Méthodes de placement multidimensionnelles. Fabrice Rossi Télécom ParisTech
|
|
|
- Jean-Marc Lafleur
- il y a 10 ans
- Total affichages :
Transcription
1 Méthodes de placement multidimensionnelles Fabrice Rossi Télécom ParisTech
2 Plan Introduction Analyse en composantes principales Modèle Qualité et interprétation Autres méthodes 2 / 27 F. Rossi
3 Plan Introduction Analyse en composantes principales Modèle Qualité et interprétation Autres méthodes 3 / 27 F. Rossi Introduction
4 Motivations intérêt des outils de visualisation très efficaces en dimension 2 corrects en dimension 3 utilisables en dimensions 4 ou 5 (après un apprentissage) limites dilemme lisibilité versus nombre de variables (et d objets) liens entre variables difficiles à comprendre liens entre objets difficiles à comprendre 4 / 27 F. Rossi Introduction
5 Motivations intérêt des outils de visualisation très efficaces en dimension 2 corrects en dimension 3 utilisables en dimensions 4 ou 5 (après un apprentissage) limites dilemme lisibilité versus nombre de variables (et d objets) liens entre variables difficiles à comprendre liens entre objets difficiles à comprendre solution réduire automatiquement la dimension des données en enlevant des variables ou en calculant de nouvelles coordonnées 4 / 27 F. Rossi Introduction
6 Placement formulation du problème : données (X i ) 1 i N dans un espace X placement (Y i ) 1 i N dans R Q avec Q petit (2 ou 3) à chaque objet X i est associé un vecteur en basse dimension Y i problème : bien choisir les Y i deux sources de variabilité dans les solutions représentation initiale (nature) des X i critère de choix des Y i questions additionnelles lien entre les X i et les Y i contrôle de la qualité du placement interprétation 5 / 27 F. Rossi Introduction
7 Données vectorielles X est une matrice N P N objets P variables numériques Critère d approximation Y est de dimension Q < P : on considère les Y i comme des éléments d un sous-espace vectoriel de R P critère de qualité quadratique 1 N N X i Y i 2 i=1 attention : les Y i sont décrits dans une base adaptée problème d optimisation : choisir les meilleurs Y i sous une contrainte de rang 6 / 27 F. Rossi Introduction
8 Données dissimilarités les X sont décrits seulement par une dissimilarité entre les objets, d X (X i, X j ) Critères d approximation les Y sont dans R p : d(y i, Y j ) = Y i Y j essayer d avoir d(y i, Y j ) d X (X i, X j ) : principe de préservation des distances critère générique 1 N 2 N i=1 j=1 N (d X (X i, X j ) Y i Y j ) 2 F (d X (X i, X j ), Y i Y j ) le rôle de F est de limiter l influence des grandes distances (par exemple) d autres variantes existent 7 / 27 F. Rossi Introduction
9 Plan Introduction Analyse en composantes principales Modèle Qualité et interprétation Autres méthodes 8 / 27 F. Rossi Analyse en composantes principales
10 Analyse en composantes principales méthode de placement pour données numériques inventée par Pearson (1901) approche par projection linéaire idée sous-jacente (modèle factoriel) processus génératif X = YW W est une matrice Q P orthogonale WW T = I Y est une représentation de dimension Q but de l analyse factorielle : retrouver W et Y 9 / 27 F. Rossi Analyse en composantes principales
11 Projection linéaire soit un système orthonormé (φ j ) 1 j Q de R P, la projection d un X i sur le sous-e. v. associé est P(X i ) = Q (X i φ j )φ T j j=1 erreur de projection 1 N N X i i=1 Q (X i φ j )φ T j j=1 2 meilleure projection : optimisation sur (φ j ) 1 j Q 10 / 27 F. Rossi Analyse en composantes principales
12 Résolution on suppose les données centrées : N i=1 X i = 0 on note Φ la matrice des φ j (en colonnes) l erreur de projection devient 1 N N X i X i ΦΦ T 2 i=1 minimiser l erreur revient à résoudre maximiser 1 N Tr(XΦΦT X T ) avec Φ T Φ = I solution (admise) : les φ j sont les vecteurs propres de 1 N X T X associés aux P plus grandes valeurs propres 11 / 27 F. Rossi Analyse en composantes principales
13 ACP on a donc X YW avec W = Φ T et Y = XΦ les colonnes de Φ sont les axes principaux de l ACP les colonnes de Y sont les composantes principales la variance de Y.i est λ i, la i-ème valeur propre de 1 N X T X placement : on conserve les deux premiers axes on affiche les deux premières composantes 12 / 27 F. Rossi Analyse en composantes principales
