partie a Introduction à la statistique 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "partie a Introduction à la statistique 1"

Transcription

1 table des matières F AVANT-PROPOS À L ÉDITION AMÉRICAINE Abréviations viii xiv partie a Introduction à la statistique 1 1. Statistique et probabilité ne sont pas intuitives 3 Nous avons tendance à passer directement aux conclusions 3 Nous avons tendance à être trop confiants 3 Nous voyons des structures dans des données aléatoires 4 Nous ne nous rendons pas compte que les coïncidences sont fréquentes 6 Nous avons des intuitions fausses à propos des probabilités 6 Nous évitons de réfléchir à des situations ambiguës 6 Il nous est difficile de combiner des probabilités 7 Nous ne faisons pas de calculs bayésiens intuitivement 8 Ne soyons pas dupés par les comparaisons multiples 9 Nous avons tendance à ignorer les explications alternatives 10 Nous sommes dupés par la régression vers la moyenne Pourquoi la statistique peut être difficile à étudier 14 Raison 1 : crainte des maths 14 Raison 2 : terminologie prêtant à confusion 14 Raison 3 : pensée abstraite 15 Raison 4 : probabilité, pas certitude De l échantillon à la population 17 Les calculs statistiques permettent de généraliser de l échantillon à la population 17 Ce que les calculs statistiques ne peuvent pas faire 18 Les conclusions statistiques sont toujours vagues 19

2 482 table des matières Jargon : modèles et paramètres 20 Jargon : probabilité versus statistique 20 Essais n-de-1 20 partie b Intervalles de confiance Intervalle de confiance d une proportion 25 Exemple : décès d enfants prématurés 25 Exemple : sondage électoral 26 Hypothèses : intervalle de confiance d une proportion 27 Que signifie réellement une confiance de 95 %? 28 Qu est-ce que 95 % a de spécial? 30 Que faire si les hypothèses sont violées? 30 Quantifie-t-on réellement l événement auquel on s intéresse? 31 Jargon 31 Comment ça marche : ic d une proportion 32 Comment : calculer approximativement des IC s 34 Perspectives : paramètres et modèles Intervalle de confiance des données de survie 38 Données de survie 38 Données de survie censurées 38 Représentation graphique du pourcentage de survivants en fonction du temps 40 Comment calculer : l intervalle de confiance d une courbe de survie 42 Médiane du temps de survie 42 Survie à cinq ans 43 Hypothèses : analyse de survie Intervalle de confiance des données de dénombrement 47 La distribution de poisson 47 Hypothèses : distribution de poisson 48 IC s basés sur la distribution de poisson 49 Comment : calculer l ic pour une variable suivant une loi de poisson 51 L avantage d utiliser des intervalles de temps plus longs (ou des volumes plus importants) 51 partie C Variables continues Représentations graphiques des données continues 57 Données continues 57 La moyenne et la médiane 57

3 Table des matières 483 Jargon : erreur et biais 59 Représentation graphique des données pour en montrer la dispersion ou représenter la distribution 61 Attention à la manipulation des données Types de Variables 67 Variables d intervalle 67 Variables de rapport 68 Autres types de variables 69 Pas aussi différentes qu il n y paraît Quantification de la dispersion 71 L interprétation d un écart-type 71 Comment ça marche : calculer un et 71 Pourquoi N 1? 73 situations ou n peut sembler être ambigu 74 ET et taille d échantillon 75 Le coefficient de variation 75 Variance 75 Autres manières de quantifier la variabilité La distribution Gaussienne 78 Origine de la distribution gaussienne 78 ET et la distribution gaussienne 79 La distribution normale standard 80 La distribution «normale» ne définit pas des limites normales 80 Pourquoi la distribution gaussienne occupe-t-elle une place aussi centrale en statistique? La distribution log-normale et la moyenne géométrique 83 Exemple : relaxation de la vessie 83 L origine de la distribution log-normale 83 Comment analyser des données log-normales 84 Moyenne géométrique Intervalle de confiance d une moyenne 87 L interprétation de l ic d une moyenne 87 Quelles valeurs faut-il avoir pour calculer l ic d une moyenne 88 Hypothèses : ic d une moyenne 89 Comment calculer : l IC d une moyenne 90 IC s unilatéraux (méthode avancée) 93 IC d un et (méthode avancée) 94 IC d une moyenne géométrique (méthode avancée) 94

4 484 table des matières 13. La théorie des intervalles de confiance 96 IC d une moyenne via la distribution t 96 IC d une moyenne via ré-échantillonnage 98 IC d une proportion via ré-échantillonnage 99 L IC d une proportion via la distribution binomiale 100 En apprendre plus Barres d erreur 103 ESM 103 Comment calculer : l et à partir de l esm 104 Quel type de barre d erreur faut-il mettre dans un graphique? 106 L aspect des barres d erreur 107 partie D P-valeurs et signification Introduction aux P-valeurs 111 Exemple 1 : lancer d une pièce de monnaie 111 Exemple 2 : température corporelle 113 Exemple 3 : antibiotiques sur des plaies chirurgicales 115 Exemple 4 : angioplastie et infarctus du myocarde 115 P-valeurs unis ou bilatérales? 116 Pourquoi les P-valeurs sont-elles si difficiles à comprendre? 118 P-valeurs ou IC S? Signification statistique et test d hypothèse 122 Tests d hypothèse statistique 122 Analogie : innocent jusqu à preuve du contraire 122 Procès devant jury versus procès devant journalistes 123 Quand un test d hypothèse est-il utile? 123 Significatif, très significatif ou hautement significatif? 124 Signification statistique limite 124 Jargon : erreurs de type i et de type ii 125 Choisir un seuil de signification Relation entre intervalles de confiance et signification statistique 130 IC s et test d hypothèse sont étroitement liés 130 Lorsqu un ic inclut l hypothèse nulle 130 Lorsqu un ic n inclut pas l hypothèse nulle 131 Une règle qui lie intervalle de confiance et signification statistique 132

5 Table des matières L interprétation d un résultat statistiquement significatif 134 Distinguer la signification statistique de l importance scientifique 134 Une idée fausse fréquente 135 La probabilité a priori influence le TFD 136 Logique bayésienne 139 Application informelle de l approche bayésienne L interprétation d un résultat statistiquement non significatif 141 «Non significativement différent» ne signifie pas «pas de différence» 141 Exemple : récepteurs adrénergiques α 2 sur les plaquettes 142 Exemple : échographie fœtale 143 Comment avoir des ic s plus étroits 144 Que se passe-t-il si la P-valeur est vraiment élevée? Puissance statistique 146 Qu est-ce ce que la puissance? 146 Une analogie pour comprendre la puissance 147 La puissance pour les deux exemples d étude 148 L analyse de la puissance a posteriori n est pas utile Test d équivalence ou de non infériorité 150 L équivalence doit être définie scientifiquement, pas statistiquement 150 Moyenne dans la zone d équivalence 151 Moyenne en dehors de la zone d équivalence 152 L approche usuelle par un test d hypothèse n est pas utile 153 Faire des pieds et des mains pour adapter les tests d hypothèse au problème d équivalence 153 Essais de non-infériorité 154 Il faut être certain que le traitement standard est efficace 155 partie E Défis en statistique Concepts de comparaisons multiples 159 Le problème des comparaisons multiples 159 Corriger pour les comparaisons multiples n est pas toujours nécessaire 160 Si on ne prend pas les comparaisons multiples en considération 161

