciter, rerecopier, jusqu à en savoir la moindre virgule, refaites les

Plus en détail

Chapitre 2: Mouvements Rectilignes

Chapitre 2: Mouvements Rectilignes e B et C Mouements rectilignes 13 Chapitre : Mouements Rectilignes 1. Définitions * Le mouement est rectiligne la trajectoire est une droite. * Le mouement est uniforme (intensité du ecteur itesse instantanée)

Plus en détail

1 ère S La petite voiture Physique Mécanique

1 ère S La petite voiture Physique Mécanique Page 1 sur 5 1 ère S Physique Mécanique - Enoncé - Remarques préliminaires : - n prendra g = 9,8 N.kg -1. - n traaille dans un référentiel terrestre supposé galiléen. Un jouet, une «petite oiture», est

Plus en détail

DS n 6 (1h30) Chap D3+D4 27/03/2015. DEVOIR SURVEILLÉ n 6 Un petit tour à la fête foraine CALCULATRICE INTERDITE!!!

DS n 6 (1h30) Chap D3+D4 27/03/2015. DEVOIR SURVEILLÉ n 6 Un petit tour à la fête foraine CALCULATRICE INTERDITE!!! DEVOIR SURVEILLÉ n 6 Un petit tour à la fête foraine CALCULATRICE INTERDITE!!! Brenda Semeda-Moreiro, une élève de, décide de passer tout son week-end à réviser le contrôle de physique prévu pour lundi.

Plus en détail

Savoir son cours. COMP.9 Energie mécanique exercices. Quel frimeur! Comparer voiture et camion : Julie sur sa balançoire : Le bon choix :

Savoir son cours. COMP.9 Energie mécanique exercices. Quel frimeur! Comparer voiture et camion : Julie sur sa balançoire : Le bon choix : COMP.9 Energie mécanique exercices Savoir son cours Quel frimeur! Quelle est leur masse? E c = ½ m v m = E c/v Attention! La vitesse doit être en m/s! v = 45 km/h = 45/ 3,6 m/s = 1,5 m/s. Ainsi, m = 18

Plus en détail

Un petit rien... qui peut tout changer! Octobre 2014

Un petit rien... qui peut tout changer! Octobre 2014 Un petit rien... qui peut tout changer! Octobre 2014 Présentation de l outil Présentation de l outil Vous êtes : 1 enseignant au collège. 2 enseignant au lycée. 3 les deux. 4 aucune des réponses précédentes.

Plus en détail

Partiel PHY121 Mécanique du point

Partiel PHY121 Mécanique du point Université Joseph Fourier Grenoble Licence Partiel PHY2 Mécanique du point Vendredi 23 mars 202 Durée h30 Calculatrices et documents non-autorisés Pour chaque question, 4 réponses sont proposées dont ou

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Sections : L1 Santé - 1 Olivier CAUDRELIER oc.polyprepas@orange.fr Chapitre 1 : Equations aux dimensions 1. Equation aux dimensions a) Dimension

Plus en détail

1 Exercices d introduction

1 Exercices d introduction Université Paris 7 - Denis Diderot 2013-2014 TD 4 : accélération, mouvement parabolique, mouvement oscillant 1 Exercices d introduction 1. Evolution de la population mondiale Année (1er janvier) 1500 1600

Plus en détail

Mouvement et vitesse . A A B

Mouvement et vitesse . A A B Chapitre 1 Mouvement et vitesse I/ Caractère relatif d'un mouvement Le mouvement d'un objet est décrit par rapport à un autre objet qui sert de référence ( le référentiel) exemple : assis dans une voiture

Plus en détail

Forces et mouvement. Suite: la dynamique

Forces et mouvement. Suite: la dynamique Les forces Forces et mouvement Tout ce qui se passe dans l Univers est provoqué par des forces. Une force est une poussée ou une traction qui provoque le déplacement ou la rotation des objets. Il faut

Plus en détail

Chapitre 3: Dynamique

Chapitre 3: Dynamique Introduction Le mot dynamique désigne ou qualifie ce qui est relatif au mouvement. Il est l opposé du mot statique. Le mouvement d un point matériel est liée à son interaction avec le monde extérieur ce

Plus en détail

Mécanique3. Cours. L énergie mécanique. Troisièmes. 3 ème. Qu est-ce que l énergie mécanique?

