TP Bonus : Simulation de variables aléatoires

Dimension: px
Commencer à balayer dès la page:

Download "TP Bonus : Simulation de variables aléatoires"

Transcription

1 IMIS : Master 1 Université Paris Est Marne la Vallée TP Bonus : Siulation de variables aléatoires 1. Siulation de lois Dans les applications, on a souvent besoin de générer de façon artificielle (à l aide d un ordinateur) une suite X 1,, X n de nobres aléatoires i.i.d. suivant la loi donnée F. Les éthodes de siulation perettent seuleent d obtenir une valeur pseudo-aléatoire X i, au lieu d une valeur aléatoire. Cela signifie que les nobres X 1,, X n siulés sont déterinistes (ils sont obtenus par un algorithe déteriniste) ais les propriétés de la suite X 1,, X n sont proches d une suite aléatoire iid de loi donnée. Par exeple pour les X i pseudo-aléatoires on a la propriété de Glivenko-Cantelli : sup F n (x) F (x) 0 quand n, x ais il s agit ici de la convergence au sens déteriniste Siulation des variables uniforéent distribuées. La f.d.r. F U ( ) de la loi unifore U[0, 1] s écrit sous la fore F U (x) = x1 [0,1] (x) + 1 ]1,+ ] (x). Le prograe-générateur d un échantillon pseudo-aléatoire U 1,, U n de cette loi est disponible dans de nobreux logiciels. Le principe de son fonctionneent est le suivant : on se donne un réel a > 1 et un entier (a et seront choisis très grands). On coence par une valeur Z 0 fixe. Pour tout i {1,, n}, on définit z i = le reste de la division de az i 1 par = az i 1 [ az i 1 ]. Pour tout i {1,, n}, nous avons toujours 0 z i <. On définit U i = z i = az i 1 [ az i 1 ]. Ainsi, pour tout i {1,, n}, 0 U i < 1. La suite U 1,, U n est considérée coe un échantillon de la loi unifore U[0, 1]. Bien que cette suite n est pas aléatoire, on peut ontrer que sa f.d.r. epirique Fn U (x) = 1 n 1 Ui x n est telle que sup x F U n (x) F (x) = sup x [0,1] F U n (x) x ɛ(n, ) avec ɛ(n, ) qui converge très vite vers 0 quand et n. i=1 1

2 2 1. Coe la plupart des logiciels, SAS dispose d un générateur de nobres pseudo-aléatoires. Afin de siuler un échantillon de n = 50 v.a. iid de loi unifore U[0, 1], exécuter le prograe suivant : DATA TableCree ; DO i=1 TO 50 ; y=ranuni(10) ; KEEP y ; PROC PRINT ; Le paraètre (10) est la graine ou seence du générateur. Réexécuter le prograe avec la êe valeur, une autre valeur, plusieurs fois avec la valeur 1. Une valeur négative coe 1 provoque l utilisation de l horloge interne coe seence aléatoire. Cette dernière seence seble généré des nobres plus aléatoires ais avec un inconvénient : il est ipossible de regénérer le êe échantillon à un autre instant et donc de coparer des éthodes de façon rigoureuse Siulation des variables de loi générale. Etant donné un échantillon iid U 1,, U n d une loi unifore, on peut obtenir un échantillon d une loi générale F ( ) par la éthode d inversion. Elle est opérationnelle si F 1 est disponible sous fore explicite. Cette éthode est basée sur la proposition suivante : Proposition 1.1. Soit F une f.d.r. continue et stricteent croissante et soit U une v.a. uniforéent distribuée sur [0, 1]. Alors la v.a. suit la loi F. X = F 1 (U) Il en découle l algorithe de siulation suivant : si F est une f.d.r. continue et stricteent croissante, on pose X i = F 1 (U i ), où les U i sont des nobres pseudo-aléatoires uniforéent distribués sur [0, 1] générés coe expliqué précédeent. On obtient ainsi un échantillon siulé (X 1,, X n ) de loi F. Si F n est pas continue ou stricteent croissante, il faut odifier la définition de l inverse de F et considérer l inverse généralisée définie par : pour tout u [0, 1], F 1 (u) = inf{x R t.q. F (x) u},