6 486 table des matières Correction pour les comparaisons multiples par l approche traditionnelle 163 Correction pour comparaisons multiples avec le taux de fausse découverte 165 Qu est-ce qu une famille? 166 Vue d ensemble Les pièges des comparaisons multiples 168 Analyser des données sans plan 168 Biais de publication 169 Plusieurs points au cours du temps analyses séquentielles 169 Plusieurs sous-groupes 170 Coïncidences 171 Grappes de maladie 171 Prédictions multiples 172 Combinaison de groupes 172 Comparaisons multiples en régression multiple 173 Aperçu des pièges des comparaisons multiples Gaussien ou pas? 175 La distribution gaussienne est un idéal inaccessible 175 Ce à quoi ressemble réellement une distribution gaussienne 176 Test de normalité 176 Interprétation des résultats d un test de normalité 178 Que faire lorsque les données échouent au test de normalité Valeurs atypiques (outliers) 181 Comment les valeurs atypiques se produisent-elles? 181 La nécessite d avoir des tests de détection des valeurs atypiques 182 Questions à se poser avant d utiliser un test pour détecter les valeurs atypiques 182 Les tests de détection des valeurs atypiques 183 Attention aux distributions log-normales 184 Statistiques robustes 186 Comment ça marche : le test de détection des valeurs atypiques de Grubbs 187 partie F Tests statistiques Comparaison de distributions observées et attendues 191 Les données suivent-elles une distribution attendue? 191 Le test d ajustement du Khi-carré 192

7 Table des matières 487 Khi-carré et génétique mendélienne 193 Comment ça marche : test d ajustement du Khi-carré 193 Il ne faut pas confondre deux tests de Khi-carré distincts 194 Test binomial Comparaison des proportions : études prospectives et expérimentales 196 Jargon : études transversales, prospectives, expérimentales et rétrospectives 196 Tables de contingence 197 Un exemple d étude expérimentale : un essai clinique 197 Le risque attribuable 199 Nombre nécessaire à traiter (NNT) 199 Le risque relatif 199 Risque relatif ou différence entre proportions? 200 Calcul d une P-valeur 200 Hypothèses Comparaison des proportions : études cas-témoins 203 Exemple : le vaccin contre le choléra est-il efficace? 203 Le calcul du risque relatif à partir des données d une étude cas-témoins n a pas de sens 204 Le rapport de cotes 204 L interprétation d une P-valeur 205 Le défi des études cas témoins 206 Hypothèses dans les études de cas témoins 207 Pourquoi le rapport de cotes est une approximation du risque relatif Comparaison de courbes de survie 210 Exemple de données de survie 210 Hypothèses lorsqu on compare des courbes de survie 210 Comparaison de deux courbes de survie en utilisant les IC s 214 Comparaison des courbes de survie en utilisant une P-valeur Comparaison de deux moyennes : test t pour échantillons indépendants 219 Exemple : relaxation maximale des muscles de la vessie 219 Interprétation des résultats d un test t pour échantillons indépendants 219 Hypothèses : test t pour échantillons indépendants 222 L hypothèse d égalité des variances 223

8 488 table des matières Chevauchement des barres d erreur et test t 224 Erreurs fréquentes : test t pour échantillons indépendants 227 Comment ça marche : le test t pour échantillons indépendants 228 Perspectives Comparaison de deux groupes appariés 231 Quand utiliser des tests spéciaux pour données appariées 231 Exemple de test t par paires 232 L interprétation des résultats d un test t par paires 234 Le test t d un rapport pour échantillons appariés 237 Test de McNemar pour une étude cas-témoins appariés 241 Tests apparentés Corrélation 243 Introduction au coefficient de corrélation 243 IC du coefficient de corrélation 245 Interprétation d une P-valeur 245 Corrélation et relation causale 245 Hypothèse : corrélation 246 R² 247 Il faut prendre garde aux grands échantillons 248 Comment ça marche : calcul du coefficient de corrélation 249 Jargon : corrélation 251 partie G Ajustement de modèles aux données Régression linéaire simple 255 Les objectifs de la régression linéaire 255 Les résultats de la régression linéaire 256 Hypothèses : régression linéaire 260 Comparaison de la régression linéaire et de la corrélation 261 Jargon : régression linéaire 262 Erreurs fréquentes : régression linéaire Introduction aux modèles 270 Jargon : modèles, paramètres et variables 270 Le modèle le plus simple 272 Le modèle de régression linéaire 273 Pourquoi moindres carrés? 274 Autres modèles et autres types de régression 274

9 Table des matières Comparaison de modèles 276 La comparaison de modèles est une partie essentielle de la statistique 276 La régression linéaire vue comme comparaison de modèles 277 Le test t pour échantillons indépendants reconverti en comparaison de l ajustement de deux modèles 280 Erreur fréquente : comparaison de modèles Régression non linéaire 285 Ajustement d un modèle 285 Pondération 287 Comment fonctionne la régression non linéaire 288 Les résultats de la régression non linéaire 288 Hypothèses : régression non linéaire 290 Comparaison de deux modèles 290 Erreurs fréquentes 293 Trucs pour comprendre les modèles 295 En apprendre plus sur la régression non linéaire Régression multiple, logistique et modèle des risques instantanés proportionnels 296 Objectifs de la régression multivariable 296 Jargon 297 Régression linéaire multiple 299 Régression logistique 305 Modèle des risques instantanés proportionnels 308 Hypothèses 310 Interactions entre variables indépendantes 310 Observations corrélées 311 Comment ça marche 314 En apprendre plus à propos de la régression multiple Pièges de la régression multiple 315 Attention au sur-ajustement 315 Attention à la multi-colinéarité 317 Attention à la sur-interprétation de R² 319 Attention à corrélation versus relation causale 319 Les modèles de régression devraient être validés 319