Mécanique3. Cours. L énergie mécanique. Troisièmes. 3 ème. Qu est-ce que l énergie mécanique? 3 ème Mécanique 3 Qu est-ce que l énergie mécanique? Objectifs 1 Calculer une énergie cinétique 2 Reconnaître une énergie de position 3 Expliquer une conversion d énergie mécanique Mécanique3 Photos Pourquoi

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 8 : EQUATIONS DIFFERENTIELLES - COURS + ENONCE EXERCICE - Olivier

Plus en détail

Chapitre 3 : Dynamique du point matériel

Chapitre 3 : Dynamique du point matériel Cours de Mécanique du Point matériel Chapitre 3 : Dynamique SMPC1 Chapitre 3 : Dynamique du point matériel I Lois fondamentales de la dynamiques I.1)- Définitions Le Référentiel de Copernic: Le référentiel

Plus en détail

Examen de la maturita bilingue de physique. Corrigé officiel

Examen de la maturita bilingue de physique. Corrigé officiel Examen de la maturita bilingue de physique Session de mai 2013 Corrigé officiel Questions de cours Mécanique I. 1a) Référentiel le cadre par rapport auquel on étudie le mouvement. 1b) Réf. terrestre est

Plus en détail

Utiliser DYNAMIC pour étudier des enregistrements vidéo de mouvements. 1 Relativité du mouvement en classe de Seconde :

Utiliser DYNAMIC pour étudier des enregistrements vidéo de mouvements. 1 Relativité du mouvement en classe de Seconde : Utiliser DYNAMIC pour étudier des enregistrements vidéo de mouvements 1 Relativité du mouvement en classe de Seconde : 1.1 Programme : Exemples d activités Contenus Connaissances et savoir-faire exigibles

Plus en détail

X X X. Verre. Remarque : Les interactions à distance peuvent être :

X X X. Verre. Remarque : Les interactions à distance peuvent être : Physique : 2 nde Chapitre.7 : Forces et mouvements I. Modèles et interactions 1. Interactions entre deux objets : L énoncé suivant s applique à des objets au repos ou en mouvement. Quand un objet agit

Plus en détail

Comment les forces agissent sur le mouvement?

Comment les forces agissent sur le mouvement? SP. 5 forces et principe d inertie cours Comment les forces agissent sur le mouvement? 1) notion d action et de force : a) Actions exercées sur un système : Actions de contact : Solide posé sur une table

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

Concours CASTing 2011

Concours CASTing 2011 Concours CASTing 2011 Épreuve de mécanique Durée 1h30 Sans calculatrice Le candidat traitera deux exercices parmi les trois proposés dans le sujet. Dans le cas où les trois exercices seraient traités partiellement,

Plus en détail

Réponds. Réponds. questions. questions. détermine la relation entre le poids et la masse d un objet

Réponds. Réponds. questions. questions. détermine la relation entre le poids et la masse d un objet ( P P B P C bjectifs distinguer le poids et la masse d un objet utiliser la relation de proportionnalité entre le poids et la masse énoncer et utiliser la condition d équilibre d un solide soumis à deux

Plus en détail

6 Les forces mettent les objets en mouvement.

6 Les forces mettent les objets en mouvement. 6 Les forces mettent les objets en mouvement. Tu dois devenir capable de : Savoir expliquer la proportion directe entre la force et l accélération à l aide d un exemple ; expliquer la proportion inverse

Plus en détail

CH12 : Solide en mouvement de translation

CH12 : Solide en mouvement de translation BTS électrotechnique 1 ère année - Sciences physiques appliquées CH12 : Solide en mouvement de translation Motorisation des systèmes Enjeu : Problématique : En tant que technicien supérieur, il vous revient