3 avec la convention inf = +. On a alors que y F 1 (u) F (y) u. Cela iplique que si X a pour f.d.r. F et si U U[0, 1], alors F 1 (U) a la êe loi que X. Exeple 1. Siulation d un échantillon de loi exponentielle E(1). On a f(x) = e x 1 (x>0) et F (x) = (1 e x )1 (x>0). Ainsi F 1 (y) = ln(1 y) pour y (0, 1). Posons alors X i = ln(1 U i ) où les U i sont des nobres pseudo-aléatoires uniforéent distribués sur [0, 1]. Exeple 2. Siulation d un échantillon de loi de Bernoulli. Soit On a alors pour y [0, 1], P (X = 1) = p et P (X = 0) = 1 p, 0 < p < 1. F 1 (y) = inf{x R t.q. F (x) y} = { 0 si y [0, 1 p] 1 si y ]1 p, 1]. Si U i est une v.a. de loi unifore, alors X i = F 1 (U i ) suit la loi de Bernoulli. On pose alors { 0 si U i [0, 1 p] X i = 1 si U i ]1 p, 1]. 2. A l aide de la éthode d inversion, siuler un échantillon de taille n = 100 de v.a. iid de loi exponentielle de paraètre 1. Refaire la êe déarche en utilisant l instruction ranexp(10). Les instructions rannor(10) et rancau(10) perettent respectiveent de siuler des lois norales et des lois de Cauchy. A l aide de l instruction rannor(10), siuler un n = 50 échantillon de loi N (1, 4) Siulation des variables de loi gaussienne. On présente ci-dessous deux éthodes connues pour générer des variables (pseudo) aléatoires suivant une loi gaussienne Via le théorèe central liite. Pour U U[0, 1], on a E(U) = 1/2 et Var(U) = 1/12. Vu le TCL, si les U i sont iid et de loi U[0, 1], on a que 3 U U N N/2 N/12 N N (0, 1) en loi. La valeur N = 12 est déjà suffisante pour obtenir une bonne approxiation de la loi norale. On en déduit la éthode de siulation suivante : on génère U 11,, U nn, une suite de variables pseudo-aléatoires de loi U[0, 1] et on pose ensuite X i = U i1 + + U in N/2 N/12 N N (0, 1), i = 1,, n. On obtient ainsi un échantillon siulé (X 1,, X n ) de la loi approxiativeent N (0, 1).

4 4 3. Exécuter le prograe suivant DATA TableCree ; ARRAY si{12} y1-y12 ; DO i=1 TO 1000 ; DO j=1 TO 12 ; PROC PRINT ; si{j}=ranuni(-1) ; S=su(of y1-y12) ; KEEP S ; Lancer SAS/INSIGHT : solutions/analyse/analyse interactive des données. Charger la table créée ci-dessus : work/tablecree/ok Pour obtenir de belles sorties graphiques et des estiations de la densité : Analyze/Distribution /S/Y/OK Curves/ kernel density/ok Via la éthode de Box et Müller. Nous renvoyons au TP5 pour un descriptif de cette éthode. 2. Siulations d intervalles de confiance On considère la loi norale de oyenne 5 et d écart type 2 et on prendra pour seuil α = 0, 05. En supposant σ = 2 connu, nous tirons un échantillon de taille 25 par exeple. Celui-ci nous peret d avoir une estiation par intervalle de µ (que l on sait valoir 5). Cet intervalle peut contenir ou non le paraètre à estier : tout dépend de l échantillon obtenu. Nous allons considérer 100 échantillons et exainer les intervalles de confiance. 4. Exécuter les prograes suivants :

5 DATA siul ; n=25 ; nechantillon=100 ; u=5 ; siga=2 ; DO j=1 TO nechantillon ; DO i=1 TO n ; x=siga*rannor(0)+u ; DROP i nechantillon ; 5 PROC MEANS Noprint ; VAR x ; OUTPUT Out=oyennes ean= ; BY j ; DATA intervalles ; SET oyennes ; siga=2 ;n=25 ; u=5 ; a=-siga*1.96/sqrt(n) ; b=+siga*1.96/sqrt(n) ; SYMBOL1 i=join c=red width=1 ; SYMBOL2 i=join c=blue width=1 ; SYMBOL3 i=join c=green width=1 ; TITLE Bornes de confiance de u=5 au niveau alpha=0.05 ; PROC GPLOT Data=intervalles ; PLOT a*j=1 u*j=2 b*j=3 / Overlay ; TITLE ; QUIT ;