10 490 table des matières partie H Le reste des statistiques Analyse de variance 323 La comparaison des moyennes de trois groupes ou plus 323 Hypothèses : anova à un facteur 325 Comment ça marche : anova à un facteur 325 ANOVA pour mesures répétées 328 ANOVA à deux facteurs et au-delà Tests de comparaisons multiples post-anova 331 Les tests de comparaisons multiples pour les données de l exemple 331 La logique des tests de comparaisons multiples 334 Autres tests de comparaisons multiples 337 Comment ça marche : tests de comparaisons multiples 339 Comparaisons multiples individuelles Méthodes non paramétriques 344 Tests non paramétriques basés sur les rangs 344 Les avantages et désavantages des tests non paramétriques 347 Ne pas automatiser la décision relative au choix d un test non paramétrique 348 Choisir entre tests paramétriques et non paramétriques : cela a-t-il de l importance? 349 Tests non paramétriques qui analysent les valeurs (pas les rangs) Sensibilité, spécificité et courbes ROC (receiver-operatercharacteristic) 354 Définition de sensibilité et spécificité 354 La valeur prédictive d un test 355 Courbes receiver-operator characteristic (ROC) 358 Bayes revisité 358 Bayes, liaison génétique et scores du log des «chances» (LOD) Taille d échantillon 363 Trois approches pour choisir la taille d échantillon 363 Taille d échantillon et IC S 364 Taille d échantillon et test d hypothèse statistique 366 Règles empiriques pour la taille d échantillon 369

11 Table des matières 491 partie I Assemblage Conseils statistiques 377 Ne pas oublier l essentiel 377 Interpréter de façon judicieuse les p-valeurs 379 Attention aux comparaisons multiples 380 Réfléchir aux données 380 Attention aux variables manquantes 382 Se focaliser sur les IC s 384 Être sceptique Choix du test statistique 387 Issue : variable continue provenant d une distribution gaussienne 387 Issue : donnée continue provenant d une distribution non-gaussienne 388 Issue : temps de survie (ou temps jusqu à l apparition d un événement) 388 Issue : variable binomiale Exemple de synthèse 390 Le cas des huit CI 50 s toutes nues 390 Regarder au-delà des données 392 Signification statistique par tricherie 393 L utilisation d un test t qui ne suppose pas l égalité des ET s 394 Test t pour échantillons indépendants sous forme de régression linéaire ou non linéaire 395 Test non paramétrique de Mann-Whitney 396 Rapporter seulement la dernière expérience de confirmation? 397 Augmenter la taille de l échantillon? 397 Comparaison des logarithmes des valeurs de CI Calculs de taille d échantillon revisités 400 Est-ce ok de changer de méthode d analyse? 401 L utilité des simulations 401 Résumé global du problème Exercices de révision 406 A. Problèmes sur les ic des proportions, les courbes de survie et les dénombrements 406 B. Problèmes relatifs aux et s, esm, ic s et distributions log-normales 408 C. Problèmes relatifs aux P-valeurs et à la signification statistique 409

12 492 table des matières D. Problèmes relatifs à la taille d échantillon et à la puissance 413 E. Problèmes relatifs à la corrélation et à la régression Réponses aux exercices de révision 418 A. Problèmes sur les ic des proportions, les courbes de survie et les dénombrements 418 B. Problèmes relatifs aux et s, esm, ic s et distributions log-normales 424 C. Problèmes relatifs aux p-valeurs et à la signification statistique 430 D. Problèmes relatifs à la taille d échantillon et à la puissance 438 E. Problèmes relatifs à la corrélation et à la régression 441 appendices 449 A. Statistiques avec GraphPad 451 GraphPad prism, qu est-ce que c est? 451 Ce que vous devez savoir avant d utiliser GraphPad Prism 452 À propos du logiciel GraphPad 453 B. Statistiques avec Excel 456 Utiliser excel pour les calculs statistiques : le pour et le contre 456 Ce que vous devez savoir avant d utiliser excel pour l analyse statistique 457 C. Statistiques avec R 458 Qu est-ce que R? 458 Ce que vous devez savoir avant d utiliser R 458 D. Valeurs de la distribution t nécessaires pour calculer les IC s 460 E. Une révision des logarithmes 462 Logarithmes communs (base 10) 462 Notation 463 les logarithmes convertissent la multiplication en addition 463 Antilogarithmes 463 bibliographie 465 index 473

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq»

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Guy Perrière Pôle Rhône-Alpes de Bioinformatique 14 novembre 2012 Guy Perrière (PRABI) Tests statistiques 14 novembre 2012 1 / 40 Plan

Plus en détail

Chapitre 8: Inférence, échantillonnage et estimation

Chapitre 8: Inférence, échantillonnage et estimation Chapitre 8: Inférence, échantillonnage et estimation 1. Echantillonnage aléatoire simple 2. Inférence statistique 3. Estimation 4. Evaluation graphique de l adéquation d un modèle de distribution 1 L inférence

Plus en détail

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon PACES - APEMK UE 4 Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie

Plus en détail

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50 10. Estimation MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: estimation 1/50 Plan 1. Introduction 2. Estimation ponctuelle 3. Estimation par intervalles de confiance 4. Autres

Plus en détail

Statistique (MATH-F-315, Cours #3)

Statistique (MATH-F-315, Cours #3) Statistique (MATH-F-315, Cours #3) Thomas Verdebout Université Libre de Bruxelles 2015 Plan de la partie Statistique du cours 1. Introduction. 2. Théorie de l estimation. 3. Tests d hypothèses et intervalles

Plus en détail

INTRODUCTION A LA RECHERCHE QUANTITATIVE

INTRODUCTION A LA RECHERCHE QUANTITATIVE INTRODUCTION A LA RECHERCHE QUANTITATIVE Deuxième partie : de la base de données aux résultats Juin 2010 Julien Gelly, Caroline Huas, Josselin Le Bel Plan 2 1. Introduction 2. Saisie des données : Epi

Plus en détail

Statistiques de groupe

Statistiques de groupe Système Méthodologique d Aide à la Réalisation de Tests Statistiques de groupe et analyse des questions de votre épreuve Une unité de soutien de l IFRES Université de Liège L analyse des statistiques de

Plus en détail

CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25

CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25 TABLE DES MATIÈRES Sommaire... 5 Avant- propos... 9 Remerciements... 19 À propos de l auteur... 23 CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25 1.1 Qu est- ce que

Plus en détail

Interprétation d une enquête épidémiologique : type d enquête, notion de biais, causalité (72) Docteur José LABARERE Mars 2004 (Mise à jour mai 2005)

Interprétation d une enquête épidémiologique : type d enquête, notion de biais, causalité (72) Docteur José LABARERE Mars 2004 (Mise à jour mai 2005) Interprétation d une enquête épidémiologique : type d enquête, notion de biais, causalité (72) Docteur José LABARERE Mars 2004 (Mise à jour mai 2005) Pré-Requis : Test de comparaison de proportions (chi

Plus en détail

L espace virtuel de La Branche Cochrane-Québec

L espace virtuel de La Branche Cochrane-Québec L espace virtuel de La Branche Cochrane-Québec Bonjour cher(ère)s auditeurs et auditrices web! SVP prendre quelques secondes pour tester vos paramètres audio via l assistant situé au haut de la page: Outils

Plus en détail

TABLE DES MATIÈRES CHAPITRE 1 LA CONSTRUCTION D UN INSTRUMENT DE MESURE... 9. Avant-propos... 5 Sommaire... 7

TABLE DES MATIÈRES CHAPITRE 1 LA CONSTRUCTION D UN INSTRUMENT DE MESURE... 9. Avant-propos... 5 Sommaire... 7 TABLE DES MATIÈRES Avant-propos... 5 Sommaire... 7 CHAPITRE 1 LA CONSTRUCTION D UN INSTRUMENT DE MESURE... 9 1. Le processus de construction d un test... 9 2. La construction d un test d acquis scolaires...