Plus en détail

Fonctions affines. exercices corrigés. 8 janvier 2012. Fonctions affines

Fonctions affines. exercices corrigés. 8 janvier 2012. Fonctions affines eercices corrigés 8 janvier 2012 Eercice 1 Eercice 2 Eercice Eercice 4 Eercice 5 Eercice 6 Eercice 7 Eercice 1 Enoncé Soit la fonction f : + 1 Représenter graphiquement la fonction f. 2 Donner le sens

Plus en détail

Nom :... Prénom :... Section :... No :... Exercice 1 (6 points) EPFL, Physique Générale I SIE & SMX, 2010-2011 Examen 14.01.2011

Nom :... Prénom :... Section :... No :... Exercice 1 (6 points) EPFL, Physique Générale I SIE & SMX, 2010-2011 Examen 14.01.2011 EPFL, Physique Générale I SIE & SMX, 200-20 Examen 4.0.20 Nom :... Prénom :... Section :... No :... Les seuls objets autorisés sont: Le formulaire "résumé mécanique" disponible sur le moodle une feuille

Plus en détail

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points La maison Ecole d ' Baccalauréat blanc Classe de terminale ES Année scolaire 00-004 Copyright c 004 J.- M. Boucart GNU Free Documentation Licence On veillera à détailler et à rédiger clairement les raisonnements,

Plus en détail

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine Fonction affine ) Définition et Propriété caractéristique a) Activité introductive Une agence de location de voiture propose la formule de location suivante : forfait de 50 et 0,80 le km. Quel est le prix

Plus en détail

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité? EXERCICE 1 : QUESTION DE COURS Q1 : Qu est ce qu une onde progressive? Q2 : Qu est ce qu une onde mécanique? Q3 : Qu elle est la condition pour qu une onde soit diffractée? Q4 : Quelles sont les différentes

Plus en détail

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» ) SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Plus en détail

III Univers / IV. Le Sport

III Univers / IV. Le Sport III Univers / IV. Le Sport Mouvements et forces Exercice n 1 : Dynamomètre Exercice n 2 : Une petite voiture dans un train Un enfant est assis dans un train qui circule sur une voie rectiligne et horizontale.

Plus en détail

Exercices sur Travail, puissance et l'énergie mécanique

Exercices sur Travail, puissance et l'énergie mécanique F en N LNW Physique II e BC Exercices sur Travail, puissance et l'énergie mécanique 1) Calculer le travail d'une force constante F 3 i 1 j le long d'un trajet rectiligne de A (2,0) vers B (7,4). 2) Le

Plus en détail

PROPOSITION DE CORRIGÉ

PROPOSITION DE CORRIGÉ BACCALAURÉAT Série : Scientifique Épreuve : Physique - Chimie Session 2015 Durée de l épreuve : 3h30min Coefficient : 6 PROPOSITION DE CORRIGÉ Partie 1 : ascension en ballon sonde de Félix Baumgartner

Plus en détail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP PHYSIQUE 1. Durée : 4 heures. Les calculatrices sont autorisées.

EPREUVE SPECIFIQUE FILIERE MP PHYSIQUE 1. Durée : 4 heures. Les calculatrices sont autorisées. EION 003 EPREUVE PECIFIQUE FIIERE MP PHYIQUE 1 Durée : 4 heures es calculatrices sont autorisées NB : e candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes

Plus en détail

Chapitre 1. Cinématique et Dynamique. 1.1 Grandeurs cinématiques. 1.1.1 Base cartésienne

Chapitre 1. Cinématique et Dynamique. 1.1 Grandeurs cinématiques. 1.1.1 Base cartésienne Chapitre 1 Cinématique et Dynamique 1.1 Grandeurs cinématiques En classe de 2 e nous avons introduit les grandeurs cinématiques utilisées pour décrire le mouvement d un point matériel : l abscisse curviligne,

Plus en détail

U 315 J. 5008 SESSION 2003. Filière MP PHYSIQUE. ENS de Paris. Durée : 6 heures

U 315 J. 5008 SESSION 2003. Filière MP PHYSIQUE. ENS de Paris. Durée : 6 heures U 315 J. 5008 SESSION 2003 Filière MP PHYSIQUE ENS de Paris Durée : 6 heures L usage de calculatrices électroniques de poche à alimentation autonome, non imprimantes et sans document d accompagnement,

Plus en détail

Devoir commun de seconde, mars 2006

Devoir commun de seconde, mars 2006 Devoir commun de seconde, mars 006 calculatrices autorisées On rappelle que le soin et la qualité de rédaction entrent pour une part non négligeable dans l appréciation de la copie. Eercice (7 points).

