partie a Introduction à la statistique 1

Dimension: px
Commencer à balayer dès la page:

Download "partie a Introduction à la statistique 1"

Transcription

1 table des matières F AVANT-PROPOS À L ÉDITION AMÉRICAINE Abréviations viii xiv partie a Introduction à la statistique 1 1. Statistique et probabilité ne sont pas intuitives 3 Nous avons tendance à passer directement aux conclusions 3 Nous avons tendance à être trop confiants 3 Nous voyons des structures dans des données aléatoires 4 Nous ne nous rendons pas compte que les coïncidences sont fréquentes 6 Nous avons des intuitions fausses à propos des probabilités 6 Nous évitons de réfléchir à des situations ambiguës 6 Il nous est difficile de combiner des probabilités 7 Nous ne faisons pas de calculs bayésiens intuitivement 8 Ne soyons pas dupés par les comparaisons multiples 9 Nous avons tendance à ignorer les explications alternatives 10 Nous sommes dupés par la régression vers la moyenne Pourquoi la statistique peut être difficile à étudier 14 Raison 1 : crainte des maths 14 Raison 2 : terminologie prêtant à confusion 14 Raison 3 : pensée abstraite 15 Raison 4 : probabilité, pas certitude De l échantillon à la population 17 Les calculs statistiques permettent de généraliser de l échantillon à la population 17 Ce que les calculs statistiques ne peuvent pas faire 18 Les conclusions statistiques sont toujours vagues 19

2 482 table des matières Jargon : modèles et paramètres 20 Jargon : probabilité versus statistique 20 Essais n-de-1 20 partie b Intervalles de confiance Intervalle de confiance d une proportion 25 Exemple : décès d enfants prématurés 25 Exemple : sondage électoral 26 Hypothèses : intervalle de confiance d une proportion 27 Que signifie réellement une confiance de 95 %? 28 Qu est-ce que 95 % a de spécial? 30 Que faire si les hypothèses sont violées? 30 Quantifie-t-on réellement l événement auquel on s intéresse? 31 Jargon 31 Comment ça marche : ic d une proportion 32 Comment : calculer approximativement des IC s 34 Perspectives : paramètres et modèles Intervalle de confiance des données de survie 38 Données de survie 38 Données de survie censurées 38 Représentation graphique du pourcentage de survivants en fonction du temps 40 Comment calculer : l intervalle de confiance d une courbe de survie 42 Médiane du temps de survie 42 Survie à cinq ans 43 Hypothèses : analyse de survie Intervalle de confiance des données de dénombrement 47 La distribution de poisson 47 Hypothèses : distribution de poisson 48 IC s basés sur la distribution de poisson 49 Comment : calculer l ic pour une variable suivant une loi de poisson 51 L avantage d utiliser des intervalles de temps plus longs (ou des volumes plus importants) 51 partie C Variables continues Représentations graphiques des données continues 57 Données continues 57 La moyenne et la médiane 57

3 Table des matières 483 Jargon : erreur et biais 59 Représentation graphique des données pour en montrer la dispersion ou représenter la distribution 61 Attention à la manipulation des données Types de Variables 67 Variables d intervalle 67 Variables de rapport 68 Autres types de variables 69 Pas aussi différentes qu il n y paraît Quantification de la dispersion 71 L interprétation d un écart-type 71 Comment ça marche : calculer un et 71 Pourquoi N 1? 73 situations ou n peut sembler être ambigu 74 ET et taille d échantillon 75 Le coefficient de variation 75 Variance 75 Autres manières de quantifier la variabilité La distribution Gaussienne 78 Origine de la distribution gaussienne 78 ET et la distribution gaussienne 79 La distribution normale standard 80 La distribution «normale» ne définit pas des limites normales 80 Pourquoi la distribution gaussienne occupe-t-elle une place aussi centrale en statistique? La distribution log-normale et la moyenne géométrique 83 Exemple : relaxation de la vessie 83 L origine de la distribution log-normale 83 Comment analyser des données log-normales 84 Moyenne géométrique Intervalle de confiance d une moyenne 87 L interprétation de l ic d une moyenne 87 Quelles valeurs faut-il avoir pour calculer l ic d une moyenne 88 Hypothèses : ic d une moyenne 89 Comment calculer : l IC d une moyenne 90 IC s unilatéraux (méthode avancée) 93 IC d un et (méthode avancée) 94 IC d une moyenne géométrique (méthode avancée) 94

4 484 table des matières 13. La théorie des intervalles de confiance 96 IC d une moyenne via la distribution t 96 IC d une moyenne via ré-échantillonnage 98 IC d une proportion via ré-échantillonnage 99 L IC d une proportion via la distribution binomiale 100 En apprendre plus Barres d erreur 103 ESM 103 Comment calculer : l et à partir de l esm 104 Quel type de barre d erreur faut-il mettre dans un graphique? 106 L aspect des barres d erreur 107 partie D P-valeurs et signification Introduction aux P-valeurs 111 Exemple 1 : lancer d une pièce de monnaie 111 Exemple 2 : température corporelle 113 Exemple 3 : antibiotiques sur des plaies chirurgicales 115 Exemple 4 : angioplastie et infarctus du myocarde 115 P-valeurs unis ou bilatérales? 116 Pourquoi les P-valeurs sont-elles si difficiles à comprendre? 118 P-valeurs ou IC S? Signification statistique et test d hypothèse 122 Tests d hypothèse statistique 122 Analogie : innocent jusqu à preuve du contraire 122 Procès devant jury versus procès devant journalistes 123 Quand un test d hypothèse est-il utile? 123 Significatif, très significatif ou hautement significatif? 124 Signification statistique limite 124 Jargon : erreurs de type i et de type ii 125 Choisir un seuil de signification Relation entre intervalles de confiance et signification statistique 130 IC s et test d hypothèse sont étroitement liés 130 Lorsqu un ic inclut l hypothèse nulle 130 Lorsqu un ic n inclut pas l hypothèse nulle 131 Une règle qui lie intervalle de confiance et signification statistique 132