Plus en détail

1. Explorer, organiser et démontrer des propriétés géométriques en termes de longueurs et d angles. Découvrir et étudier des nombres irrationnels.

1. Explorer, organiser et démontrer des propriétés géométriques en termes de longueurs et d angles. Découvrir et étudier des nombres irrationnels. Compétences : math, 2 ème degré (pages 1 à 3) math, 3 ème degré (pages 4 à 8) 3 grands thèmes du cours à 4h sem (pages 9 à 11) 3 grands thèmes du cours à 2h sem (pages 12 à 14) (Seules les définitions

Plus en détail

Traitement statistique. des petits échantillons. Application avec JMP - 3 jours (*)

Traitement statistique. des petits échantillons. Application avec JMP - 3 jours (*) Traitement statistique Application avec JMP - 3 jours (*) Référence : STA-N1-SPECHAJMP Durée : 3 jours soit 21 heures (*) : La durée proposée est une durée standard. Elle peut être adaptée selon les besoins,

Plus en détail

Qualité Six Sigma. Sommaire. Sylvain ROZÈS. 28 mars 2008. 1 Introduction 1. 2 Étude séparée de quatre échantillons 1

Qualité Six Sigma. Sommaire. Sylvain ROZÈS. 28 mars 2008. 1 Introduction 1. 2 Étude séparée de quatre échantillons 1 Qualité Six Sigma Sylvain ROZÈS 28 mars 2008 Sommaire 1 Introduction 1 2 Étude séparée de quatre échantillons 1 3 Étude sur l ensemble des échantillons 8 4 Étude sur les range 13 1 Introduction Le but

Plus en détail

Planification par la méthode des 6 étapes

Planification par la méthode des 6 étapes Planification par la méthode des 6 étapes 25.11.2015 1 Qu est-ce que la planification? La planification aide à exécuter, organiser un mandat, un projet et progresserdans son travail. La planification est

Plus en détail

Approche empirique du test χ 2 d ajustement

Approche empirique du test χ 2 d ajustement Approche empirique du test χ 2 d ajustement Alain Stucki, Lycée cantonal de Porrentruy Introduction En lisant des rapports, on rencontre souvent des raisonnements du style : «le premier groupe est meilleur

Plus en détail

DOCUMENT D QUESTIONS SUR LA FISCALITÉ SCOLAIRE À LA SUITE DES MODIFICATIONS APPORTÉES À LA LOI SUR L INSTRUCTION PUBLIQUE EN 2006

DOCUMENT D QUESTIONS SUR LA FISCALITÉ SCOLAIRE À LA SUITE DES MODIFICATIONS APPORTÉES À LA LOI SUR L INSTRUCTION PUBLIQUE EN 2006 DOCUMENT D QUESTIONS SUR LA FISCALITÉ SCOLAIRE À LA SUITE DES MODIFICATIONS APPORTÉES À LA LOI SUR L INSTRUCTION PUBLIQUE EN 2006 AVRIL 2012 Les questions liées à l application de l étalement seront traitées

Plus en détail

Statistique (MATH-F-315, Cours #1)

Statistique (MATH-F-315, Cours #1) Statistique (MATH-F-315, Cours #1) Thomas Verdebout Université Libre de Bruxelles 2015 Plan de la partie Statistique du cours 1. Introduction. 2. Théorie de l estimation. 3. Tests d hypothèses et intervalles

Plus en détail

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve...

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve... Sommaire Descriptif de l épreuve............................................. Conseils pour l épreuve............................................ Les pourcentages FICHES Pages 1 Pourcentage Proportions....................................7

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2008/2009 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

11. Tests d hypothèses (partie 1/2)

11. Tests d hypothèses (partie 1/2) 11. Tests d hypothèses (partie 1/2) MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v1) MTH2302D: tests d hypothèses 1/30 Plan 1. Introduction 2. Hypothèses et erreurs 3. Tests d hypothèses

Plus en détail

Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire

Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire Julien JACQUES Polytech Lille - Université Lille 1 Julien JACQUES (Polytech Lille) Statistiques de base 1 / 48 Plan 1 Tests

Plus en détail

Statistiques et essais cliniques

Statistiques et essais cliniques Hegel Vol. 3 N 1 2013 DOI : 10.4267/2042/49204 21 Statistiques et essais cliniques François Kohler Laboratoire SPI-EAO, Faculté de Médecine, Vandœuvre-les-Nancy francois.kohler@univ-lorraine.fr Introduction

Plus en détail

Estimation. Anita Burgun

Estimation. Anita Burgun Estimation Anita Burgun Estimation Anita Burgun Contenu du cours Sondages Mesures statistiques sur un échantillon Estimateurs Problème posé Le problème posé en statistique: On s intéresse à une population

Plus en détail

0. ANALYSE GRAPHIQUE ET INTRODUCTION À EXCEL

0. ANALYSE GRAPHIQUE ET INTRODUCTION À EXCEL 0. ANALYSE GRAPHIQUE ET INTRODUCTION À EXCEL Préparation pour l expérience 1. lire le protocole de l expérience 2. lire la section B- Analyse d erreur et graphiques située au début de votre manuel de laboratoire

Plus en détail

Outil pour l attribution des notes

Outil pour l attribution des notes Outil pour l attribution des notes Gilbert Babin A- Contexte Le présent document décrit le mode d utilisation d un outil développé avec Microsoft Excel permettant l analyse et l attribution des notes finales.