Plus en détail

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition Chapitre 4 Travail et puissance 4.1 Travail d une force 4.1.1 Définition En physique, le travail est une notion liée aux forces et aux déplacements de leurs points d application. Considérons une force

Plus en détail

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant I Présentation I.1 La roue autonome Ez-Wheel SAS est une entreprise française de technologie innovante fondée en 2009.

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Principes de la Mécanique

Principes de la Mécanique Chapitre 1 Principes de la Mécanique L expérience a montré que tous les phénomènes observés dans la nature obéissent à des lois bien déterminées. Ces lois peuvent être, en plus, déterministes ou indéterministes.

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Utilisation de python pour le calcul numérique

Utilisation de python pour le calcul numérique Utilisation de python pour le calcul numérique Résumé L objectif de ce TP est de découvrir quelques possibilités de python pour le calcul numérique. Il pourra également vous servir de référence si vous

Plus en détail

DS SCIENCES PHYSIQUES MATHSPÉ

DS SCIENCES PHYSIQUES MATHSPÉ DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Mécanique...2 I.Mise en équations...2 II.Résolution...4 III.Vérifications...4 IV.Aspects énergétiques...4 Optique...5 I.Interférences

Plus en détail

L élève doit avoir une connaissance pratique de la force normale, du poids, des schémas d équilibre et de l analyse graphique.

L élève doit avoir une connaissance pratique de la force normale, du poids, des schémas d équilibre et de l analyse graphique. Leçon Frottement L applet Frottement simule le mouvement d une pile de livres tirée sur une surface rugueuse par un dynamomètre de traction. Préalables L élève doit avoir une connaissance pratique de la

Plus en détail

DYNAMIQUE DE FORMATION DES ÉTOILES

DYNAMIQUE DE FORMATION DES ÉTOILES A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

Concours Blanc N 1 Enoncé

Concours Blanc N 1 Enoncé Concours Blanc N 1 Enoncé Physique 20 QCM Durée de l épreuve : 60 min 20 pts Physique 1 QCM 1 Une bille, de masse m = 140 g, est accrochée à un fil inextensible de longueur l = 30 cm, de masse négligeable.

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

Physique - Chimie Energie de position- Energie cinétique Energie mécanique Conservation de l énergie mécanique

Physique - Chimie Energie de position- Energie cinétique Energie mécanique Conservation de l énergie mécanique Document du professeur 1/7 Niveau 3 ème Physique - Chimie Energie de position- Energie cinétique Energie mécanique Conservation de l énergie mécanique Programme C. De la gravitation à l énergie mécanique

Plus en détail

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU) 0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2

Plus en détail

6. Le poids et la masse

6. Le poids et la masse 111 6. 6.1. Mise en contexte Pourquoi les astronautes peuvent-ils porter plus facilement leur équipement sur la Lune que sur la Terre? Formule une hypothèse! Dans le langage courant tu dis : «Mon poids

Plus en détail

1 ) Métropole STLB 2015

1 ) Métropole STLB 2015 1 ) Métropole STLB 2015 Partie A : détermination de la vitesse du véhicule Procès-verbal des enquêteurs : L accident s est produit sur une portion de route départementale goudronnée dont la vitesse est

Plus en détail

Chapitre 4: Les 3 principes de Newton

Chapitre 4: Les 3 principes de Newton e B et C 4 Les 3 principes de Newton 38 Chapitre 4: Les 3 principes de Newton 1. Rappels sur les forces Rappel 1 : On appelle force toute cause capable de: modifier le mouvement d un corps; de déformer