5 Table des matières L interprétation d un résultat statistiquement significatif 134 Distinguer la signification statistique de l importance scientifique 134 Une idée fausse fréquente 135 La probabilité a priori influence le TFD 136 Logique bayésienne 139 Application informelle de l approche bayésienne L interprétation d un résultat statistiquement non significatif 141 «Non significativement différent» ne signifie pas «pas de différence» 141 Exemple : récepteurs adrénergiques α 2 sur les plaquettes 142 Exemple : échographie fœtale 143 Comment avoir des ic s plus étroits 144 Que se passe-t-il si la P-valeur est vraiment élevée? Puissance statistique 146 Qu est-ce ce que la puissance? 146 Une analogie pour comprendre la puissance 147 La puissance pour les deux exemples d étude 148 L analyse de la puissance a posteriori n est pas utile Test d équivalence ou de non infériorité 150 L équivalence doit être définie scientifiquement, pas statistiquement 150 Moyenne dans la zone d équivalence 151 Moyenne en dehors de la zone d équivalence 152 L approche usuelle par un test d hypothèse n est pas utile 153 Faire des pieds et des mains pour adapter les tests d hypothèse au problème d équivalence 153 Essais de non-infériorité 154 Il faut être certain que le traitement standard est efficace 155 partie E Défis en statistique Concepts de comparaisons multiples 159 Le problème des comparaisons multiples 159 Corriger pour les comparaisons multiples n est pas toujours nécessaire 160 Si on ne prend pas les comparaisons multiples en considération 161

6 486 table des matières Correction pour les comparaisons multiples par l approche traditionnelle 163 Correction pour comparaisons multiples avec le taux de fausse découverte 165 Qu est-ce qu une famille? 166 Vue d ensemble Les pièges des comparaisons multiples 168 Analyser des données sans plan 168 Biais de publication 169 Plusieurs points au cours du temps analyses séquentielles 169 Plusieurs sous-groupes 170 Coïncidences 171 Grappes de maladie 171 Prédictions multiples 172 Combinaison de groupes 172 Comparaisons multiples en régression multiple 173 Aperçu des pièges des comparaisons multiples Gaussien ou pas? 175 La distribution gaussienne est un idéal inaccessible 175 Ce à quoi ressemble réellement une distribution gaussienne 176 Test de normalité 176 Interprétation des résultats d un test de normalité 178 Que faire lorsque les données échouent au test de normalité Valeurs atypiques (outliers) 181 Comment les valeurs atypiques se produisent-elles? 181 La nécessite d avoir des tests de détection des valeurs atypiques 182 Questions à se poser avant d utiliser un test pour détecter les valeurs atypiques 182 Les tests de détection des valeurs atypiques 183 Attention aux distributions log-normales 184 Statistiques robustes 186 Comment ça marche : le test de détection des valeurs atypiques de Grubbs 187 partie F Tests statistiques Comparaison de distributions observées et attendues 191 Les données suivent-elles une distribution attendue? 191 Le test d ajustement du Khi-carré 192

7 Table des matières 487 Khi-carré et génétique mendélienne 193 Comment ça marche : test d ajustement du Khi-carré 193 Il ne faut pas confondre deux tests de Khi-carré distincts 194 Test binomial Comparaison des proportions : études prospectives et expérimentales 196 Jargon : études transversales, prospectives, expérimentales et rétrospectives 196 Tables de contingence 197 Un exemple d étude expérimentale : un essai clinique 197 Le risque attribuable 199 Nombre nécessaire à traiter (NNT) 199 Le risque relatif 199 Risque relatif ou différence entre proportions? 200 Calcul d une P-valeur 200 Hypothèses Comparaison des proportions : études cas-témoins 203 Exemple : le vaccin contre le choléra est-il efficace? 203 Le calcul du risque relatif à partir des données d une étude cas-témoins n a pas de sens 204 Le rapport de cotes 204 L interprétation d une P-valeur 205 Le défi des études cas témoins 206 Hypothèses dans les études de cas témoins 207 Pourquoi le rapport de cotes est une approximation du risque relatif Comparaison de courbes de survie 210 Exemple de données de survie 210 Hypothèses lorsqu on compare des courbes de survie 210 Comparaison de deux courbes de survie en utilisant les IC s 214 Comparaison des courbes de survie en utilisant une P-valeur Comparaison de deux moyennes : test t pour échantillons indépendants 219 Exemple : relaxation maximale des muscles de la vessie 219 Interprétation des résultats d un test t pour échantillons indépendants 219 Hypothèses : test t pour échantillons indépendants 222 L hypothèse d égalité des variances 223

