INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV"

Transcription

1 Séminaire MTDE 22 mai 23 INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Vincent Mazet CRAN CNRS UMR 739, Université Henri Poincaré, 5456 Vandœuvre-lès-Nancy Cedex 1 juillet 23

2 Sommaire 1. Introduction 2. À quoi ça sert? Génération de variables aléatoires Intégration Optimisation 3. Méthodes non MCMC Inversion de la fonction de répartition Génération de VA uniformes Génération de VA non uniformes 4. Chaînes de Markov 5. Algorithmes de Metropolis Hastings 6. Échantillonnage de Gibbs 7. Méthodes hybrides 8. Conclusion 9. Bibliographie 2/29

3 Introduction MCMC = Markov Chain Monte Carlo Les méthodes MCMC créent une longue chaîne de Markov {x i } dont les échantillons sont distribués asymptotiquement selon la distribution requise π(x), on dispose ainsi de VA distribuées suivant π π = Ga(3, 1) PSfrag replacements chaîne de Markov : x i ne dépend que de x i 1 p(x i x i 1,..., x ) = p(x i x i 1 ) 3/29

4 Introduction Historique Les méthodes MCMC sont apparues il y a 5 ans pour la physique statistique [Metropolis et al. 1953]. 197 : article précurseur de Hastings : échantillonneur de Gibbs [Geman & Geman 1984]. 199 : apparition des méthodes MCMC dans la littérature statistique et d analyse du signal [Gelfand & Smith 199] grâce aux progrès de l informatique. 4/29

5 Utilité des méthodes MCMC 1. Échantillonnage de variables aléatoires x π(x) échantillonnage de variables aléatoires, calcul d intégrales, optimisation de fonctions,... utilisation de méthodes usuelles (si π est relativement simple) ou MCMC (s il n est pas possible d utiliser les méthodes usuelles). 5/29

6 Utilité des méthodes MCMC 2. Intégration E [f(x)] = f(x)π(x)dx calcul de la moyenne a posteriori, estimation de marginales,... ÊN [f(x)] = 1 N N f(x i ) i= avec x i π(x) iid et N suffisamment grand (convergence d après la loi des grands nombres) 6/29

7 Utilité des méthodes MCMC 3. Optimisation x max = arg max x π(x) maximisation de fonction (en s affranchissant des problèmes de minima locaux), calcul du maximum a posteriori,... crible, ARS, recuit simulé,... exemple de crible pour le calcul du MAP 1. échantillonnage : u U support ; 2. x max = u ssi p(u y) > p(x max y) ; 3. retour en 1. θ = arg max θ p(θ y). 7/29

8 Utilité des méthodes MCMC Ê = 1 N N 1 x i = 2, 9693 (3) Var = N i= N x 2 i Ê2 = 2, 8187 (3) x max = 2, 3 (2) i= 8/29

9 Méthodes non MCMC Inversion de la fonction de répartition F PSfrag replacements p u U[, 1] x = F 1 (u) 1 9/29

10 Méthodes non MCMC Générateurs de VA uniformes Algorithme Kiss, qui combine deux techniques de génération : la génération congruencielle : x n+1 = (ax n + b)modm ; la génération par déplacement de registre. Simulation de lois non uniformes Plusieurs algorithmes existent : Algorithme de Box et Muller (1958) pour la simulation d une loi N (, 1) ; Méthodes de mélanges (simulation de lois simples pour en construire de plus complexes) ; Méthode d acceptation-rejet avec ou sans enveloppe ; Méthodes générales pour les densités log-concaves. 1/29

11 Chaînes de Markov Définition p(x i x,..., x i 1 ) = p(x i x i 1 ) une chaîne de Markov est définie par deux composantes : la distribution initiale p(x ) ; le noyau de transition T (x, A) = p(x i+1 A x i = x). 11/29