Plus en détail

Chapitre 3 LA CHUTE DES CORPS. Sommaire

Chapitre 3 LA CHUTE DES CORPS. Sommaire Chapitre 3 LA CHUTE DES CORPS Sommaire 1. Généralités 2. Corps abandonné en chute libre 3. Corps lancé verticalement vers le bas 4. Corps lancé verticalement vers le haut 1. GÉNÉRALITÉS Les Anciens pensaient

Plus en détail

EVALUATION DIAGNOSTIQUE : - 1- L énergie cinétique d un solide est proportionnelle à sa masse proportionnelle à sa vitesse toujours constante.

EVALUATION DIAGNOSTIQUE : - 1- L énergie cinétique d un solide est proportionnelle à sa masse proportionnelle à sa vitesse toujours constante. EVALUATION DIAGNOSTIQUE : - 1- L énergie cinétique d un solide est proportionnelle à sa masse proportionnelle à sa vitesse toujours constante - 2- L énergie potentielle de pesanteur du wagon dépend : du

Plus en détail

ORDRE DE RÉACTION : MÉTHODES DE

ORDRE DE RÉACTION : MÉTHODES DE ORDRE DE RÉACTION : MÉTHODES DE RÉSOLUTION Table des matières 1 Méthodes expérimentales 2 1.1 Position du problème..................................... 2 1.2 Dégénérescence de l ordre...................................

Plus en détail

Chapitre 7 Leschangementsde référentiels

Chapitre 7 Leschangementsde référentiels Chapitre 7 Leschangementsde référentiels 59 7.1. Introduction 7.1.1. Position du problème L étude des trajectoires di ère selon le référentiel dans lequel on se place. Par exemple, observons la valve d

Plus en détail

EPREUVE OPTIONNELLE de SCIENCES INDUSTRIELLES

EPREUVE OPTIONNELLE de SCIENCES INDUSTRIELLES EPREUVE OPTIONNELLE de SCIENCES INDUSTRIELLES FERME-PORTE (ou «groom») Un «groom» est un système hydro-mécanique de fermeture automatique de porte. Description du fonctionnement La figure montre le dispositif

Plus en détail

E c (t 0 ) = ½ m v 0. E pp (t 0 ) = mgh. Séance n 12 Conservation de l énergie. E c (t 0 ) = 30,1 J. E pp (t 0 ) = 1,4 J.

E c (t 0 ) = ½ m v 0. E pp (t 0 ) = mgh. Séance n 12 Conservation de l énergie. E c (t 0 ) = 30,1 J. E pp (t 0 ) = 1,4 J. Séance n 12 Conservation de l énergie Exercice n 1 Au service Au service, un joueur de tennis frappe, à l instant de date t 0 = 0 s, une balle de masse m = 58,0 g à une hauteur h = 2,4 m au dessus du sol

Plus en détail

2. CONCEPTION MÉCANIQUE DES SYSTÈMES. 2.2 Comportement d un mécanisme et/ou d une pièce CINÉMATIQUE : MOUVEMENTS DE TRANSLATION

2. CONCEPTION MÉCANIQUE DES SYSTÈMES. 2.2 Comportement d un mécanisme et/ou d une pièce CINÉMATIQUE : MOUVEMENTS DE TRANSLATION Page:1/8 CINÉMATIQUE : MOUVEMENTS DE TRANSLATION QCM ET EXERCICES D APPLICATION QCM Pour chaque QCM, quelles sont les bonnes affirmations ou conclusions parmi celles proposées? Les points d un solide en

Plus en détail

harmonique CHAPITRE 1 Oscillateur Introduction Plan du chapitre1

harmonique CHAPITRE 1 Oscillateur Introduction Plan du chapitre1 CHAPITRE 1 Oscillateur harmonique Introduction L oscillateur harmonique est un concept important en physique car il permet notamment de décrire le comportement autour d une position d équilibre de nombreux

Plus en détail

Session de Juillet 2001. Durée 2 H Documents interdits.