8 488 table des matières Chevauchement des barres d erreur et test t 224 Erreurs fréquentes : test t pour échantillons indépendants 227 Comment ça marche : le test t pour échantillons indépendants 228 Perspectives Comparaison de deux groupes appariés 231 Quand utiliser des tests spéciaux pour données appariées 231 Exemple de test t par paires 232 L interprétation des résultats d un test t par paires 234 Le test t d un rapport pour échantillons appariés 237 Test de McNemar pour une étude cas-témoins appariés 241 Tests apparentés Corrélation 243 Introduction au coefficient de corrélation 243 IC du coefficient de corrélation 245 Interprétation d une P-valeur 245 Corrélation et relation causale 245 Hypothèse : corrélation 246 R² 247 Il faut prendre garde aux grands échantillons 248 Comment ça marche : calcul du coefficient de corrélation 249 Jargon : corrélation 251 partie G Ajustement de modèles aux données Régression linéaire simple 255 Les objectifs de la régression linéaire 255 Les résultats de la régression linéaire 256 Hypothèses : régression linéaire 260 Comparaison de la régression linéaire et de la corrélation 261 Jargon : régression linéaire 262 Erreurs fréquentes : régression linéaire Introduction aux modèles 270 Jargon : modèles, paramètres et variables 270 Le modèle le plus simple 272 Le modèle de régression linéaire 273 Pourquoi moindres carrés? 274 Autres modèles et autres types de régression 274

9 Table des matières Comparaison de modèles 276 La comparaison de modèles est une partie essentielle de la statistique 276 La régression linéaire vue comme comparaison de modèles 277 Le test t pour échantillons indépendants reconverti en comparaison de l ajustement de deux modèles 280 Erreur fréquente : comparaison de modèles Régression non linéaire 285 Ajustement d un modèle 285 Pondération 287 Comment fonctionne la régression non linéaire 288 Les résultats de la régression non linéaire 288 Hypothèses : régression non linéaire 290 Comparaison de deux modèles 290 Erreurs fréquentes 293 Trucs pour comprendre les modèles 295 En apprendre plus sur la régression non linéaire Régression multiple, logistique et modèle des risques instantanés proportionnels 296 Objectifs de la régression multivariable 296 Jargon 297 Régression linéaire multiple 299 Régression logistique 305 Modèle des risques instantanés proportionnels 308 Hypothèses 310 Interactions entre variables indépendantes 310 Observations corrélées 311 Comment ça marche 314 En apprendre plus à propos de la régression multiple Pièges de la régression multiple 315 Attention au sur-ajustement 315 Attention à la multi-colinéarité 317 Attention à la sur-interprétation de R² 319 Attention à corrélation versus relation causale 319 Les modèles de régression devraient être validés 319

10 490 table des matières partie H Le reste des statistiques Analyse de variance 323 La comparaison des moyennes de trois groupes ou plus 323 Hypothèses : anova à un facteur 325 Comment ça marche : anova à un facteur 325 ANOVA pour mesures répétées 328 ANOVA à deux facteurs et au-delà Tests de comparaisons multiples post-anova 331 Les tests de comparaisons multiples pour les données de l exemple 331 La logique des tests de comparaisons multiples 334 Autres tests de comparaisons multiples 337 Comment ça marche : tests de comparaisons multiples 339 Comparaisons multiples individuelles Méthodes non paramétriques 344 Tests non paramétriques basés sur les rangs 344 Les avantages et désavantages des tests non paramétriques 347 Ne pas automatiser la décision relative au choix d un test non paramétrique 348 Choisir entre tests paramétriques et non paramétriques : cela a-t-il de l importance? 349 Tests non paramétriques qui analysent les valeurs (pas les rangs) Sensibilité, spécificité et courbes ROC (receiver-operatercharacteristic) 354 Définition de sensibilité et spécificité 354 La valeur prédictive d un test 355 Courbes receiver-operator characteristic (ROC) 358 Bayes revisité 358 Bayes, liaison génétique et scores du log des «chances» (LOD) Taille d échantillon 363 Trois approches pour choisir la taille d échantillon 363 Taille d échantillon et IC S 364 Taille d échantillon et test d hypothèse statistique 366 Règles empiriques pour la taille d échantillon 369

11 Table des matières 491 partie I Assemblage Conseils statistiques 377 Ne pas oublier l essentiel 377 Interpréter de façon judicieuse les p-valeurs 379 Attention aux comparaisons multiples 380 Réfléchir aux données 380 Attention aux variables manquantes 382 Se focaliser sur les IC s 384 Être sceptique Choix du test statistique 387 Issue : variable continue provenant d une distribution gaussienne 387 Issue : donnée continue provenant d une distribution non-gaussienne 388 Issue : temps de survie (ou temps jusqu à l apparition d un événement) 388 Issue : variable binomiale Exemple de synthèse 390 Le cas des huit CI 50 s toutes nues 390 Regarder au-delà des données 392 Signification statistique par tricherie 393 L utilisation d un test t qui ne suppose pas l égalité des ET s 394 Test t pour échantillons indépendants sous forme de régression linéaire ou non linéaire 395 Test non paramétrique de Mann-Whitney 396 Rapporter seulement la dernière expérience de confirmation? 397 Augmenter la taille de l échantillon? 397 Comparaison des logarithmes des valeurs de CI Calculs de taille d échantillon revisités 400 Est-ce ok de changer de méthode d analyse? 401 L utilité des simulations 401 Résumé global du problème Exercices de révision 406 A. Problèmes sur les ic des proportions, les courbes de survie et les dénombrements 406 B. Problèmes relatifs aux et s, esm, ic s et distributions log-normales 408 C. Problèmes relatifs aux P-valeurs et à la signification statistique 409