12 Chaînes de Markov Propriétés importantes des chaînes de Markov Invariance/Stationnarité : si x i distribué suivant π, alors x i+1 et les suivants sont distribués suivant π. Irréductibilité : tous les ensembles de probabilité non nulle peuvent être atteints à partir de tout point de départ. Récurrence : les trajectoires (X i ) passent une infinité de fois dans tout ensemble de probabilité non nulle. Apériodicité : aucun noyau n induit un comportement périodique des trajectoires. 12/29

13 Algorithme de Metropolis-Hastings Algorithme de Metropolis-Hastings [Metropolis et al. 1953] [Hastings 197] objectif : x π(x) on introduit q(a b) : «loi instrumentale» ou «loi candidate». q quelconque, mais doit être simulable rapidement (U, N,...) et est soit disponible analytiquement (à une constante près) ; soit symétrique (q(a b) = q(b a)). 13/29

14 Algorithme de Metropolis-Hastings Algorithme de Metropolis-Hastings 1. initialiser x () 2. à l itération i : (a) simuler (b) calcul de x q(x x (i 1) ) { } π( x) q(x (i 1) x) α = min 1, π(x (i 1) ) q( x x (i 1) ) (c) accepter x avec la probabilité α : { x avec la probabilité α (acceptation) x (i) = x (i 1) sinon (rejet) 3. i i + 1 et aller en 2 14/29

15 Algorithme de Metropolis-Hastings q = U[ 4, 4] q = U[ 1, 1] q = N (, 1) 4 q = N (, 2) 3 replacements /29

16 Algorithme de Metropolis-Hastings 4 q = U[ 4, 4] q = U[ 1, 1] q = N (, 1) 15 q = N (, 2) replacements /29

17 Algorithme de Metropolis-Hastings Remarques Ne génère pas d échantillons iid, en particulier parce que la probabilité d acceptation de x dépend de x (i 1) ; Le choix de q est important : le support de q doit couvrir le support de π ; q doit être une bonne approximation de π ;... 17/29

18 Algorithme de Metropolis-Hastings Algorithme de Metropolis-Hastings indépendant (independence sampler) q( x x) = q( x) Algorithme de Metropolis (Metropolis algorithm) [Metropolis 1953] q( x x) = q(x x) d où : α = min { 1, } π( x) π(x (i 1) ) 18/29

19 Algorithme de Metropolis-Hastings Algorithme de Metropolis-Hastings à sauts réversibles (reversible jump) [Green 1995] utilisé lorsque la dimension de l espace est l un des paramètre à simuler. exemples : estimation du nombre de composantes dans un mélange ; ordre d une série ARMA ; nombre de changement de régime dans une série stationnaire par morceaux. 19/29

20 Algorithme de Metropolis-Hastings Recuit simulé (simulated annealing) Pour minimiser un critère E sur un ensemble fini de très grande taille. Correspond à l algorithme de Metropolis pour simuler la densité π(x) = exp( E(x)/T i ) Cette densité tend vers un pic de Dirac. En général, T i = β i T avec < β < 1 chaîne de Markov inhomogène. 2/29

21 Algorithme de Metropolis-Hastings Exemple Minimum de E(x) = sin(1/x) exp ( (x 1) 2) Minimum réel : 1,1 ; Fontion fminsearch, initialisée en 1,5 : 1,48 ; Recuit simulé avec q = N (1, 5, 1), β =, 9, T = 1 : 1,8. 21/29

22 Algorithme de Metropolis-Hastings 8 i [1; 5] i [5; 1] i [1; 15] i [15; 2] 4 g replacements /29

23 Algorithme de Metropolis-Hastings Variantes de l algorithme de Metropolis-Hastings Classification complète des algorithmes de Metropolis-Hastings impossible du fait de l universalité de la méthode et du développement des méthodes hybrides plus performantes. MH «un à la fois» ; MH à marche aléatoire ; version autorégressive ; ARMS. 23/29

24 Échantillonnage de Gibbs Échantillonnage de Gibbs (Gibbs sampler) [Geman & Geman 1984] objectif : x π(x) avec x = (x 1,..., x N ) π i (x i x i ) connus Taux d acceptation de 1 (tous les échantillons simulés sont acceptés). Nécessairement multidimensionnel avec nombre de variables fixe. 24/29