Session de Juillet 2001. Durée 2 H Documents interdits. Session de Juillet 2001 Durée 2 H Documents interdits. Exercice 1 : Oscillations forcées de dipôles électriques Lors d une séance de travaux pratiques, les élèves sont conduits à étudier les dipôles en

Plus en détail

Leçon 2 Élasticité et conservation de l énergie cinétique

Leçon 2 Élasticité et conservation de l énergie cinétique Leçon 2 Élasticité et conservation de l énergie cinétique L applet Collisions unidimensionnelles simule des collisions élastiques et inélastiques dans les repères de laboratoire et de centre de masse.

Plus en détail

EXAMEN PROBATOIRE D ADMISSION DANS LES ECOLES D OFFICIERS

EXAMEN PROBATOIRE D ADMISSION DANS LES ECOLES D OFFICIERS ANNÉE 2013 EXAMEN PROBATOIRE D ADMISSION DANS LES ECOLES D OFFICIERS CSEA 2013 ÉPREUVE DE PHYSIQUE Durée : 4 heures Coefficient : 1 - L usage de la calculatrice est autorisé ; - Les exercices sont indépendants

Plus en détail

1. x 4 7x 2 + 12 = 0. 2. x 4 + 3x 2 + 2 = 0. 3. 4x 4 + 4x 2 3 = 0. 4. x 3 x 4 = 0. Aide

1. x 4 7x 2 + 12 = 0. 2. x 4 + 3x 2 + 2 = 0. 3. 4x 4 + 4x 2 3 = 0. 4. x 3 x 4 = 0. Aide 1 Équations du e degré Résoudre dans R les équations suivantes : 1 3 5 = 0 5 + = 0 3 + 6 = 0 4 6 + 9 = 0 5 ( 3) = ( 1) 6 ( )( + 3) = ( )(4 + 1) Équations avec changements de variable Résoudre dans R les

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Sujet. calculatrice: autorisée durée: 2 heures (10h-12h)

Sujet. calculatrice: autorisée durée: 2 heures (10h-12h) DS SCIENCES PHYSIQUES MATHSPÉ CONCOURS BLANC calculatrice: autorisée durée: 2 heures (10h-12h) Sujet Vaisseau spatial... 2 I.Vaisseau spatial dans un champ newtonien... 2 II.Vitesse de libération...3 A.Option

Plus en détail

Chapitre 4 : Etude Energétique

Chapitre 4 : Etude Energétique Cours de Mécanique du Point matériel Chapitre 4 : Energétique SMPC1 Chapitre 4 : Etude Energétique I Travail et Puissance d une force I.1)- Puissance d une force Soit un point matériel M de vitesse!!/!,

Plus en détail

On peut mesurer l intensité (ou la «valeur») d une force à l aide d un dynamomètre. L intensité d une force s exprime en newton, symbole : N

On peut mesurer l intensité (ou la «valeur») d une force à l aide d un dynamomètre. L intensité d une force s exprime en newton, symbole : N CH5 FORCES ET PRINCIPE D INERTIE A) POURQUOI LE MOUVEMENT D UN OBJET EST-IL MODIFIE? POURQUOI SE DEFORME-T-IL? I - RAPPELS. L existence d une force est conditionnée à l identification d une interaction,

Plus en détail

FICHE 1 Fiche à destination des enseignants 1S 15 Volant de badminton en perte d énergie?

FICHE 1 Fiche à destination des enseignants 1S 15 Volant de badminton en perte d énergie? FICHE 1 Fiche à destination des enseignants 1S 15 Type d'activité Activité expérimentale Notions et contenus du programme de 1 ère S Compétences attendues du programme de 1 ère S Énergie d un point matériel

Plus en détail

REFERENCE MODULE REFERENCE DOCUMENT DATE DE CREATION. PHY-FLU1 Livret physique des fluides 1 20/07/01 PHYSIQUE DES FLUIDES