Plus en détail

Cours 9 08/11/2011. Les tableaux croisés et le test d indépendance du Chi-deux

Cours 9 08/11/2011. Les tableaux croisés et le test d indépendance du Chi-deux Cours 9 Les tableaux croisés et le test d indépendance du Chi-deux 1 Retour sur TP1 et Cours 8 Les tableaux croisés et le test du Chi-deux Utilité, postulats d utilisation et logique Exemple de calcul

Plus en détail

Préparation concours SESAME Toulouse

Préparation concours SESAME Toulouse Cours CAPITOLE -11, rue du Sénéchal 31000-Toulouse - : 05.61.21.60.64 - www.courscapitole.com- contact@courscapitole.com Préparation concours SESAME Toulouse SOMMAIRE : I. Concours SESAME : définition

Plus en détail

Plan de cours. Programme : Sciences de la nature 200.B0 2-2-2. 2 2/3 unités. Automne 2010

Plan de cours. Programme : Sciences de la nature 200.B0 2-2-2. 2 2/3 unités. Automne 2010 Plan de cours Programme : Sciences de la nature 00.B0 Département : Titre du cours : Code du cours : Mathématiques Probabilités et Statistiques 01-GHC-04 -- /3 unités Automne 010 Éric Brunelle A-10 450-347-5301

Plus en détail

Session 1 Introduction

Session 1 Introduction (bio) Session 1 Septembre 8 2014 1/26 Sommaire (bio) 1 (bio) 2 3 4 2/26 (bio) Comme la population qui nous intéresse est habituellement trop grande pour être étudiée directement, seulement un petit nombre

Plus en détail

Statistiques Appliquées Rôle des femmes dans la société

Statistiques Appliquées Rôle des femmes dans la société Statistiques Appliquées Rôle des femmes dans la société Denis Schelling Semestre d automne 2012 Résumé A partir de données concernant le rôle des femmes dans la société, nous avons effectué une analyse

Plus en détail

SIMDI - Presse à injecter

SIMDI - Presse à injecter SIMDI PRESSE - Simulateur de Presse à injecter - Document de l animateur SIMDI - Presse à injecter «Les élèves apprennent à réaliser un plan d expériences portant sur de nombreux facteurs» Fonctionnalités

Plus en détail

Enquête.sba Procédure Tableaux croisés

Enquête.sba Procédure Tableaux croisés Enquête.sba Procédure Tableaux croisés Tris croisés p. 27 «Cette procédure est conçue pour le calcul et l édition massive de tableaux croisés. On obtient à partir de cette procédure des tableaux de contingence,

Plus en détail

LE TRAITEMENT STATISTIQUE. I. Les types de traitements statistiques en fonction des questions-problèmes (QP)

LE TRAITEMENT STATISTIQUE. I. Les types de traitements statistiques en fonction des questions-problèmes (QP) LE TRAITEMENT STATISTIQUE I. Les types de traitements statistiques en fonction des questions-problèmes (QP) Dans une recherche, on se pose toujours une ou plusieurs questions qu'il s'agira de résoudre.

Plus en détail

2.1.3. La représentation graphique d évolutions

2.1.3. La représentation graphique d évolutions 2.1.3. La représentation graphique d évolutions 142 2 La mathématique financière 2.1.3. - LA REPRÉSENTATION GRAPHIQUE D ÉVOLUTIONS L analyse de la succession des données dans le temps va devoir être traitée

Plus en détail

Modèles STATISTICA Scorecard

Modèles STATISTICA Scorecard Modèles STATISTICA Scorecard La maîtrise des risques bancaires est un enjeu important érigée par les derniers accords de Bâle II. Rappelons que désormais, les exigences en fonds propres sont calculées

Plus en détail

Mesurer l incidence de BDC sur ses clients

Mesurer l incidence de BDC sur ses clients Équipe de la Recherche et de l analyse économique de BDC Juillet 213 DANS CE RAPPORT Le présent rapport est fondé sur une analyse statistique réalisée par Statistique Canada visant à évaluer l incidence

Plus en détail

Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015

Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015 Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015 La calculatrice (conforme à la circulaire n o 99-186 du 16 novembre 1999) est autorisée. Le candidat est invité à faire figurer sur la copie

Plus en détail

Econométrie. Module «stat» Feuille «statistique descriptives» Module «regression» Feuille «regression» Module «résidus» Feuille «résidus»

Econométrie. Module «stat» Feuille «statistique descriptives» Module «regression» Feuille «regression» Module «résidus» Feuille «résidus» 1. Introduction Ce manuel de l utilisateur a été extrait du rapport de stage rédigé par Mlle NGUYEN LAO Bao Truc, en stage au sein du laboratoire ERIC de Juillet à Septembre 2005. Son travail consistait

Plus en détail

Chapitre 7 Tests d hypothèse (partie 1)

Chapitre 7 Tests d hypothèse (partie 1) Chapitre 7 Tests d hypothèse (partie 1) I Qu est ce qu un test statistique? La philosophie est toujours la même : déterminer des informations sur une population à partir d informations sur un échantillon

Plus en détail

La régression logistique

La régression logistique La régression logistique Présentation pour le cours SOL6210, Analyse quantitative avancée Claire Durand, 2015 1 Utilisation PQuand la variable dépendante est nominale ou ordinale < Deux types selon la

Plus en détail

LES AUDITS EN OBSTETRIQUE PRESENTATION DES OUTILS D AUDIT DES DECES MATERNELS

LES AUDITS EN OBSTETRIQUE PRESENTATION DES OUTILS D AUDIT DES DECES MATERNELS Diplôme Inter Universitaire de Soins Obstétricaux et Néonatals d Urgence SONU LES AUDITS EN OBSTETRIQUE PRESENTATION DES OUTILS D AUDIT DES DECES MATERNELS Pr. R. X. PERRIN COTONOU Objectifs d Apprentissage

Plus en détail

Les Réseaux de Neurones avec

Les Réseaux de Neurones avec Les Réseaux de Neurones avec Au cours des deux dernières décennies, l intérêt pour les réseaux de neurones s est accentué. Cela a commencé par les succès rencontrés par cette puissante technique dans beaucoup

Plus en détail

Renforcer ses compétences

Renforcer ses compétences Renforcer ses compétences en mathématiques Tome 1 AVANT PROPOS Vos études ou vos activités professionnelles vous ont peut-être éloignés des mathématiques et ceci, parfois depuis longtemps. Vous souhaitez

Plus en détail

Certificat de compétences Projet CAPE

Certificat de compétences Projet CAPE Certificat de compétences Projet CAPE Introduction L objectif principal du projet CAPE est de «contribuer à la mise en place de critères et de compétences de référence dans le cadre de la Certification

Plus en détail

Risques hydrologiques & aménagement du territoire Projet d évaluation

Risques hydrologiques & aménagement du territoire Projet d évaluation Risques hydrologiques & aménagement du territoire Professeur responsable : Christophe ANCEY Assistant responsable : Blaise DHONT Date de rendu : 8 janvier 2016 Conditions du projet : travail à rédiger

Plus en détail

Graphiques à progression semi-logarithmique

Graphiques à progression semi-logarithmique Graphiques à progression semi-logarithmique Nous ne sommes pas en maths, Nous allons utiliser les applications pratiques des logarithmes Le choix d'une échelle logarithmique est nécessaire si une évolution

Plus en détail

MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE

MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE Pierre-Louis Gonzalez 1 I INTRODUCTION 1 variable qualitative. Tri à plat. Représentations graphiques. Modélisation : loi binomiale loi multinomiale

Plus en détail

SOL1020- Hiver 2016 INTRODUCTION À LA STATISTIQUE SOCIALE El Hadj Touré, Ph. D. Sociologie

SOL1020- Hiver 2016 INTRODUCTION À LA STATISTIQUE SOCIALE El Hadj Touré, Ph. D. Sociologie Faculté des arts et des sciences Département de sociologie SOL1020- Hiver 2016 INTRODUCTION À LA STATISTIQUE SOCIALE El Hadj Touré, Ph. D. Sociologie Horaire du cours : Théorie :, 13:00-15:00 (B-3325 Pav.