25 Échantillonnage de Gibbs Échantillonnage de Gibbs 1. initialiser x () = (x () 1,..., x() N ) 2. itération i : simuler x (i+1) 1 π 1 ( x (i) 2,..., x(i) N ) x (i+1) 2 π 2 ( x (i+1) 1, x (i) 3.,..., x(i) N ) x (i+1) N π N ( x (i+1) 2,..., x (i+1) N 1 ) 3. i i + 1 et aller en 2 NB : on peut ne pas échantillonner que des scalaires. 25/29

26 Échantillonnage de Gibbs Remarques Il existe des échantillonneurs de Gibbs à balayage symétrique (deterministically updated Gibbs sampler) et à balayage aléatoire (random sweep Gibbs sampler). échantillonné seulement à partir de x (i) x (i+1) j (MH : à partir de x (i) j et x(i) j ). Très simple à implémenter. Lorsqu il est possible d échantillonner à partir des probabilités conditionnelles, l échantillonneur de Gibbs est le meilleur choix. Certains paramètres, s ils sont très corrélés (exemple : composants d une RI), peuvent être visités plus que d autres (comme une moyenne ou une variance). j. 26/29

27 Algorithmes hybrides Algorithmes hybrides Versions couplées de plusieurs schémas de simulation afin de pouvoir exploiter toutes leurs propriétés. Algorithmes très récents. acceptation-rejet + Metropolis-Hastings : pour d obtenir des échantillons iid ; grid based chains : permet d obtenir des expressions du type E[X i+1 X i ]. 27/29

28 Conclusion Conclusion Les méthodes MCMC permettent d échantillonner des VA en construisant une chaîne de Markov. Des estimateurs permettent ensuite d intégrer ou d optimiser des fonctions. Des méthodes non MCMC, plus simples permettent dans certains cas de s abstenir des méthodes MCMC (inversion de la fonction de répartition, Kiss, acceptation/rejet,...) Les deux algorithmes MCMC les plus répandus sont Metropolis-Hastings et l échantillonneur de Gibbs. 28/29

29 Bibliographie Bibliographie C. Robert. Méthodes de Monte Carlo par Chaînes de Markov W.R. Gilks, S. Richardson et D.J. Spiegelhalter. Markov Chain Monte Carlo in Practice C. Andrieu, A. Doucet et P. Duvaut. Méthodes de Monte Carlo par Chaînes de Markov appliquées au traitement du signal. Rapport interne ETIS-URA n 3 S. Sénécal. Méthodes de simulation Monte Carlo par chaînes de Markov pour l estimation de modèles. Applications en séparation de sources et en égalisation. Thèse de doctorat, INPG, 22. W.J. Fitzgerald. Markov Chain Monte carlo methods with applications to signal processing. Signal Processing 81, p. 3 18, 21 S. Vaton. Notes de cours sur les méthodes de Monte Carlo par chaînes de Markov /29

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

Introduction aux Méthodes de Monte Carlo

Introduction aux Méthodes de Monte Carlo Méthodes de Monte Carlo pour la Modélisation et le Calcul Intensif Applications à la Physique Numérique et à la Biologie Séminaire CIMENT GRID Introduction aux Méthodes de Monte Carlo Olivier François

Plus en détail

Jeffrey S. Rosenthal

Jeffrey S. Rosenthal Les marches aléatoires et les algorithmes MCMC Jeffrey S. Rosenthal University of Toronto jeff@math.toronto.edu http ://probability.ca/jeff/ (CRM, Montréal, Jan 12, 2007) Un processus stochastique Qu est-ce

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES

OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES ST50 - Projet de fin d études Matthieu Leromain - Génie Informatique Systèmes temps Réel, Embarqués et informatique Mobile - REM 1 Suiveur en entreprise

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

MÉTHODE DE MONTE CARLO PAR CHAÎNE DE MARKOV.