REFERENCE MODULE REFERENCE DOCUMENT DATE DE CREATION. PHY-FLU1 Livret physique des fluides 1 20/07/01 PHYSIQUE DES FLUIDES PHYSIQUE DES FLUIDES 1 1. MASSE-UNITES DE FORCE Masse (m).la masse d un corps caractérise la quantité de matière de ce corps en Kilogrammes ( Kg - unité S.I) Le Poids (p) d un corps peut s exprimer par

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Utiliser Dynamic en classe de seconde

Utiliser Dynamic en classe de seconde BULLETIN DE L UNION DES PHYSICIENS 1429 Utiliser Dynamic en classe de seconde Nouveaux programmes Par École Alsacienne - 75006 Paris Gerard.AUSSEL@wanadoo.fr RÉSUMÉ Cet article présente quelques exemples

Plus en détail

SPE PSI DL 8 Pour le 05/12/11

SPE PSI DL 8 Pour le 05/12/11 SPE PSI DL 8 Pour le 05/12/11 CONDUCTION DANS LES METAUX: L'espace est rapporté à un repère O muni d'une base cartésienne ( e, e, e ). Données numériques: - charge de l'électron: -e = - 1,6.10-19 C. -

Plus en détail

Repérage d un point - Vitesse et

Repérage d un point - Vitesse et PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées

Plus en détail

CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES

CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES La lettre grecque α désigne soit, soit, soit a un réel fini ( a R ) Le plan est muni d un repère ( O; i ; j), et on note C f la courbe représentative de la fonction

Plus en détail

Un peu de mécanique. Chaos iii. La pomme et la lune http://www.chaos-math.org

Un peu de mécanique. Chaos iii. La pomme et la lune http://www.chaos-math.org Un peu de mécanique Chaos iii. La pomme et la lune http://www.chaos-math.org Chaos est un film mathématique constitué de neuf chapitres de treize minutes chacun. Il s agit d un film tout public autour

Plus en détail

Comment battre Milos Raonic?

Comment battre Milos Raonic? Comment battre Milos Raonic? Milos Raonic est un jeune joueur de tennis professionnel Canadien. Il dispose de capacités physiques impressionnantes avec une taille de 1,96 m pour 90 kg. Depuis le début

Plus en détail

PC - TD Révisions de mécanique de sup 1

PC - TD Révisions de mécanique de sup 1 Exercice 1 Looping PC - TD Révisions de mécanique de sup 1 Un skater assimilé à un point matériel M de masse m, se lâche sans vitesse initiale depuis le point A d une rampe, situé à une hauteur h au-dessus

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Calculons les concentrations de glucose dans les différents échantillons :

Calculons les concentrations de glucose dans les différents échantillons : Exercice : La chaptalisation (7points) = 0,25pt donc 28 1 OH 2 C est un alcool primaire. 3 C 6 H 12 O 6 -> 2C 2 H 6 O + 2CO 2 2. 2.1 La stœchiométrie de l équation de la réaction, nous montre qu un mole

Plus en détail

TS - Cours sur le logarithme népérien

TS - Cours sur le logarithme népérien Lcée Europole - R. Vidonne 1 TS - Cours sur le logarithme népérien Fonction carrée et racine carrée Considérons les fonctions f : R + R + g : R + R + 2 Dans un repère orthonormal, les courbes C f et C

Plus en détail

Travail d une force Correction

Travail d une force Correction Travail d une force Exercice 1 : Deux jumeaux de même masse m=75,0 kg montent au 5ème étage d'un immeuble en partant du rez-de-chaussée. Le jumeau A emprunte l'ascenseur et le jumeau B l'escalier. La distance

Plus en détail

1. La notion de force

1. La notion de force 1. La notion de force livre page 6 & 7 a) introduction Tu as déjà sûrement entendu le terme de force, c est en effet un mot utilisé fréquemment dans le langage commun : on parle de la force publique, de

Plus en détail

1ES Février 2013 Corrigé

1ES Février 2013 Corrigé 1ES Février 213 Corrigé Exercice 1 Le tableau ci-dessous renseigne sur les besoins en eau dans le monde : Population mondiale (Milliards d habitants) Volume moyen par habitant ( ) 195 2,5 4 1 197 3,6 5

Plus en détail