Plus en détail

3. et enfin, comment la prise en compte de ces relations annexes peut aider à comprendre les comportements de respect des échéances des clients.

3. et enfin, comment la prise en compte de ces relations annexes peut aider à comprendre les comportements de respect des échéances des clients. Conclusion Cette thèse a interrogé le fonctionnement de l intermédiation microfinancière dans les institutions de microfinance en Afrique de l Ouest. La question centrale qui l a animée consiste à interroger

Plus en détail

FIN-INTER-02 LES DETERMINANTS DU TAUX DE CHANGE. Objectifs : Comprendre les déterminants du taux de change. D'où il vient, comment il évolue.

FIN-INTER-02 LES DETERMINANTS DU TAUX DE CHANGE. Objectifs : Comprendre les déterminants du taux de change. D'où il vient, comment il évolue. FIN-INTER-02 LES DETERMINANTS DU TAUX DE CHANGE Public concerné : Etudiants niveau Bac + 2. Durée indicative : 4 heures. Objectifs : Comprendre les déterminants du taux de change. D'où il vient, comment

Plus en détail

TUTORAT UE4 2010-2011 Biostatistiques Concours Blanc

TUTORAT UE4 2010-2011 Biostatistiques Concours Blanc TUTORAT UE4 2010-2011 Biostatistiques Concours Blanc Lorsque cela n est pas précisé (explicitement ou implicitement), les tests sont réalisés à 5% en bilatéral QCM n 1 : Généralités sur les probabilités

Plus en détail

D.I.I.C. 3 - INC Module COMV - Contrôle 1

D.I.I.C. 3 - INC Module COMV - Contrôle 1 Université de Rennes 1 année 2009-2010 I.F.S.I.C. 11 Décembre 2009 D.I.I.C. 3 - INC Module COMV - Contrôle 1 cours d Olivier LE MEUR Durée : 2 heures Documents autorisés : documents des cours, TD et TP,

Plus en détail

Un pourcentage est la part, la proportion, que représente un sous-ensemble B dans un ensemble A. On le calcule de la manière suivante :

Un pourcentage est la part, la proportion, que représente un sous-ensemble B dans un ensemble A. On le calcule de la manière suivante : FICHE TD n 1 : LE POURCENTAGE Un pourcentage est la part, la proportion, que représente un sous-ensemble B dans un ensemble A. On le calcule de la manière suivante : Sous-ensemble B / Ensemble A x 100

Plus en détail

Comment se détermine le taux de change entre deux monnaies? (résumé du cours - le 12 octobre 2015 )

Comment se détermine le taux de change entre deux monnaies? (résumé du cours - le 12 octobre 2015 ) Comment se détermine le taux de change entre deux monnaies? (résumé du cours - le 12 octobre 2015 ) Le taux de change donne le prix des monnaies entre elles. Comment se fixe ce prix? Pourquoi peut- il

Plus en détail

Textes de référence : articles 313-53-2 à 313-60, articles 318-38 à 318-43 et 314-3-2 du règlement général de l AMF

Textes de référence : articles 313-53-2 à 313-60, articles 318-38 à 318-43 et 314-3-2 du règlement général de l AMF Instruction AMF Organisation de l activité de gestion de placements collectifs et du service d investissement de gestion de portefeuille pour le compte de tiers en matière de gestion des risques Textes

Plus en détail

Les statistiques en biologie expérimentale

Les statistiques en biologie expérimentale Les statistiques en biologie expérimentale Qualités attendues d une méthode de quantification : Le résultat numérique de la mesure permet d estimer avec précision la grandeur mesurée (ex. : il lui est

Plus en détail

Statistiques descriptives Variance et écart type

Statistiques descriptives Variance et écart type Statistiques descriptives Variance et écart type I) Rappel : la moyenne (caractéristique de position ) Définition Soit la série statistique définie dans le tableau suivant : Valeur... Effectif... Fréquences

Plus en détail

Concevoir et analyser des tâches mathématiques dans un environnement logiciel : Quels objectifs d apprentissage? Quels choix de conception?

Concevoir et analyser des tâches mathématiques dans un environnement logiciel : Quels objectifs d apprentissage? Quels choix de conception? Concevoir et analyser des tâches mathématiques dans un environnement logiciel : Quels objectifs d apprentissage? Quels choix de conception? Semaine 2, auteurs Maha Abboud-Blanchard (ESPE de Versailles,

Plus en détail

A. Plusieurs mots, une même réalité? B. Comment lire un texte? C. Comment lire une courbe? D. Des verbes utilisés en dissertation

A. Plusieurs mots, une même réalité? B. Comment lire un texte? C. Comment lire une courbe? D. Des verbes utilisés en dissertation SE20 Seconde Sciences économiques et sociales Approfondissement 1. Quelques définitions et explications A. Plusieurs mots, une même réalité? B. Comment lire un texte? C. Comment lire une courbe? D. Des

Plus en détail

INDICATIONS COMPLÉMENTAIRES

INDICATIONS COMPLÉMENTAIRES eduscol Sciences économiques et sociales - Première ES Science économique 2. La production dans l entreprise Ressources pour le lycée général et technologique Fiche 2.1 : Comment l entreprise produit-elle?