Arrondissage des résultats de mesure. Nombre de chiffres significatifs

Arrondissage des résultats de mesure. Nombre de chiffres significatifs BUREAU NATIONAL DE MÉTROLOGIE COMMISSARIAT À L'ÉNERGIE ATOMIQUE LABORATOIRE NATIONAL HENRI BECQUEREL Note technique LNHB/04-13 Arrondissage des résultats de esure Nobre de chiffres significatifs M.M. Bé,

Plus en détail

Mécanique : Cinématique du point. Chapitre 1 : Position. Vitesse. Accélération

Mécanique : Cinématique du point. Chapitre 1 : Position. Vitesse. Accélération 2 e B et C 1 Position. Vitesse. Accélération 1 Mécanique : Cinéatique du point La écanique est le doaine de tout ce qui produit ou transet un ouveent, une force, une déforation : achines, oteurs, véhicules,

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

Voyez la réponse à cette question dans ce chapitre. www.alternativesjournal.ca/people-and-profiles/web-exclusive-ela-alumni-make-splash

Voyez la réponse à cette question dans ce chapitre. www.alternativesjournal.ca/people-and-profiles/web-exclusive-ela-alumni-make-splash Une personne de 60 kg est à gauche d un canoë de 5 de long et ayant une asse de 90 kg. Il se déplace ensuite pour aller à droite du canoë. Dans les deux cas, il est à 60 c de l extréité du canoë. De cobien

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Utiliser Internet Explorer

Utiliser Internet Explorer 5 Utiliser Internet Explorer 5 Utiliser Internet Explorer Internet Explorer est le plus utilisé et le plus répandu des navigateurs web. En effet, Internet Explorer, couraent appelé IE, est le navigateur

Plus en détail

2.1 Comment fonctionne un site?

2.1 Comment fonctionne un site? Coent fonctionne un site? Dans ce chapitre, nous allons étudier la liste des logiciels nécessaires à la création d un site ainsi que les principes de base indispensables à son bon fonctionneent. 2.1 Coent

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

L étalonnage par traceur Compton, une nouvelle méthode de mesure primaire d activité en scintillation liquide

L étalonnage par traceur Compton, une nouvelle méthode de mesure primaire d activité en scintillation liquide PH. CASSEE L étalonnage par traceur Copton, une nouvelle éthode de esure priaire d activité en scintillation liquide he Copton source efficiency tracing ethod, a new standardization ethod in liquid scintillation

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

OBJECTIFS. I. A quoi sert un oscilloscope?

OBJECTIFS. I. A quoi sert un oscilloscope? OBJECTIFS Oscilloscope et générateur basse fréquence (G.B.F.) Siuler le fonctionneent et les réglages d'un oscilloscope Utiliser l oscilloscope pour esurer des tensions continues et alternatives Utiliser

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Autour des nombres et des polynômes de Bernoulli

Autour des nombres et des polynômes de Bernoulli Autour des nobres et des polynôes de Bernoulli Gaëtan Bisson d après un cours de Don Zagier Résué En athéatiques, les nobres de Bernoulli ont d abord été étudiés en cherchant à calculer les soes du type

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

Équations générales des milieux continus

Équations générales des milieux continus Équations générales des ilieux continus Jean Garrigues 1 ai 212 ii Avant-propos L objectif de ce cours est d établir les équations générales régissant tous les ilieux continus, qu ils soient solides ou

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

THESE. Applications des algorithmes d'auto-organisation à la classification et à la prévision

THESE. Applications des algorithmes d'auto-organisation à la classification et à la prévision UNIVERSITE PARIS I PANTHEON SORBONNE U.F.R. DE MATHEMATIQUES et INFORMATIQUE Année 999 THESE Pour obtenir le rade de DOCTEUR DE L'UNIVERSITE PARIS I Discipline : Mathéatiques Présentée et soutenue publiqueent

Plus en détail

Simulation numérique de la réponse d un pieu en cours de battage

Simulation numérique de la réponse d un pieu en cours de battage Siulation nuérique e la réponse un pieu en cours e battage Philippe LEPERT Ingenieur Division Géotechnique et Mécanique es Chaussées Laboratoire Central es Ponts et Chaussées Daniel MEIGNEN Technicien

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

MODELES DE DUREE DE VIE

MODELES DE DUREE DE VIE MODELES DE DUREE DE VIE Cours 1 : Introduction I- Contexte et définitions II- Les données III- Caractéristiques d intérêt IV- Evènements non renouvelables/renouvelables (unique/répété) I- Contexte et définitions

Plus en détail

MÉTHODE DE MONTE CARLO.