12 492 table des matières D. Problèmes relatifs à la taille d échantillon et à la puissance 413 E. Problèmes relatifs à la corrélation et à la régression Réponses aux exercices de révision 418 A. Problèmes sur les ic des proportions, les courbes de survie et les dénombrements 418 B. Problèmes relatifs aux et s, esm, ic s et distributions log-normales 424 C. Problèmes relatifs aux p-valeurs et à la signification statistique 430 D. Problèmes relatifs à la taille d échantillon et à la puissance 438 E. Problèmes relatifs à la corrélation et à la régression 441 appendices 449 A. Statistiques avec GraphPad 451 GraphPad prism, qu est-ce que c est? 451 Ce que vous devez savoir avant d utiliser GraphPad Prism 452 À propos du logiciel GraphPad 453 B. Statistiques avec Excel 456 Utiliser excel pour les calculs statistiques : le pour et le contre 456 Ce que vous devez savoir avant d utiliser excel pour l analyse statistique 457 C. Statistiques avec R 458 Qu est-ce que R? 458 Ce que vous devez savoir avant d utiliser R 458 D. Valeurs de la distribution t nécessaires pour calculer les IC s 460 E. Une révision des logarithmes 462 Logarithmes communs (base 10) 462 Notation 463 les logarithmes convertissent la multiplication en addition 463 Antilogarithmes 463 bibliographie 465 index 473

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2 UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 Master d économie Cours de M. Desgraupes MATHS/STATS Document 4 : Les tests statistiques 1 Généralités sur les tests

Plus en détail

STATISTIQUE SCIENCES DE DE LA LA VIE DOCUMENTATION. Diplôme de l université Paris XI. ssv.medecine@u-psud.fr

STATISTIQUE SCIENCES DE DE LA LA VIE DOCUMENTATION. Diplôme de l université Paris XI. ssv.medecine@u-psud.fr Diplôme de l université Paris XI STATISTIQUE ET ET SCIENCES DE DE LA LA VIE Contact uniquement par courrier électronique aucun accueil possible - Trois options Modélisation Recherche clinique Recherche

Plus en détail

23. Interprétation clinique des mesures de l effet traitement

23. Interprétation clinique des mesures de l effet traitement 23. Interprétation clinique des mesures de l effet traitement 23.1. Critères de jugement binaires Plusieurs mesures (indices) sont utilisables pour quantifier l effet traitement lors de l utilisation d

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE

MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE Forum HH 05.02.2013 Ghislaine Gagnon Unité HPCI Qualitatif ou quantitatif? Les 2 méthodes peuvent être utilisées séparément ou en conjonction - le qualitatif

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Pièges classiques en statistiques

Pièges classiques en statistiques Pièges classiques en statistiques Raphaël Porcher Hôpital Saint-Louis & Université Paris Diderot 18 janvier 2012 Plan Introduction Différents types d erreurs courantes : analyse, interprétation Exemple

Plus en détail

11. Tests d hypothèses (partie 1/2)

11. Tests d hypothèses (partie 1/2) 11. Tests d hypothèses (partie 1/2) MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v1) MTH2302D: tests d hypothèses 1/30 Plan 1. Introduction 2. Hypothèses et erreurs 3. Tests d hypothèses

Plus en détail

Nouveautés de StatView 5

Nouveautés de StatView 5 Nouveautés de StatView 5 Nouvelles fonctionnalités Régression logistique StatView propose désormais la régression logistique, une technique de construction d un modèle semblable à la régression linéaire

Plus en détail

MASTER «Sciences de la Vie et de la Santé» Mention «Santé Publique»

MASTER «Sciences de la Vie et de la Santé» Mention «Santé Publique» M1_presentation_generale_4juil05.doc 1/11 MASTER «Sciences de la Vie et de la Santé» Mention «Santé Publique» La mention s articule autour de 6 spécialités : Recherche en éthique : Pr Christian HERVE (herve@necker.fr)

Plus en détail

Points méthodologiques Adapter les méthodes statistiques aux Big Data

Points méthodologiques Adapter les méthodes statistiques aux Big Data Points méthodologiques Adapter les méthodes statistiques aux Big Data I. Répétition de tests et inflation du risque alpha II. Significativité ou taille de l effet? 2012-12-03 Biomédecine quantitative 36

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Document d implémentation - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO

Document d implémentation - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO - Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO Grenoble, 11 juin 2012 Table des matières 1 Avant-propos 3 2 Présentation de l architecture du logiciel 3 2.1 Core..........................................

Plus en détail

Table des cas d entreprise et enquêtes. Avant-propos Nos choix d adaptation Visite guidée La 4 e édition Remerciements

Table des cas d entreprise et enquêtes. Avant-propos Nos choix d adaptation Visite guidée La 4 e édition Remerciements Table des matières Table des cas d entreprise et enquêtes Avant-propos Nos choix d adaptation Visite guidée La 4 e édition Remerciements xiii xiii xiv xv xv Première partie Les fondements de la comptabilité

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

MASTER 2 : Pharmacologie Clinique et Développement Thérapeutique. Evaluation de nouvelles drogues Critères de jugement clinique

MASTER 2 : Pharmacologie Clinique et Développement Thérapeutique. Evaluation de nouvelles drogues Critères de jugement clinique MASTER 2 : Pharmacologie Clinique et Développement Thérapeutique Evaluation de nouvelles drogues Critères de jugement clinique Jean-Marie BOHER, PhD, Institut Paoli-Calmettes, Marseille Novembre 2011 Typologie