Plus en détail

Ministère de la Jeunesse et des Sports Institut Royal de Formation des Cadres Département des Sciences de la Vie. A. Arfaoui

Ministère de la Jeunesse et des Sports Institut Royal de Formation des Cadres Département des Sciences de la Vie. A. Arfaoui Ministère de la Jeunesse et des Sports Institut Royal de Formation des Cadres Département des Sciences de la Vie A. Arfaoui PLA Définitions Paramètres marginaux Covariance Coefficient de Corrélation Coefficient

Plus en détail

1. Calculer: P(Z<1.34); P(Z<-1.72); P(Z>2.41); P(Z>-1.53); P(1.12<Z<1.57); P(- 0.75<Z<0.36); P( Z >1.96)

1. Calculer: P(Z<1.34); P(Z<-1.72); P(Z>2.41); P(Z>-1.53); P(1.12<Z<1.57); P(- 0.75<Z<0.36); P( Z >1.96) EXERCICES SUR LA LOI NORMALE Exercice 1. Soit Z une V.A. de loi N(0,1). 1. Calculer: P(Z-1.53); P(1.12

Plus en détail

Analyse des données 1: erreurs expérimentales et courbe normale

Analyse des données 1: erreurs expérimentales et courbe normale Analyse des données 1: erreurs expérimentales et courbe normale 1 Incertitude vs. erreur Une mesure expérimentale comporte toujours deux parties: la valeur vraie de la grandeur mesurée et l'erreur sur

Plus en détail

ECGE 1224 - Statistiques en économie et gestion : TP 1

ECGE 1224 - Statistiques en économie et gestion : TP 1 ECGE 14 - Statistiques en économie et gestion : TP 1 Exercice 1 Un dé parfaitement équilibré est lancé. Soit X la variable aléatoire (v.a.) correspondant au résultat obtenu avec le dé. a) Justifer pourquoi

Plus en détail

EXAMEN BD Access Lundi 16 Mai 2011 (8h-9h30)

EXAMEN BD Access Lundi 16 Mai 2011 (8h-9h30) EXAMEN BD Access Lundi 16 Mai 2011 (8h-9h30) L examen a une durée de 1h30. Aucun document (quel qu il soit) n est autorisé durant l épreuve. Le soin apporté à la rédaction (écriture, schémas, etc.) sera

Plus en détail

LEHALLIER Benoît YGUEL Benjamin. Tutorial : Utilisation de R pour une modélisation optimale de phénomènes expérimentaux.

LEHALLIER Benoît YGUEL Benjamin. Tutorial : Utilisation de R pour une modélisation optimale de phénomènes expérimentaux. LEHALLIER Benoît YGUEL Benjamin Tutorial : Utilisation de R pour une modélisation optimale de phénomènes expérimentaux. ECIM Comportement et socialisation Mars 2006 La modélisation est utilisée pour comprendre

Plus en détail

La Photographie Principes G.Loichot

La Photographie Principes G.Loichot La Photographie Principes G.Loichot Introduction La principale chose à laquelle il faut penser en photographie, c est à la lumière. C est elle qui traverse l objectif et qui vient «s écraser» sur le capteur

Plus en détail

Réduction et gestion des impacts

Réduction et gestion des impacts 11 Réduction et gestion des impacts Les porteurs de projets doivent : faire en sorte que des mesures de réduction soient mises en œuvre mettre en place des systèmes et procédures dans ce but contrôler

Plus en détail

Le logiciel Aplusix Standard comme environnement d'apprentissage du raisonnement par équivalence dans le cas des équations et systèmes d équations

Le logiciel Aplusix Standard comme environnement d'apprentissage du raisonnement par équivalence dans le cas des équations et systèmes d équations Le logiciel Aplusix Standard comme environnement d'apprentissage du raisonnement par équivalence dans le cas des équations et systèmes d équations Hamid Chaachoua, Laboratoire LEIBNIZ - Institut IMAG,

Plus en détail

Examen Final Commun 2015 La méthode d évaluation axée sur les compétences

Examen Final Commun 2015 La méthode d évaluation axée sur les compétences Examen Final Commun 2015 La méthode d évaluation axée sur les compétences Informations I. Aperçu et généralités II. Le processus d évaluation - Jour 1 III. Le processus d évaluation - Jours 2 et 3 Le programme

Plus en détail

PLANIFICATION DU PROJET DE RECHERCHE CHAPITRE 5

PLANIFICATION DU PROJET DE RECHERCHE CHAPITRE 5 PLANIFICATION DU PROJET DE RECHERCHE CHAPITRE 5 L analogie de l architecte Avant de bâtir un édifice, un architecte a besoin de plans : Détaillés Conformes aux normes et procédures Avec des étapes et jalons

Plus en détail

Volume et température d un gaz

Volume et température d un gaz Volume et température d un gaz Par Pascal Rebetez Janvier 7 Introduction Après avoir étudié expérimentalement la relation entre le volume et la température d un gaz (de l air), nous comparons les données

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Note liminaire Programme selon les sections : - fonctions de références, représentations graphiques, dérivées, tableau de variations : toutes sections - opérations sur les limites, asymptotes : STI2D,

Plus en détail

Les fractions dans un contexte de rapport, de taux et de proportion

Les fractions dans un contexte de rapport, de taux et de proportion Les fractions dans un contexte de rapport, de taux et de proportion Un rapport est une relation entre deux grandeurs de même nature comparées l une avec l autre. Il s exprime à l aide d une représentation

Plus en détail

2014 ProduTex : Documentation technique

2014 ProduTex : Documentation technique 2014 ProduTex : Documentation technique M.HMIDI ProduTex 2014 v2.0 E-mail : mohaned_amin@yahoo.fr Tel : (+216) 26 444 226 / 22 32 11 44 Informations générales : Copyright ProduTex 2014 Tous droits réservés.

Plus en détail

Apprentissage statistique Stratégie du Data-Mining

Apprentissage statistique Stratégie du Data-Mining Apprentissage statistique Stratégie du Data-Mining Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Apprentissage statistique

Plus en détail

Université Laval Département de mathématiques et de statistique STT-1920 MÉTHODES STATISTIQUES HIVER 2014

Université Laval Département de mathématiques et de statistique STT-1920 MÉTHODES STATISTIQUES HIVER 2014 Université Laval Département de mathématiques et de statistique STT-1920 MÉTHODES STATISTIQUES HIVER 2014 INFORMATIONS GÉNÉRALES Enseignant : Claude Bélisle Adresse : belisle@mat.ulaval.ca Disponibilités

Plus en détail

1 Chemin d un faisceau lumineux

1 Chemin d un faisceau lumineux TD P3 Optique Lentilles sphériques minces Savoir-faire travaillés dans les exercices d application Savoir construire la marche d un rayon lumineux quelconque. Ex. 1 Démontrer la relation de conjugaison

Plus en détail

Chapitre 2. Caractéristiques des distributions à une variable quantitative

Chapitre 2. Caractéristiques des distributions à une variable quantitative Chapitre 2. Caractéristiques des distributions à une variable quantitative Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University

Plus en détail

TABLE DES MATIÈRES. Extrait de la publication

TABLE DES MATIÈRES. Extrait de la publication TABLE DES MATIÈRES Introduction... 15 Chapitre 1 Le choc psychologique de la séparation... 19 L importance de comprendre le passage difficile de la séparation... 19 Un choc psychologique...21 Les émotions

Plus en détail

Chapitre 6 TESTS STATISTIQUES

Chapitre 6 TESTS STATISTIQUES Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 6 TESTS STATISTIQUES Les tests statistiques sont des méthodes de la statistique inférentielle qui, comme

Plus en détail

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Philippe Gagnepain Université Paris 1 Ecole d Economie de Paris Centre d économie de la Sorbonne-UG 4-Bureau 405 philippe.gagnepain@univ-paris1.fr

Plus en détail

Les indices synthétiques

Les indices synthétiques I II ISG 24 février 2009 Plan I II 1 Introduction : présentation des 2 simples : et interprétation 3 - application aux de prix I II Un indice boursier représente l évolution de la valeur d un groupe de

Plus en détail

THÈME. Méthodologie. 1 Les conditions de l épreuve. 2 L étude d une situation pratique. A En quoi consiste l étude de cas?