MÉTHODE DE MONTE CARLO PAR CHAÎNE DE MARKOV. MÉTHODE DE MONTE CARLO PAR CHAÎNE DE MARKOV. Alexandre Popier Université du Maine, Le Mans A. Popier (Université du Maine) MCMC. 1 / 31 PLAN DU COURS 1 RAPPELS SUR LES CHAÎNES DE MARKOV Théorème ergodique

Plus en détail

IFT3245. Simulation et modèles

IFT3245. Simulation et modèles IFT 3245 Simulation et modèles DIRO Université de Montréal Automne 2012 Tests statistiques L étude des propriétés théoriques d un générateur ne suffit; il estindispensable de recourir à des tests statistiques

Plus en détail

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Patrick Dallaire Université Laval Département d informatique et de génie

Plus en détail

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens.

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. . Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. Benoîte de Saporta Université de Nantes Université de Nantes - 9 juin 2005 p. 1/37 Plan de l exposé 1.

Plus en détail

Analyse MCMC de certains modèles de diffusion avec application au marché européen du carbone

Analyse MCMC de certains modèles de diffusion avec application au marché européen du carbone Analyse MCMC de certains modèles de diffusion avec application au marché européen du carbone Jean-François Bégin Département de Mathématiques et Statistiques Université de Montréal Montréal, Canada Août

Plus en détail

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Prise en Compte de l Incertitude dans l Évaluation des Technologies de

Plus en détail

Soutenance de stage Laboratoire des Signaux et Systèmes

Soutenance de stage Laboratoire des Signaux et Systèmes Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 Cours de B. Desgraupes. Simulation Stochastique

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 Cours de B. Desgraupes. Simulation Stochastique UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 L2 MIASHS Cours de B. Desgraupes Simulation Stochastique Séance 04: Nombres pseudo-aléatoires Table des matières 1

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

La recherche locale. INF6953 La recherche locale 1

La recherche locale. INF6953 La recherche locale 1 La recherche locale INF6953 La recherche locale 1 Sommaire Recherche locale et voisinage. Fonction de voisinage, optimum local Fonction de voisinage et mouvements Fonction de voisinage et mouvements Exemples

Plus en détail

Problèmes de fiabilité dépendant du temps

Problèmes de fiabilité dépendant du temps Problèmes de fiabilité dépendant du temps Bruno Sudret Dépt. Matériaux et Mécanique des Composants Pourquoi la dimension temporelle? Rappel Résistance g( RS, ) = R S Sollicitation g( Rt (), St (),) t =

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Mathématiques et Applications 57. Modèles aléatoires. Applications aux sciences de l'ingénieur et du vivant

Mathématiques et Applications 57. Modèles aléatoires. Applications aux sciences de l'ingénieur et du vivant Mathématiques et Applications 57 Modèles aléatoires Applications aux sciences de l'ingénieur et du vivant Bearbeitet von Jean-François Delmas, Benjamin Jourdain 1. Auflage 2006. Taschenbuch. xxv, 431 S.

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

Une approche pour un contrôle non-linéaire temps réel

Une approche pour un contrôle non-linéaire temps réel Une approche pour un contrôle non-linéaire temps réel L. Mathelin 1 L. Pastur 1,2 O. Le Maître 1 1 LIMSI - CNRS Orsay 2 Université Paris-Sud 11 Orsay GdR Contrôle des décollements 25 Nov. 2009 Orléans

Plus en détail

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Philippe Gagnepain Université Paris 1 Ecole d Economie de Paris Centre d économie de la Sorbonne-UG 4-Bureau 405 philippe.gagnepain@univ-paris1.fr

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Formes et Optimisation en Vision par Ordinateur. Renaud Keriven Ecole des Ponts / ENS

Formes et Optimisation en Vision par Ordinateur. Renaud Keriven Ecole des Ponts / ENS Formes et Optimisation en Vision par Ordinateur Renaud Keriven Ecole des Ponts / ENS Journées Images et Modélisations Mathématiques Rennes, décembre 2006-1- Contexte (i) Snakes [Kass et al. 88] Contours

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65 Sommaire Chapitre 1 Variables et vecteurs aléatoires............... 5 A. Généralités sur les variables aléatoires réelles.................... 6 B. Séries doubles..................................... 9