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014 Télécom Physique Strasbourg Module 2101 STATISTIQUES Cours I : Test d hypothèses Fabrice Heitz Octobre 2014 Fabrice Heitz (Télécom PS) Statistiques 2014 1 / 75 Cours I TESTS D HYPOTHÈSES Fabrice Heitz

Plus en détail

PROGRAMME (Susceptible de modifications)

PROGRAMME (Susceptible de modifications) Page 1 sur 8 PROGRAMME (Susceptible de modifications) Partie 1 : Méthodes des revues systématiques Mercredi 29 mai 2013 Introduction, présentation du cours et des participants Rappel des principes et des

Plus en détail

Introduction à l'analyse statistique des données

Introduction à l'analyse statistique des données INTRODUCTION À L'ANALYSE STATISTIQUE DES DONNÉES CONCEPTS DE BASE Un certain nombre de concepts, préalables indispensables à la compréhension des analyses présentées, sont définis ici. De même pour quelques

Plus en détail

TP1 Master Finance logiciels Introduction à R

TP1 Master Finance logiciels Introduction à R TP1 Master Finance logiciels Introduction à R Emeline Schmisser, emeline.schmisser@math.univ-lille1.fr, bureau 314 (bâtiment M3). 1 Séquences, Vecteurs, Matrice Tableaux (arrays) Pour obtenir l aide de

Plus en détail

Savoir Faire Excel Niveau 2. 5 novembre 2007 Naomi Yamaguchi naomi.yamaguchi@univ-paris3.fr

Savoir Faire Excel Niveau 2. 5 novembre 2007 Naomi Yamaguchi naomi.yamaguchi@univ-paris3.fr Savoir Faire Excel Niveau 2 5 novembre 2007 Naomi Yamaguchi naomi.yamaguchi@univ-paris3.fr Ce qu on sait faire Entrer et recopier des données numériques Les fonctions de base (somme, moyenne, nb, si) Faire

Plus en détail

Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30

Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 I1 Connaissances préalables : Buts spécifiques : Outils nécessaires: Consignes générales : Test t de comparaison de moyennes pour

Plus en détail

Décrire les données. Chapitre 2

Décrire les données. Chapitre 2 Chapitre 2 Décrire les données La description des données est une étape importante de la démarche d analyse. Beaucoup d enquêtes se limitent à cette étape, qui donne un premier niveau de lecture des résultats

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

Analyse des données «Hamburgers» à l aide de SPSS (v2, janvier 2011) Auteur : André Berchtold

Analyse des données «Hamburgers» à l aide de SPSS (v2, janvier 2011) Auteur : André Berchtold Analyse des données «Hamburgers» à l aide de SPSS (v2, janvier 2011) Auteur : André Berchtold Le site web «The Fast Food Explorer» (www.fatcalories.com) propose des données relatives à la composition des

Plus en détail

Modélisation du risque opérationnel dans le secteur de l assurance

Modélisation du risque opérationnel dans le secteur de l assurance Avril 2011 N 14 Modélisation du risque opérationnel dans le secteur de l assurance Par Julie Gamonet Centre d études actuarielles Lauréate du prix du jeune actuaire 2010 Un texte paraissant dans SCOR Papers

Plus en détail

Question 1 : Sur votre compte-rendu, indiquer les réponses pour les positions a et b des interrupteurs.

Question 1 : Sur votre compte-rendu, indiquer les réponses pour les positions a et b des interrupteurs. 2 nde MPI Le Binaire 1 / 8 I) Le codage 1) Présentation du L informatique utilise des courants électriques, des aimantations, des rayons lumineux... Chacun de ces phénomènes met en jeu deux états possibles

Plus en détail

Lot Quality Assurance Sampling. Elise Naoufal EVARISQ 15 septembre 2011

Lot Quality Assurance Sampling. Elise Naoufal EVARISQ 15 septembre 2011 Lot Quality Assurance Sampling LQAS Elise Naoufal EVARISQ 15 septembre 2011 1 LQAS Une question d efficacité? LQAS et santé Méthode et Fondements théoriques Détermination du couple (n,d n,d) Conclusion

Plus en détail

Evaluation d un test diagnostique - Concordance

Evaluation d un test diagnostique - Concordance Evaluation d un test diagnostique - Concordance Michaël Genin Université de Lille 2 EA 2694 - Santé Publique : Epidémiologie et Qualité des soins michaelgenin@univ-lille2fr Plan 1 Introduction 2 Evaluation

Plus en détail

Les données manquantes en statistique

Les données manquantes en statistique Les données manquantes en statistique N. MEYER Laboratoire de Biostatistique -Faculté de Médecine Dép. Santé Publique CHU - STRASBOURG Séminaire de Statistique - 7 novembre 2006 Les données manquantes

Plus en détail

Objectif Conditions de recueil des données Mode de présentation des IQSS par ES

Objectif Conditions de recueil des données Mode de présentation des IQSS par ES Guide méthodologique de production des résultats comparatifs des indicateurs de qualité et de sécurité des soins sur la plateforme QUALHAS - Campagne nationale IPAQSS 2013 Juin 2013 Objectif Conditions

Plus en détail

Enquête consommation - Tableaux croisés dynamiques

Enquête consommation - Tableaux croisés dynamiques Enquête consommation Tableaux croisés dynamiques 1. Chargement des données dans Excel Souvent les données collectées sont stockées dans un fichier au format texte, dont les informations sont séparées par

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

Activité 1 : échantillonnage

Activité 1 : échantillonnage Activité échantillonnage, intervalle de fluctuation, prise de décision (à partir d un même thème) Les trois activités qui suivent s inspirent du document «ressources pour la classe de première générale

Plus en détail

PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M.

PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M. PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M. Vienney 2 M. VIENNEY Vous trouverez dans ce document

Plus en détail

Simulation Examen de Statistique Approfondie II **Corrigé **

Simulation Examen de Statistique Approfondie II **Corrigé ** Simulation Examen de Statistique Approfondie II **Corrigé ** Ces quatre exercices sont issus du livre d exercices de François Husson et de Jérôme Pagès intitulé Statistiques générales pour utilisateurs,

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining GUIDE DU DATA MINER Scoring - Modélisation Data Management, Data Mining, Text Mining 1 Guide du Data Miner Scoring - Modélisation Le logiciel décrit dans le manuel est diffusé dans le cadre d un accord

Plus en détail

Résumé du cours [POLS1221] Analyse de données quantitatives

Résumé du cours [POLS1221] Analyse de données quantitatives Résumé du cours [POLS1221] Analyse de données quantitatives Year 2006-2007 1/58 PLAN DU COURS Les parties sont indépendantes, l ordre est indifférent! 1 Rappel variables et autre 2 Analyses uni -variées

Plus en détail

5. Validité de la méta-analyse

5. Validité de la méta-analyse 5. Validité de la méta-analyse 5.1. Poids de la preuve d une méta-analyse Le poids de la preuve d un résultat scientifique quantifie le degré avec lequel ce résultat s approche de la réalité. Il ne s agit

Plus en détail

Évaluations aléatoires : Comment tirer au sort?

Évaluations aléatoires : Comment tirer au sort? Évaluations aléatoires : Comment tirer au sort? William Parienté Université Catholique de Louvain J-PAL Europe povertyactionlab.org Plan de la semaine 1. Pourquoi évaluer? 2. Comment mesurer l impact?

Plus en détail

LA MESURE DE LA PERFORMANCE

LA MESURE DE LA PERFORMANCE LA MESURE DE LA PERFORMANCE Pour tout projet commercial, le manageur doit prévoir, dès la conception, un suivi des actions commerciales mises en œuvre. Un des rôles du manageur est en effet de contrôler,

Plus en détail

Analyse de variance à 2 facteurs imbriqués sur données de comptage - Application au contrôle de

Analyse de variance à 2 facteurs imbriqués sur données de comptage - Application au contrôle de Analyse de variance à 2 facteurs imbriqués sur données de comptage - Application au contrôle de qualité Florence Loingeville 1,2,3, Julien Jacques 1,2, Cristian Preda 1,2, Philippe Guarini 3 & Olivier

Plus en détail

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables

Plus en détail

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr Régression linéaire Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr 2005 Plan Régression linéaire simple Régression multiple Compréhension de la sortie de la régression Coefficient de détermination R

Plus en détail

Analyse de la variance

Analyse de la variance M2 Statistiques et Econométrie Fanny MEYER Morgane CADRAN Margaux GAILLARD Plan du cours I. Introduction II. Analyse de la variance à un facteur III. Analyse de la variance à deux facteurs IV. Analyse

Plus en détail

ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat

ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat Objectifs du TP : Savoir utiliser Excel et Rstat pour calculer des moyennes pondérées, des variances pondérées et savoir faire des approximations

Plus en détail

Déclassement d'actifs et stock brut de capital

Déclassement d'actifs et stock brut de capital Extrait de : La mesure du capital - Manuel de l'ocde 2009 Deuxième édition Accéder à cette publication : http://dx.doi.org/10.1787/9789264067752-fr Déclassement d'actifs et stock brut de capital Merci

Plus en détail

STA240 : Tests statistiques

STA240 : Tests statistiques STA240 : Tests statistiques 1 Règle de décision, seuil et p-valeur Dans un test, l hypothèse nulle H 0 est celle dont on choisit de maîtriser la probabilité de rejet à tort. C est celle à laquelle on tient

Plus en détail

SOMMAIRES D OUVRAGES PARUS

SOMMAIRES D OUVRAGES PARUS SOMMAIRES D OUVRAGES PARUS TITRE : MÉTHODES ACTUARIELLES DE L'ASSURANCE VIE (cours et exercices corrigés) AUTEUR : Christian HESS ÉDITEUR : ÉCONOMICA, PARIS DATE DE PARUTION : NOVEMBRE 2000 357 pages prix

Plus en détail

«Cours Statistique et logiciel R»

«Cours Statistique et logiciel R» «Cours Statistique et logiciel R» Rémy Drouilhet (1), Adeline Leclercq-Samson (1), Frédérique Letué (1), Laurence Viry (2) (1) Laboratoire Jean Kuntzmann, Dép. Probabilites et Statistique, (2) Laboratoire

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

- 1 - LES FORMATIONS R E C A P I T U L A T I F. Intitulé Permet à l auditeurs de : Population concernée.