THÈME. Méthodologie. 1 Les conditions de l épreuve. 2 L étude d une situation pratique. A En quoi consiste l étude de cas? Méthodologie THÈME 1 1 Les conditions de l épreuve Les conditions d examen : «épreuve écrite portant sur l étude d une ou de plusieurs situations pratiques et/ou le commentaire d un ou plusieurs documents

Plus en détail

Exercice 2. Population de Bruxelles de 18 à 65 ans selon le sexe et le statut d occupation - 2010

Exercice 2. Population de Bruxelles de 18 à 65 ans selon le sexe et le statut d occupation - 2010 Chapitre 1. Tableau à double entrée Exercices : solutions Texte provisoire. Merci pour les remarques, commentaires, suggestions Exercice 1 1.a. Population de Bruxelles selon le sexe et la nationalité Hommes

Plus en détail

Problème 4: Les diagrammes suivants représentent la distribution de 4 variables discrètes X1, X2, X3 et X4 :

Problème 4: Les diagrammes suivants représentent la distribution de 4 variables discrètes X1, X2, X3 et X4 : Cours 5-62-96 : Traitement et analyse des données Test autodiagnostique PARTIE 1 : Problème 1 : Pour chacune des distributions ci-dessous, identifier la population et la variable étudiée en précisant si

Plus en détail

Principe des Tests Statistiques

Principe des Tests Statistiques Principe des Tests Statistiques Vocabulaire & Notions Générales Marc AUBRY Plateforme Transcriptome Biogenouest Rennes Askatu Les Étapes d un Test Statistique Question scientifique Choix d un test statistique

Plus en détail

NORME INTERNATIONALE D AUDIT 510 MISSIONS D AUDIT INITIALES SOLDES D OUVERTURE

NORME INTERNATIONALE D AUDIT 510 MISSIONS D AUDIT INITIALES SOLDES D OUVERTURE NORME INTERNATIONALE D AUDIT 510 MISSIONS D AUDIT INITIALES SOLDES D OUVERTURE Introduction (Applicable aux audits d états financiers pour les périodes ouvertes à compter du 15 décembre 2009) SOMMAIRE

Plus en détail

Exercice n HF 0201 - Corrigé

Exercice n HF 0201 - Corrigé ENAC/ISTE/HYDRAM HYDROTHEQUE : base de données d exercices en Hydrologie Cours : Hydrologie Fréquentielle / Thématique : Construction des courbes IDF Exercice n HF 0201 - Corrigé Logo optimisé par J.-D.Bonjour,

Plus en détail

CONSIDÉRATIONS DE BASE SUR L ESTIMATION DE LA FRÉQUENTATION DES ÉVÈNEMENTS RÉCRÉOTOURISTIQUES

CONSIDÉRATIONS DE BASE SUR L ESTIMATION DE LA FRÉQUENTATION DES ÉVÈNEMENTS RÉCRÉOTOURISTIQUES MONTRÉAL 1180, rue Drummond Bureau 620 Montréal (Québec) H3G 2S1 T 514 878-9825 QUÉBEC 3340, rue de La Pérade 3e étage Québec (Québec) G1X 2L7 T 418 687-8025 WWW.SOM.CA CONSIDÉRATIONS DE BASE SUR L ESTIMATION

Plus en détail

Analyse Microéconomique. Francesco Quatraro L1 AES 2010/2011

Analyse Microéconomique. Francesco Quatraro L1 AES 2010/2011 Francesco Quatraro L1 AES 2010/2011 1 L objectif de la firme est la maximisation du profit Les profits sont définis comme la différence entre les recettes et le coûts Supposons que la firme produise n

Plus en détail

CHAPITRE 2. Genre, structure du ménage et conditions de vie

CHAPITRE 2. Genre, structure du ménage et conditions de vie CHAPITRE 2 Genre, structure du ménage et conditions de vie Le type de ménage dans lequel vit une personne peut avoir une influence sur son accès aux ressources, telles que la nourriture, les médicaments,

Plus en détail

La conversion et la consolidation des états financiers des filiales étrangères

La conversion et la consolidation des états financiers des filiales étrangères RÉSUMÉ DU MODULE 8 La conversion et la consolidation des états financiers des filiales étrangères Le module 8 porte sur la conversion et la consolidation des états financiers d une filiale résidente d

Plus en détail

Cours/TD n 3bis : les boucles

Cours/TD n 3bis : les boucles Cours/TD n 3bis : les boucles Découpons le problème Nous avons plusieurs utilisations des boucles C est précisément ce qui rend difficile leur création. Vu la difficulté, nous allons séparer les différentes

Plus en détail

Centrale électrique à Bobo-Dioulasso, Burkina-Faso. Jorgen Schytte/StillPictures

Centrale électrique à Bobo-Dioulasso, Burkina-Faso. Jorgen Schytte/StillPictures Centrale électrique à Bobo-Dioulasso, Burkina-Faso Jorgen Schytte/StillPictures 3 Collecte des données Questions traitées dans ce chapitre Quels outils utiliser pour recueillir des données sur l économie

Plus en détail

L estimation du modèle a priori Décompter les ddl

L estimation du modèle a priori Décompter les ddl L estimation du modèle a priori Décompter les ddl ------------ François Cheptou Juin 004 Dans le programme de mathématiques BTS Chimiste, trois modèles a priori sont étudiés. ) = µ (modèle simple) ) =

Plus en détail

Chapitre 5 - Le diplôme : un passeport pour l emploi?

Chapitre 5 - Le diplôme : un passeport pour l emploi? Chapitre 5 - Le diplôme : un passeport pour l emploi? Le chapitre s inscrit dans le thème du programme, «Formation et emploi». Le chapitre vise à montrer l intérêt du diplôme dans la recherche et l obtention

Plus en détail

Plate-forme semi-automatique : E-quity

Plate-forme semi-automatique : E-quity Plate-forme semi-automatique : E-quity Bringay Sandra 1, Pinlou Alexandre 1, Durand Sylvain 1, Pro Sébastien 1, Séébold Patrice 1 Département MIAp, Université Paul-Valéry, Montpellier 3, Route de Mende,

Plus en détail