Plus en détail

Module Mixmod pour OpenTURNS

Module Mixmod pour OpenTURNS Module Mixmod pour OpenTURNS Régis LEBRUN EADS Innovation Works 23 septembre 2013 EADS IW 2013 (EADS Innovation Work) 23 septembre 2013 1 / 21 Outline Plan 1 OpenTURNS et propagation d incertitudes 2 Mixmod

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (2) Variables aléatoires & Lois de probabilité R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

Rev. Ivoir. Sci. Technol., 19 (2012) 59 71. ISSN 1813-3290, http://www.revist.ci

Rev. Ivoir. Sci. Technol., 19 (2012) 59 71. ISSN 1813-3290, http://www.revist.ci 59 ISSN 1813-3290, http://www.revist.ci RÉGRESSION LOGISTIQUE DANS LES ESSAIS CLINIQUES PAR MCMC Ahlam LABDAOUI * et Hayet MERABET Département de Mathématiques, Université Mentouri-Constantine, Route d

Plus en détail

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève 30-1- 2013 J.F.C. p. 1 F 1 F 2 F 3 Assez simple ou proche du cours. Demande du travail. Délicat. EXERCICES SANS PRÉPARATION HEC 2005 Question 11 D après HEC 2005-11 F 2 X est une variable aléatoire de

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

Master 1 Informatique Éléments de statistique inférentielle

Master 1 Informatique Éléments de statistique inférentielle Master 1 Informatique Éléments de statistique inférentielle Faicel Chamroukhi Maître de Conférences UTLN, LSIS UMR CNRS 7296 email: chamroukhi@univ-tln.fr web: chamroukhi.univ-tln.fr 2014/2015 Faicel Chamroukhi

Plus en détail

Estimation bayésienne des paramètres d un modèle de culture implémenté sous VLE

Estimation bayésienne des paramètres d un modèle de culture implémenté sous VLE Estimation bayésienne des paramètres d un modèle de culture implémenté sous VLE Arnaud Bensadoun François Brun (ACTA), Philippe Debaeke (INRA), Daniel Wallach (INRA), Luc Champolivier (CETIOM), Emmanuelle

Plus en détail

Majeure d informatique

Majeure d informatique Nicolas Sendrier Majeure d informatique Introduction la théorie de l information Cours n 1 Une mesure de l information Espace probabilisé discret L alphabet est X (fini en pratique) Variable aléatoire

Plus en détail

Analyse d images, vision par ordinateur. Partie 6: Segmentation d images. Segmentation? Segmentation?

Analyse d images, vision par ordinateur. Partie 6: Segmentation d images. Segmentation? Segmentation? Analyse d images, vision par ordinateur Traitement d images Segmentation : partitionner l image en ses différentes parties. Reconnaissance : étiqueter les différentes parties Partie 6: Segmentation d images

Plus en détail

les méthodes de Monte Carlo : exposé introductif

les méthodes de Monte Carlo : exposé introductif les méthodes de Monte Carlo : exposé introductif Fabien Campillo 1 Vivien Rossi 2 1 Projet ASPI IRISA-INRIA Rennes 2 IURC Université Montpellier I 11 octobre 2006 intro Monte Carlo MCMC plan 1 introduction

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Échantillonnage. Pierre Neuvial, http://stat.genopole.cnrs.fr/~pneuvial Evry, M1 SGO, automne 2014

Échantillonnage. Pierre Neuvial, http://stat.genopole.cnrs.fr/~pneuvial Evry, M1 SGO, automne 2014 Démarche Statistique 1 Échantillonnage Pierre Neuvial, http://stat.genopole.cnrs.fr/~pneuvial Evry, M1 SGO, automne 2014 Introduction Objectif statistique descriptive: sur l'échantillon statistique inférentielle:

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite) Modèles de Markov et bases de données. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite) Modèles de Markov et bases de données. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite) Modèles de Markov et bases de données Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance vocale