- 1 - LES FORMATIONS R E C A P I T U L A T I F. Intitulé Permet à l auditeurs de : Population concernée. - 1 - LES FORMATIONS R E C A P I T U L A T I F Intitulé Permet à l auditeurs de : Population concernée. Le management par la qualité. Saisir les enjeux de l économie de marché et l intérêt à accorder à

Plus en détail

Lecture critique d article. Bio statistiques. Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888

Lecture critique d article. Bio statistiques. Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888 Lecture critique d article Rappels Bio statistiques Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888 Plan du cours Rappels fondamentaux Statistiques descriptives Notions de tests statistiques

Plus en détail

Le documentd accompagnement des programmes de Mathématiques en classe de première et de terminale,

Le documentd accompagnement des programmes de Mathématiques en classe de première et de terminale, PROGRESSION SPIRALÉE Page 1/10 Le documentd accompagnement des programmes de Mathématiques en classe de première et de terminale, série scientifique et série économique et sociale, précise que : " Les

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

1 e S - programme 2011 mathématiques ch.4 cahier élève Page 1 sur 14 Ch.4 : Statistiques

1 e S - programme 2011 mathématiques ch.4 cahier élève Page 1 sur 14 Ch.4 : Statistiques 1 e S - programme 2011 mathématiques ch4 cahier élève Page 1 sur 14 Ch4 : Statistiques Exercice n A page 286 : Calculer une médiane et une moyenne Déterminer la médiane et la moyenne de chacune des deux

Plus en détail

Les techniques de dépistage de la fraude. Marianne Paesmans Lieveke Ameye 1

Les techniques de dépistage de la fraude. Marianne Paesmans Lieveke Ameye 1 Les techniques de dépistage de la fraude Marianne Paesmans Lieveke Ameye 1 Erreurs versus fraude Contrôle qualité des données et validation d une base de données avant analyse sont des étapes standard

Plus en détail

Chapitre 2/ La fonction de consommation et la fonction d épargne

Chapitre 2/ La fonction de consommation et la fonction d épargne hapitre 2/ La fonction de consommation et la fonction d épargne I : La fonction de consommation keynésienne II : Validations et limites de la fonction de consommation keynésienne III : Le choix de consommation

Plus en détail

Représentation d une distribution

Représentation d une distribution 5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque

Plus en détail

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES Table des matières Avant propos Chapitre I NOTIONS SUR LES SYSTEMES 1. Systèmes linéaires 1 2. Systèmes stationnaires 1 3. Systèmes continus 2 4. Systèmes linéaires invariants dans le temps (LIT) 2 4.1

Plus en détail

Plan II-1. Généralités II-1-1. Définitions et principes II-1-2. Mise en place

Plan II-1. Généralités II-1-1. Définitions et principes II-1-2. Mise en place SPC 1 Plan II-1. Généralités II-1-1. Définitions et principes II-1-2. Mise en place II-2-1. Définitions II-1-2. Capabilité machine et capabilité procédé II-2-3. Ppm 2 II-1. GénéralitG ralités Définitions

Plus en détail

Evaluation de la variabilité d'un système de mesure

Evaluation de la variabilité d'un système de mesure Evaluation de la variabilité d'un système de mesure Exemple 1: Diamètres des injecteurs de carburant Problème Un fabricant d'injecteurs de carburant installe un nouveau système de mesure numérique. Les

Plus en détail

PLAN DE COURS CEGEP DU VIEUX-MONTRÉAL

PLAN DE COURS CEGEP DU VIEUX-MONTRÉAL PLAN DE COURS CONTRÔLE DE LA QUALITÉ 241-B60-VM TECHNIQUE DE GÉNIE MÉCANIQUE 241-06 PONDÉRATION : 2-1-1 Compétence : 012Z Contrôler la qualité d un produit DÉPARTEMENT DE LA MÉCANIQUE CEGEP DU VIEUX-MONTRÉAL

Plus en détail

L évaluation médico-économique. Les études microéconomiques. Julien GUIGNET CHU/CH Montmorillon

L évaluation médico-économique. Les études microéconomiques. Julien GUIGNET CHU/CH Montmorillon L évaluation médico-économique Les études microéconomiques Julien GUIGNET CHU/CH Montmorillon Arbitrage et Aide à la décision (1) Ressources limitées du secteur sanitaire Nécessité de faire des choix Développement

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Correction du bac blanc CFE Mercatique

Correction du bac blanc CFE Mercatique Correction du bac blanc CFE Mercatique Exercice 1 (4,5 points) Le tableau suivant donne l évolution du nombre de bénéficiaires de minima sociaux en milliers : Année 2002 2003 2004 2005 2006 2007 2008 2009

Plus en détail

COMPTE RENDU. Atelier-débat avec les futurs clients éligibles. 25 septembre 2002

COMPTE RENDU. Atelier-débat avec les futurs clients éligibles. 25 septembre 2002 Paris, le 17 octobre 2002 COMPTE RENDU Atelier-débat avec les futurs clients éligibles 25 septembre 2002 *** I La fourniture d électricité... 2 Les clients éligibles peuvent-ils acheter leur électricité

Plus en détail

FACULTE DE MEDECINE D ANGERS. Polycopié de cours pour les 1 e et 2 e cycles des études médicales Préparation à l examen national classant

FACULTE DE MEDECINE D ANGERS. Polycopié de cours pour les 1 e et 2 e cycles des études médicales Préparation à l examen national classant FACULTE DE MEDECINE D ANGERS Polycopié de cours pour les 1 e et 2 e cycles des études médicales Préparation à l examen national classant Année scolaire 2007-2008 SANTE PUBLIQUE ET MEDECINE SOCIALE Responsable