MÉTHODE DE MONTE CARLO. MÉTHODE DE MONTE CARLO. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) Méthode de Monte Carlo. 1 / 95 PLAN DU COURS 1 MÉTHODE DE MONTE CARLO 2 PROBLÈME DE SIMULATION Théorème fondamental

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

4. Martingales à temps discret

4. Martingales à temps discret Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre. Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences

Plus en détail

ÉTUDE BDC LES CINQ FACTEURS CLÉS ET LES CINQ PIÈGES À ÉVITER POUR RÉUSSIR EN AFFAIRES

ÉTUDE BDC LES CINQ FACTEURS CLÉS ET LES CINQ PIÈGES À ÉVITER POUR RÉUSSIR EN AFFAIRES ÉTUDE BDC LES CINQ FACTEURS CLÉS ET LES CINQ PIÈGES À ÉVITER POUR RÉUSSIR EN AFFAIRES Seaine de la PME BDC 2014 Résué --------------------------------------------------------------------------------------

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Estimations d erreur a priori de la méthode de Lagrange Galerkin pour les équations de type Kazhikhov Smagulov

Estimations d erreur a priori de la méthode de Lagrange Galerkin pour les équations de type Kazhikhov Smagulov Estiations d erreur a priori de la étode de Lagrange Galerkin pour les équations de type Kazikov Sagulov Jocelyn Étienne b,a Pierre Saraito a a LMC-IMAG, BP 53, 3841 Grenoble cedex b Adresse actuelle:

Plus en détail

Abstract. Key-words: The flowshop problem, Heuristics, Job scheduling, Total flowtime.

Abstract. Key-words: The flowshop problem, Heuristics, Job scheduling, Total flowtime. Abstract Since the flowshop scheduling proble has found to be an NP-coplete proble, the developent of heuristic algoriths that give better solutions becoe necessary. In this paper we discuss how to resolve

Plus en détail

PRIME D UNE OPTION D ACHAT OU DE VENTE

PRIME D UNE OPTION D ACHAT OU DE VENTE Université Paris VII - Agrégation de Mathématiques François Delarue) PRIME D UNE OPTION D ACHAT OU DE VENTE Ce texte vise à modéliser de façon simple l évolution d un actif financier à risque, et à introduire,

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Introduction à la statistique non paramétrique

Introduction à la statistique non paramétrique Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

Cours de Tests paramétriques

Cours de Tests paramétriques Cours de Tests paramétriques F. Muri-Majoube et P. Cénac 2006-2007 Licence Ce document est sous licence ALC TYPE 2. Le texte de cette licence est également consultable en ligne à l adresse http://www.librecours.org/cgi-bin/main?callback=licencetype2.

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Économetrie non paramétrique I. Estimation d une densité

Économetrie non paramétrique I. Estimation d une densité Économetrie non paramétrique I. Estimation d une densité Stéphane Adjemian Université d Évry Janvier 2004 1 1 Introduction 1.1 Pourquoi estimer une densité? Étudier la distribution des richesses... Proposer

Plus en détail

DOSSIER SUR LE SECTEUR DES NOMS DE DOMAINE VOLUME 11 - NUMÉRO 4 - JANVIER 2015

DOSSIER SUR LE SECTEUR DES NOMS DE DOMAINE VOLUME 11 - NUMÉRO 4 - JANVIER 2015 DOSSIER SUR LE SECTEUR DES NOMS DE DOMAINE VOLUME 11 - NUMÉRO - JANVIER 2015 RAPPORT DE VERISIGN SUR LES NOMS DE DOMAINE LEADER MONDIAL DU SECTEUR DES NOMS DE DOMAINE ET DE LA SÉCURITÉ D'INTERNET, VERISIGN

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

Statistique inférentielle TD 1 : Estimation

Statistique inférentielle TD 1 : Estimation POLYTECH LILLE Statistique inférentielle TD : Estimation Exercice : Maîtrise Statistique des Procédés Une entreprise de construction mécanique fabrique de pièces demoteurdevoiturepourungrandconstructeur

Plus en détail

Introduction au logiciel SAS François-Xavier LEJEUNE

Introduction au logiciel SAS François-Xavier LEJEUNE INSTITUT DE STATISTIQUE de l Université Pierre et Marie Curie Cycle Supérieur 1 ère année 2011-12 Introduction au logiciel SAS François-Xavier LEJEUNE Plan du cours Séance n 1 Débuts en SAS : Généralités

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

L indice des prix à la consommation

L indice des prix à la consommation L indice des prix à la consoation Base 2004 Direction générale Statistique et Inforation éconoique 2007 L indice des prix à la consoation Base 2004 = 100 La Direction générale Statistique et Inforation

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

VIII- Circuits séquentiels. Mémoires

VIII- Circuits séquentiels. Mémoires 1 VIII- Circuits séquentiels. Mémoires Maintenant le temps va intervenir. Nous avions déjà indiqué que la traversée d une porte ne se faisait pas instantanément et qu il fallait en tenir compte, notamment

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Modélisation et simulation

Modélisation et simulation Modélisation et simulation p. 1/36 Modélisation et simulation INFO-F-305 Gianluca Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Modélisation et simulation p.

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

L export de SAS vers Excel expliqué à ma fille

L export de SAS vers Excel expliqué à ma fille L export de SAS vers Excel expliqué à ma fille SAS est un logiciel merveilleux, mais tous n y ont pas accès. Pour contenter la soif de données de vos collègues qui n auraient pas d autre outil à disposition,

Plus en détail

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 Université PARIS 6 2008/2009 Jean BERTOIN 1 Table des Matières ( ) ces parties peuvent ^etre omises en première lecture, et ne feront pas

Plus en détail

La mémoire C HAPITRE S EPT. 7.1 Qu est-ce que la mémoire? 166. 7.2 L utilisation de la mémoire à court terme 169

La mémoire C HAPITRE S EPT. 7.1 Qu est-ce que la mémoire? 166. 7.2 L utilisation de la mémoire à court terme 169 La éoire C HAPITRE S EPT 7.1 Qu est-ce que la éoire? 166 Les types de éoires 166 Vue d enseble des processus éoriels 168 7.2 L utilisation de la éoire à court tere 169 La éoire iconique 169 La éoire à

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

Communications numériques

Communications numériques Communications numériques 1. Modulation numérique (a) message numérique/signal numérique (b) transmission binaire/m-aire en bande de base (c) modulation sur fréquence porteuse (d) paramètres, limite fondamentale

Plus en détail

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

Introduction à la Statistique Inférentielle

Introduction à la Statistique Inférentielle UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,

Plus en détail

Mathématiques financières

Mathématiques financières Mathématique financière à court terme I) Les Intérêts : Intérêts simples Mathématiques financières - Intérêts terme échu et terme à échoir - Taux terme échu i u équivalent à un taux terme à échoir i r

Plus en détail

Corrigé des TD 1 à 5

Corrigé des TD 1 à 5 Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un

Plus en détail

Température corporelle d un castor (une petite introduction aux séries temporelles)

Température corporelle d un castor (une petite introduction aux séries temporelles) Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

EXERCICE II : LE TELEPHONE "POT DE YAOURT" (5 points)

EXERCICE II : LE TELEPHONE POT DE YAOURT (5 points) USA 2005 EXERCICE II : LE TELEPHONE "POT DE YAOURT" (5 points) A l'ère du téléphone portable, il est encore possible de couniquer avec un systèe bien plus archaïque L'onde sonore produite par le preier

Plus en détail

INITIATION AU LOGICIEL SAS

INITIATION AU LOGICIEL SAS INITIATION AU LOGICIEL SAS (version 9.1.3 sous Windows) Hélène HAMISULTANE Bibliographie : Initiation au logiciel SAS(9) pour Windows, Coqué N. (juin 2006). www.agroparistech.fr/img/pdf/polysas.pdf SAS

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

Exemples d application

Exemples d application AgroParisTech Exemples d application du modèle linéaire E Lebarbier, S Robin Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations 4 2 Régression linéaire simple 7 21 Présentation 7 211 Objectif

Plus en détail