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

OPTIMISATION MULTICRITERE STOCHASTIQUE

OPTIMISATION MULTICRITERE STOCHASTIQUE OPTIMISATION MULTICRITERE STOCHASTIQUE Michel DUMAS, Gilles ARNAUD, Fabrice GAUDIER CEA/DEN/DMS/SFME/LETR michel.dumas@cea.r gilles.arnaud@cea.r abrice.gaudier @cea.r Introduction L optimisation multicritère

Plus en détail

Feuille n 2 : Contrôle du flux de commandes

Feuille n 2 : Contrôle du flux de commandes Logiciels Scientifiques (Statistiques) Licence 2 Mathématiques Générales Feuille n 2 : Contrôle du flux de commandes Exercice 1. Vente de voiture Mathieu décide de s acheter une voiture neuve qui coûte

Plus en détail

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples, Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très

Plus en détail

Test de Poisson à 1 échantillon et à 2 échantillons

Test de Poisson à 1 échantillon et à 2 échantillons Test de Poisson à 1 échantillon et à 2 échantillons Sous-menus de Minitab 15 : Stat>Statistiques élémentaires>test de Poisson à 1 échantillon Stat>Statistiques élémentaires>test de Poisson à 2 échantillons

Plus en détail

Modélisation des lois multidimensionnelles par la théorie des copules

Modélisation des lois multidimensionnelles par la théorie des copules Modélisation des lois multidimensionnelles par la théorie des copules Grégoire Mercier jeudi 9 novembre 26 Contenu 2 Mesure de dépendance Lien avec les copules 3 Estimation de l information mutuelle Estimation

Plus en détail

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé I. Réseau Artificiel de Neurones 1. Neurone 2. Type de réseaux Feedforward Couches successives Récurrents Boucles de rétroaction Exemples de choix pour la fonction : suivant une loi de probabilité Carte

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

téléphone sur l'exposition de la tête»

téléphone sur l'exposition de la tête» «Analyse statistique de l'influence de la position du téléphone sur l'exposition de la tête» A.Ghanmi 1,2,3 J.Wiart 1,2, O.Picon 3 1 Orange Labs R&D 2 WHIST LAB (http://whist.institut-telecom.fr), 3 Paris

Plus en détail

Simulations stochastiques

Simulations stochastiques ÉC O L E P O L Y T E C H N IQ U E FÉ DÉR A L E D E L A U S A N N E Christophe Ancey Laboratoire hydraulique environnementale (LHE) École Polytechnique Fédérale de Lausanne Ecublens CH-1015 Lausanne Simulations

Plus en détail

UNIVERSITÉ DE MONTRÉAL MODÈLE BAYÉSIEN D AGRÉGATION DES AVIS D EXPERTS EN EXPLOITATION D ÉQUIPEMENTS, APPLICATION À L OPTIMISATION DE LA DISPONIBILITÉ

UNIVERSITÉ DE MONTRÉAL MODÈLE BAYÉSIEN D AGRÉGATION DES AVIS D EXPERTS EN EXPLOITATION D ÉQUIPEMENTS, APPLICATION À L OPTIMISATION DE LA DISPONIBILITÉ UNIVERSITÉ DE MONTRÉAL MODÈLE BAYÉSIEN D AGRÉGATION DES AVIS D EXPERTS EN EXPLOITATION D ÉQUIPEMENTS, APPLICATION À L OPTIMISATION DE LA DISPONIBILITÉ BANNOUR SOUILAH DÉPARTEMENT DE MATHÉMATIQUES ET DE

Plus en détail

NOUVELLES MESURES DE DÉPENDANCE POUR

NOUVELLES MESURES DE DÉPENDANCE POUR NOUVELLES MESURES DE DÉPENDANCE POUR UNE MODÉLISATION ALPHA-STABLE. Bernard GAREL & Bernédy KODIA Institut de Mathématiques de Toulouse et INPT-ENSEEIHT Xèmmes Journées de Méthodologie Statistique de l

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Vision par ordinateur

Vision par ordinateur Vision par ordinateur Stéréoscopie par minimisation d'énergie Frédéric Devernay d'après le cours de Richard Szeliski Mise en correspondance stéréo Quels algorithmes possibles? mettre en correspondance

Plus en détail

Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7.

Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7. Statistique Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7.fr Cours Statistique, 2010 p. 1/52 Plan du cours Chapitre 1 : Estimation

Plus en détail

Comment choisir sa pizza? Test A/B. Comment choisir sa pizza? Comment choisir sa pizza? Difficulté de l évaluation. De manière plus sérieuse...

Comment choisir sa pizza? Test A/B. Comment choisir sa pizza? Comment choisir sa pizza? Difficulté de l évaluation. De manière plus sérieuse... Comment choisir sa pizza? Test A/B Introduction à l apprentissage par renforcement Guillaume Wisniewski guillaume.wisniewski@limsi.fr Université Paris Sud LIMSI J aime beaucoup les «4 Est-ce que je dois

Plus en détail

Regime Switching Model : une approche «pseudo» multivarie e

Regime Switching Model : une approche «pseudo» multivarie e Regime Switching Model : une approche «pseudo» multivarie e A. Zerrad 1, R&D, Nexialog Consulting, Juin 2015 azerrad@nexialog.com Les crises financières survenues dans les trente dernières années et les

Plus en détail

Groupe. Chapter 1. Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI)

Groupe. Chapter 1. Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI) Chapter 1 Groupe Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI) Nous avons choisi d implémenter le projet avec le langage Javascript. L avantage offert

Plus en détail

La classification 2012-2013. Fabien Chevalier Jérôme Le Bellac

La classification 2012-2013. Fabien Chevalier Jérôme Le Bellac La classification 2012-2013 Fabien Chevalier Jérôme Le Bellac Introduction : Classification : méthode d analyse de données Objectif : Obtenir une représentation schématique simple d'un tableau de données

Plus en détail

Resolution limit in community detection

Resolution limit in community detection Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.

Plus en détail

École Nationale Supérieure de Techniques Avancées Filière : Finance quantitative Module : Automatique avancée

École Nationale Supérieure de Techniques Avancées Filière : Finance quantitative Module : Automatique avancée École Nationale Supérieure de Techniques Avancées Filière : Finance quantitative Module : Automatique avancée Examen du cours B7 3 Filtrage bayésien optimal et approximation particulaire Jeudi 27 octobre

Plus en détail

Examen de rattrapage

Examen de rattrapage Université Denis Diderot Paris 7 7 juin 4 Probabilités et Simulations UPS36 Examen de rattrapage durée : 3 heures Les documents et calculatrices ne sont pas autorisés. On prendra soin de bien justifier

Plus en détail

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale.

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Aix Marseille Université. Algorithmes Stochastiques. M MIS. Fabienne Castell... Chapitre : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Le but de ce chapitre

Plus en détail

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Université Paris Diderot Physique L2 2014-2015 Simulations Numériques SN4 Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Objectifs : Simuler

Plus en détail

Simulations de Monte Carlo

Simulations de Monte Carlo Simulations de Monte Carlo 2 février 261 CNAM GFN 26 Gestion d actifs et des risques Gréory Taillard GFN 26 Gestion d actifs et des risques 2 Biblioraphie Hayat, Sere, Patrice Poncet et Roland Portait,

Plus en détail

Régression logistique

Régression logistique Régression logistique Gilles Gasso. INSA Rouen -Département ASI Laboratoire LITIS Régression logistique p. 1 Introduction Objectifs Le classifieur de Bayes est basé sur la comparaison des probabilités

Plus en détail

Simulation avancée du procédé d injection

Simulation avancée du procédé d injection Simulation avancée du procédé d injection JT «Conception et optimisation numérique en plasturgie» Jeudi 30 juin Ronan Le Goff Sommaire Introduction Modèle numérique Cas d étude Paramètres rhéo Stratégies

Plus en détail

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,zguessoum@usthb.dz

Plus en détail

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Plan 1 Incertitudes des modèles empiriques 2 Identification et caractérisation des paramètres incertains

Plus en détail

en sciences de l ingénieur

en sciences de l ingénieur Systèmes Automatisés Optimisation en sciences de l ingénieur présente les principales méthodes exactes d optimisation statique et dynamique. Parmi les méthodes décrites figurent : - la programmation linéaire