Plus en détail

Le bootstrap expliqué par l exemple

Le bootstrap expliqué par l exemple Le bootstrap expliqué par l exemple 1 Le bootstrap expliqué par l exemple 1. Les concepts du bootstrap 2. Des variantes adaptées au contexte 3. Comparaison des différentes méthodes 4. Les cas sensibles

Plus en détail

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre. Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences

Plus en détail

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur

Plus en détail

Profils de soins infirmiers

Profils de soins infirmiers HEALTH.FGOV.BE Profils de soins infirmiers NRG sur base du DI-RHM DG GS Datamanagement 29/09/2014 Version 2.3 1 Sommaire I. Introduction... 3 II. Définir les NRG... 4 1. Pondération des scores des items

Plus en détail

FORMULAIRE DE STATISTIQUES

FORMULAIRE DE STATISTIQUES FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Fondements de Finance

Fondements de Finance Programme Grande Ecole Fondements de Finance Chapitre 7. : Risque, rentabilité et diversification Cours proposé par Fahmi Ben Abdelkader Version Etudiants Mars 2012 Préambule Fig. 10.1 (p.294) : Evolution

Plus en détail

Influence du nombre de réplicats dans une analyse différentielle de données RNA-Seq

Influence du nombre de réplicats dans une analyse différentielle de données RNA-Seq Influence du nombre de réplicats dans une analyse différentielle de données RNA-Seq Sophie Lamarre 1, Stéphane Pyronnet 2, Emeline Sarot 2, Sébastien Déjean 3, Magali San Cristobal 3,4 & Matthieu Vignes

Plus en détail

GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE

GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE Département Universitaire de Recherche et d Enseignement en Médecine Générale GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE Enseignants : Esther GUERY, Julien LE BRETON, Emilie FERRAT, Jacques

Plus en détail

Introduction aux Statistiques et à l utilisation du logiciel R

Introduction aux Statistiques et à l utilisation du logiciel R Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil

Plus en détail

Chapitre 8 ANALYSE DES SÉRIES CHRONOLOGIQUES

Chapitre 8 ANALYSE DES SÉRIES CHRONOLOGIQUES Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 8 ANALYSE DES SÉRIES CHRONOLOGIQUES Nous abordons dans ce chapitre l analyse de données statistiques particulières

Plus en détail

Méthode automatisée de dosage colorimétrique du dioxyde de soufre total dans les vins

Méthode automatisée de dosage colorimétrique du dioxyde de soufre total dans les vins Méthode automatisée de dosage colorimétrique du dioxyde de soufre total dans les vins Marc DUBERNET* et Françoise GRASSET* Laboratoire DUBERNET - 9, quai d Alsace - 11100 Narbonne France 1. Objet Méthode

Plus en détail

Présentation du cours et règles du jeu

Présentation du cours et règles du jeu Présentation du cours et règles du jeu Eléments de statistique pour citoyens d aujourd hui et managers de demain Gilles Stoltz CNRS HEC Paris Pourquoi des règles du jeu? Notice d information contractuelle

Plus en détail

UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans sa documentation) est autorisée.

UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans sa documentation) est autorisée. Université René Descartes- Paris V Licence de Psychologie Année L1, Semestre S1-2005 /2006 Page 1/5 UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité 1 CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité Une situation fréquente en pratique est de disposer non pas d un résultat mais de plusieurs. Le cas se présente en assurance, par exemple :

Plus en détail

STAT0162-1 Analyse statistique de données qualitatives et quantitatives en sciences sociales. Transparents Philippe Lambert

STAT0162-1 Analyse statistique de données qualitatives et quantitatives en sciences sociales. Transparents Philippe Lambert STAT0162-1 Analyse statistique de données qualitatives et quantitatives en sciences sociales Transparents Philippe Lambert http : //www.statsoc.ulg.ac.be/quali.html Institut des Sciences Humaines et Sociales

Plus en détail

Analyses de la variance

Analyses de la variance Analyses de la variance Frédéric Bertrand et Myriam Maumy 1 Université de Strasbourg Institut de Recherche Mathématique Avancée 19 juin 011 1. Courriel : fbertran@math.unistra.fr et mmaumy@math.unistra.fr.

Plus en détail

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Exploitations pédagogiques du tableur en STG Académie de Créteil 2006 1 EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Commission inter-irem lycées techniques contact : dutarte@club-internet.fr La maquette

Plus en détail

A quoi vont-elles servir?

A quoi vont-elles servir? A quoi vont-elles servir? Décrire Distribution Position : moyenne, mode, médiane, (ordre de grandeur) Résumer paramètres et graphes Forme (symétrie, tendance ) Dispersion : écart-type, variance, quantiles,

Plus en détail

Analyse de données. [Tapez le sous-titre du document] ANALYSE DE DONNEES 2011 2012. ANALYSE DE DONNEES Page 1 LICENCE 3 SCIENCES ECONOMIQUES

Analyse de données. [Tapez le sous-titre du document] ANALYSE DE DONNEES 2011 2012. ANALYSE DE DONNEES Page 1 LICENCE 3 SCIENCES ECONOMIQUES 2011 2012 ANALYSE DE DONNEES 2011 2012 LICENCE 3 SCIENCES ECONOMIQUES COURS DE M. THIERRY BLAYAC Analyse de données [Tapez le sous-titre du document] ANALYSE DE DONNEES Page 1 H34VEN Cours pour Licence

Plus en détail