14 Conservation de la variance autre vison de l ACP : chercher une direction intéressante dans les données intéressant : avec une forte variabilité analyse similaire à la précédente : axe de projection φ, projection Xφ variance de la projection 1 N XφφT X T (données centrées) maximisation de la variance même problème que précédemment! les axes principaux sont donc des axes de variance maximale 13 / 27 F. Rossi Analyse en composantes principales
15 Exemples données verre : 213 observations sur 10 variables 9 variables numériques : pas de prise en compte de la variable nominale données iris : 150 observations sur 5 variables 4 variables numériques (et une nominale) centrage et réduction : centrage : obligatoire réduction : au choix de l analyste 14 / 27 F. Rossi Analyse en composantes principales
16 Données verre normalisé PC PC1 15 / 27 F. Rossi Analyse en composantes principales
17 Données verre non normalisé PC PC1 15 / 27 F. Rossi Analyse en composantes principales
18 Données Iris normalisé PC PC1 16 / 27 F. Rossi Analyse en composantes principales
19 Données Iris non normalisé PC PC1 16 / 27 F. Rossi Analyse en composantes principales
20 Analyse du placement l ACP est une projection linéaire les distances sont donc réduites : si deux points sont proches dans R P ils seront toujours proches dans R Q par ACP mais deux points proches dans le placement ACP ne sont pas nécessairement proches dans l espace d origine les séparations sont exactes les regroupements peuvent être trompeurs 17 / 27 F. Rossi Analyse en composantes principales
21 Qualité de l approximation Erreur de reconstruction 1 N Tr(X T X) 1 N Tr(XΦΦT X T ) or 1 N Tr(X T X) = P i=1 λ i est la somme des variances des variables 1 N Tr(XΦΦT X T ) = 1 N Tr(ΦT XX T Φ) = Q i=1 λ i Qualité : pourcentage de la variance expliquée Q i=1 λ i P i=1 λ i 18 / 27 F. Rossi Analyse en composantes principales
22 Représentation graphique Données verre Données Iris 19 / 27 F. Rossi Analyse en composantes principales
23 Représentation graphique Données verre Données Iris L approximation est bien meilleure pour les données Iris en deux dimensions. 19 / 27 F. Rossi Analyse en composantes principales
24 Interprétation des axes aide à l interprétation : quel sens accorder aux axes principaux? lien entre les axes et les variables d origine on considère la corrélation entre X.j et Y.k : comme les variables sont centrées, la covariance de X.j et Y.k est 1 N (X T Y ) jk la corrélation entre X.j et Y.k est donc λk φ jk σ j, où σ i est l écart-type de X.j on peut dessiner les variables réduites : cercle des corrélations 20 / 27 F. Rossi Analyse en composantes principales
25 Données Iris normalisé PC PC1 21 / 27 F. Rossi Analyse en composantes principales
26 Données Iris PC V2 V3 V4 V PC1 21 / 27 F. Rossi Analyse en composantes principales
27 Données glass normalisé PC PC1 22 / 27 F. Rossi Analyse en composantes principales
28 Données glass PC V7 V1 V9 V3 V8 V6 V5 V2 V PC1 22 / 27 F. Rossi Analyse en composantes principales
29 Plan Introduction Analyse en composantes principales Modèle Qualité et interprétation Autres méthodes 23 / 27 F. Rossi Autres méthodes
30 Limites de l ACP pas de prise en compte des dépendances non linéaires s appuie sur les corrélations : pas de corrélation, pas de simplification! projection linéaire : écrase les données ne préserve pas les distances 24 / 27 F. Rossi Autres méthodes
31 Limites de l ACP pas de prise en compte des dépendances non linéaires s appuie sur les corrélations : pas de corrélation, pas de simplification! projection linéaire : écrase les données ne préserve pas les distances autres solutions : méthodes de placement non linéaire : pas de lien linéaire entre X et Y optimisation d une mesure de préservation des distances (dissimilarités) 24 / 27 F. Rossi Autres méthodes
32 Multi Dimensional Scaling famille des algorithmes de Multi Dimensional Scaling méthode de Kruskal-Shepard : minimiser ( d(xi, x j ) y i y j ) 2 i j méthode de Sammon : minimiser ( d(xi, x j ) y i y j ) 2 i j d(x i, x j ) ce qui favorise les petites distances nombreuses autres variantes 25 / 27 F. Rossi Autres méthodes
33 Données Iris normalisé PC PC1 26 / 27 F. Rossi Autres méthodes
34 Données Iris Sammon iris.sammon$points[,2] iris.sammon$points[,1] 26 / 27 F. Rossi Autres méthodes
35 Données glass normalisé PC PC1 27 / 27 F. Rossi Autres méthodes
36 Données glass Sammon glass.sammon$points[,2] glass.sammon$points[,1] 27 / 27 F. Rossi Autres méthodes
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
Analyse en Composantes Principales
Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées
1 Complément sur la projection du nuage des individus
TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent
Extraction d informations stratégiques par Analyse en Composantes Principales
Extraction d informations stratégiques par Analyse en Composantes Principales Bernard DOUSSET IRIT/ SIG, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 04 [email protected] 1 Introduction
Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI
1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage
Exercice : la frontière des portefeuilles optimaux sans actif certain
Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine
Introduction. Préambule. Le contexte
Préambule... INTRODUCTION... BREF HISTORIQUE DE L ACP... 4 DOMAINE D'APPLICATION... 5 INTERPRETATIONS GEOMETRIQUES... 6 a - Pour les n individus... 6 b - Pour les p variables... 7 c - Notion d éléments
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens
Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques
Introduction au Data-Mining
Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme
MAP 553 Apprentissage statistique
MAP 553 Apprentissage statistique Université Paris Sud et Ecole Polytechnique http://www.cmap.polytechnique.fr/~giraud/map553/map553.html PC1 1/39 Apprentissage? 2/39 Apprentissage? L apprentissage au
Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57
Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation
Exercices Corrigés Premières notions sur les espaces vectoriels
Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
L'analyse des données à l usage des non mathématiciens
Montpellier L'analyse des données à l usage des non mathématiciens 2 ème Partie: L'analyse en composantes principales AGRO.M - INRA - Formation Permanente Janvier 2006 André Bouchier Analyses multivariés.
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
Théorie et codage de l information
Théorie et codage de l information Les codes linéaires - Chapitre 6 - Principe Définition d un code linéaire Soient p un nombre premier et s est un entier positif. Il existe un unique corps de taille q
ISFA 2 année 2002-2003. Les questions sont en grande partie indépendantes. Merci d utiliser l espace imparti pour vos réponses.
On considère la matrice de données : ISFA 2 année 22-23 Les questions sont en grande partie indépendantes Merci d utiliser l espace imparti pour vos réponses > ele JCVGE FM1 GM JCRB FM2 JMLP Paris 61 29
La structure de la base de données et l utilisation de PAST. Musée Royal de l Afrique Centrale (MRAC Tervuren)
La structure de la base de données et l utilisation de PAST La structure de la base de données données originales SPÉCIMENS Code des spécimens: Identification des spécimens individuels. Dépend du but de
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Chapitre 3. Mesures stationnaires. et théorèmes de convergence
Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Introduction au Data-Mining
Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane
Statistique Descriptive Multidimensionnelle. (pour les nuls)
Publications de l Institut de Mathématiques de Toulouse Statistique Descriptive Multidimensionnelle (pour les nuls) (version de mai 2010) Alain Baccini Institut de Mathématiques de Toulouse UMR CNRS 5219
Soutenance de stage Laboratoire des Signaux et Systèmes
Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
Programmation linéaire et Optimisation. Didier Smets
Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des
Gestion obligataire passive
Finance 1 Université d Evry Séance 7 Gestion obligataire passive Philippe Priaulet L efficience des marchés Stratégies passives Qu est-ce qu un bon benchmark? Réplication simple Réplication par échantillonnage
Quantification Scalaire et Prédictive
Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
L'analyse de données. Polycopié de cours ENSIETA - Réf. : 1463. Arnaud MARTIN
L'analyse de données Polycopié de cours ENSIETA - Réf : 1463 Arnaud MARTIN Septembre 2004 Table des matières 1 Introduction 1 11 Domaines d'application 2 12 Les données 2 13 Les objectifs 3 14 Les méthodes
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
Les algorithmes de base du graphisme
Les algorithmes de base du graphisme Table des matières 1 Traçage 2 1.1 Segments de droites......................... 2 1.1.1 Algorithmes simples.................... 3 1.1.2 Algorithmes de Bresenham (1965).............
Apprentissage Automatique
Apprentissage Automatique Introduction-I [email protected] www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs
Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes
Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire
Apprentissage non paramétrique en régression
1 Apprentissage non paramétrique en régression Apprentissage non paramétrique en régression Résumé Différentes méthodes d estimation non paramétriques en régression sont présentées. Tout d abord les plus
Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34
Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second
Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions
Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires
www.h-k.fr/publications/objectif-agregation
«Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se
Critère du choix des variables auxiliaires à utiliser dans l'estimateur par calage
des variables auxiliaires à utiliser dans l'estimateur par calage Mohammed El Haj Tirari Institut National de Statistique et d'economie Appliquée - roc Laboratoire de Statistique d'enquêtes, CREST - Ensai
Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique
Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55
Historique. Architecture. Contribution. Conclusion. Définitions et buts La veille stratégique Le multidimensionnel Les classifications
L intelligence économique outil stratégique pour l entreprise Professeur Bernard DOUSSET [email protected] http://atlas.irit.fr Institut de Recherche en Informatique de Toulouse (IRIT) Equipe Systèmes d
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
INF6304 Interfaces Intelligentes
INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie
AICp. Vincent Vandewalle. To cite this version: HAL Id: inria-00386678 https://hal.inria.fr/inria-00386678
Sélection prédictive d un modèle génératif par le critère AICp Vincent Vandewalle To cite this version: Vincent Vandewalle. Sélection prédictive d un modèle génératif par le critère AICp. 41èmes Journées
Approximations variationelles des EDP Notes du Cours de M2
Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation
Filtrage stochastique non linéaire par la théorie de représentation des martingales
Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
Modèles et Méthodes de Réservation
Modèles et Méthodes de Réservation Petit Cours donné à l Université de Strasbourg en Mai 2003 par Klaus D Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden D 01062 Dresden E
Cours de Mécanique du point matériel
Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels
LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION
LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION Sylvie Gervais Service des enseignements généraux École de technologie supérieure ([email protected]) Le laboratoire des condensateurs
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Limitations of the Playstation 3 for High Performance Cluster Computing
Introduction Plan Limitations of the Playstation 3 for High Performance Cluster Computing July 2007 Introduction Plan Introduction Intérêts de la PS3 : rapide et puissante bon marché L utiliser pour faire
Intérêt du découpage en sous-bandes pour l analyse spectrale
Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,
Fonctions de plusieurs variables
Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières
PROJET MODELE DE TAUX
MASTER 272 INGENIERIE ECONOMIQUE ET FINANCIERE PROJET MODELE DE TAUX Pricing du taux d intérêt des caplets avec le modèle de taux G2++ Professeur : Christophe LUNVEN 29 Fevrier 2012 Taylan KUNAL - Dinh
Plus courts chemins, programmation dynamique
1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique
http://cermics.enpc.fr/scilab
scilab à l École des Ponts ParisTech http://cermics.enpc.fr/scilab Introduction à Scilab Graphiques, fonctions Scilab, programmation, saisie de données Jean-Philippe Chancelier & Michel De Lara cermics,
Cours d analyse numérique SMI-S4
ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,
Le Modèle Linéaire par l exemple :
Publications du Laboratoire de Statistique et Probabilités Le Modèle Linéaire par l exemple : Régression, Analyse de la Variance,... Jean-Marc Azaïs et Jean-Marc Bardet Laboratoire de Statistique et Probabilités
EVALUATION DE LA SANTÉ FINANCIÈRE D UNE MUNICIPALITÉ VIA UNE APPROCHE STATISTIQUE MULTIVARIÉE.
EVALUATION DE LA SANTÉ FINANCIÈRE D UNE MUNICIPALITÉ VIA UNE APPROCHE STATISTIQUE MULTIVARIÉE. MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN ADMINISTRATION PUBLIQUE - «OPTION POUR ANALYSTES»
ERRATA ET AJOUTS. ( t) 2 s2 dt (4.7) Chapitre 2, p. 64, l équation se lit comme suit : Taux effectif = 1+
ERRATA ET AJOUTS Chapitre, p. 64, l équation se lit comme suit : 008, Taux effectif = 1+ 0 0816 =, Chapitre 3, p. 84, l équation se lit comme suit : 0, 075 1 000 C = = 37, 50$ Chapitre 4, p. 108, note
Cours de méthodes de scoring
UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-
Modèles pour données répétées
Résumé Les données répétées, ou données longitudinales, constituent un domaine à la fois important et assez particulier de la statistique. On entend par données répétées des données telles que, pour chaque
MISE EN PLACE D UN SYSTÈME DE SUIVI DES PROJETS D INTÉGRATION DES TIC FORMULAIRE DIRECTION RÉGIONALE DE COLLECTE DE DONNÉES
MISE EN PLACE D UN SYSTÈME DE SUIVI DES PROJETS D INTÉGRATION DES TIC FORMULAIRE DIRECTION RÉGIONALE DE COLLECTE DE DONNÉES Nom de la région (direction régionale) : Nom du directeur régional : Adresse
Une comparaison de méthodes de discrimination des masses de véhicules automobiles
p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Quelques éléments de statistique multidimensionnelle
ANNEXE 1 Quelques éléments de statistique multidimensionnelle Les méthodes d analyse statistique exploratoire utilisées au cours des chapitres précédents visent à mettre en forme de vastes ensembles de
La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique
La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation
Interception des signaux issus de communications MIMO
Interception des signaux issus de communications MIMO par Vincent Choqueuse Laboratoire E 3 I 2, EA 3876, ENSIETA Laboratoire LabSTICC, UMR CNRS 3192, UBO 26 novembre 2008 Interception des signaux issus
Analyses multivariées avec R Commander (via le package FactoMineR) Qu est ce que R? Introduction à R Qu est ce que R?
Analyses multivariées avec R Commander Analyses multivariées avec R Commander (via le package FactoMineR) Plate-forme de Support en Méthodologie et Calcul Statistique (SMCS) - UCL 1 Introduction à R 2
Le théorème des deux fonds et la gestion indicielle
Le théorème des deux fonds et la gestion indicielle Philippe Bernard Ingénierie Economique& Financière Université Paris-Dauphine mars 2013 Les premiers fonds indiciels futent lancés aux Etats-Unis par
TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie
PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux [email protected] www.pressesagro.be
Résolution de systèmes linéaires par des méthodes directes
Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.
Travaux pratiques avec RapidMiner
Travaux pratiques avec RapidMiner Master Informatique de Paris 6 Spécialité IAD Parcours EDOW Module Algorithmes pour la Fouille de Données Janvier 2012 Prise en main Généralités RapidMiner est un logiciel
Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1
Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation
ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection
ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection Nicolas HEULOT (CEA LIST) Michaël AUPETIT (CEA LIST) Jean-Daniel FEKETE (INRIA Saclay) Journées Big Data
La boucle for La boucle while L utilisation du if else. while (condition) { instruction(s) }
VI Initiation à la programmation sous Comme nous l avons constaté tout au long du document, offre de nombreuses fonctionnalités En tant que nouvelles utilisateurs de il vous est désormais PRESQUE possible
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.
Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Optimisation, traitement d image et éclipse de Soleil
Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement
Lagrange, où λ 1 est pour la contrainte sur µ p ).
Chapitre 1 Exercice 1 : Portefeuilles financiers Considérons trois types d actions qui sont négociées à la bourse et dont les rentabilités r 1, r 2 et r 3 sont des variables aléatoires d espérances µ i
Risque de contrepartie sur opérations de marché. Marwan Moubachir
JJ Mois Année Risque de contrepartie sur opérations de marché Marwan Moubachir RISQ/CMC/MOD Le contenu de cette présentation ne représente que le point de vue de son auteur et n'engage en rien la Société
Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS
Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence
I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.
I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous
Réglage de la largeur d'une fenêtre de Parzen dans le cadre d'un apprentissage actif : une évaluation
Réglage de la largeur d'une fenêtre de Parzen dans le cadre d'un apprentissage actif : une évaluation Vincent Lemaire, R&D France Telecom 2 avenue Pierre Marzin, 2300 Lannion France email : [email protected]
Initiation à l analyse en composantes principales
Fiche TD avec le logiciel : tdr601 Initiation à l analyse en composantes principales A.B. Dufour & J.R. Lobry Une première approche très intuitive et interactive de l ACP. Centrage et réduction des données.
Utilisation d informations visuelles dynamiques en asservissement visuel Armel Crétual IRISA, projet TEMIS puis VISTA L asservissement visuel géométrique Principe : Réalisation d une tâche robotique par
Espérance conditionnelle
Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
Corrigé du baccalauréat S Pondichéry 12 avril 2007
Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires
Économetrie non paramétrique I. Estimation d une densité
Économetrie non paramétrique I. Estimation d une densité Stéphane Adjemian Université d Évry Janvier 2004 1 1 Introduction 1.1 Pourquoi estimer une densité? Étudier la distribution des richesses... Proposer
Université du Québec à Chicoutimi. Département d informatique et de mathématique. Plan de cours. Titre : Élément de programmation.
Université du Québec à Chicoutimi Département d informatique et de mathématique Plan de cours Titre : Élément de programmation Sigle : 8inf 119 Session : Automne 2001 Professeur : Patrice Guérin Local