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Chaîne de Markov - 2

Chaîne de Markov - 2 Chaîne de Markov - 2 LI323 Hugues Richard (notes de cours: Pierre-Henri Wuillemin) Université Pierre et Marie Curie (UPMC) Laboratoire génomique des microorganismes (LGM) Classements des états Définition

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Modèles statistiques pour l analyse des séquences biologiques

Modèles statistiques pour l analyse des séquences biologiques Modèles statistiques pour l analyse des séquences biologiques Franck Picard UMR CNRS-5558, Laboratoire de Biométrie et Biologie Evolutive franck.picard@univ-lyon1.fr F. Picard (LBBE) 1 / 60 Outline Introduction

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

SPLEX Statistiques pour la classification et fouille de données en

SPLEX Statistiques pour la classification et fouille de données en SPLEX Statistiques pour la classification et fouille de données en génomique Classification Linéaire Binaire CLB Pierre-Henri WUILLEMIN DEcision, Système Intelligent et Recherche opérationnelle LIP6 pierre-henri.wuillemin@lip6.fr

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Méthodes avancées en décision

Méthodes avancées en décision Méthodes avancées en décision Support vector machines - Chapitre 2 - Principes MRE et MRS Principe MRE. Il s agit de minimiser la fonctionnelle de risque 1 P e (d) = y d(x;w, b) p(x, y) dxdy. 2 La densité

Plus en détail

Principe des tests statistiques

Principe des tests statistiques Principe des tests statistiques Jean Vaillant Un test de signification est une procédure permettant de choisir parmi deux hypothèses celles la plus probable au vu des observations effectuées à partir d

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

La méthode Monte-Carlo. DeriveXperts. 19 mai 2011

La méthode Monte-Carlo. DeriveXperts. 19 mai 2011 19 mai 2011 Outline 1 Introduction Définition Générale Génération de nombre aléatoires Domaines d application 2 Cadre d application Méthodologie générale Remarques Utilisation pratique Introduction Outline

Plus en détail

9. Distributions d échantillonnage

9. Distributions d échantillonnage 9. Distributions d échantillonnage MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v3) MTH2302D: distributions d échantillonnage 1/46 Plan 1. Échantillons aléatoires 2. Statistiques et distributions

Plus en détail

Rapport de Recherche. 1 Estimation fonctionnelle en temps continu. 1.1 Vitesses de convergence pour l estimateur à noyau. (D. Blanke - Mars 2008)

Rapport de Recherche. 1 Estimation fonctionnelle en temps continu. 1.1 Vitesses de convergence pour l estimateur à noyau. (D. Blanke - Mars 2008) Rapport de Recherche (D. Blanke - Mars 2008) L essentiel de mes activités de recherche porte sur l estimation fonctionnelle ou paramétrique pour des processus. L ensemble de ces travaux peut se diviser

Plus en détail

Approche bayésienne pour la tomographie des temps de première arrivée. Jihane BELHADJ Thomas ROMARY Alexandrine GESRET Mark NOBLE

Approche bayésienne pour la tomographie des temps de première arrivée. Jihane BELHADJ Thomas ROMARY Alexandrine GESRET Mark NOBLE Approche bayésienne pour la tomographie des temps de première arrivée Jihane BELHADJ Thomas ROMARY Alexandrine GESRET Mark NOBLE Tomographie sismique La tomographie des temps de première arrivée a pour

Plus en détail

2.1 Introduction... 15 2.2 Échantillonnage aléatoire et pondéré... 16 2.3 Chaîne de Markov pour échantillonner le système

2.1 Introduction... 15 2.2 Échantillonnage aléatoire et pondéré... 16 2.3 Chaîne de Markov pour échantillonner le système Chapitre 2 Méthode Monte Carlo Contenu 2.1 Introduction....................... 15 2.2 Échantillonnage aléatoire et pondéré......... 16 2.3 Chaîne de Markov pour échantillonner le système à l équilibre........................

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail