THEOREMES DE GEOMETRIE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "THEOREMES DE GEOMETRIE"

Transcription

1 THEOREMES DE GEOMETRIE Sommaire Comment démontrer qu un triangle est rectangle?... 2 Comment démontrer que deux droites sont parallèles?... 4 Comment calculer une longueur?... 6 Comment démontrer que deux angles ont la même mesure?... 9 Comment démontrer qu un triangle est isocèle? Page 1

2 Comment démontrer qu un triangle est rectangle? La somme des angles d un triangle Théorème : la somme des mesures des angles d un triangle est égale à 180. Exemple : Soit un triangle ABC tel que BC = 8 B = 60 C = 30. Démontrer que le triangle ABC est un triangle rectangle. Solution : Calculons l angle A : A = 180 (B + C) = 180 ( ) = = 90. A = 90 ce qui prouve que le triangle ABC est un triangle rectangle en A. Réciproque du théorème de Pythagore Dans un triangle : Si le carré du plus long côté est égal à la somme des carrés des deux autres côtés, alors le triangle est rectangle et le plus long côté est l hypoténuse. BC² est égal à AB² + AC² ABC est un triangle rectangle en A Exemple : Soit un triangle ABC tel que AB = 12 AC = 13 BC = 5. Démontrer que le triangle ABC est un triangle rectangle. Démonstration : Le côté le plus long est [AC]. (Attention : ne pas parler d hypoténuse tant que la démonstration n est pas terminée) Calculons séparément AC² et AB² + BC² AC² = 13² = 169 AB² + BC² = 12² + 5² = = 169 On sait que : AC² est égal à AB² + BC² On utilise : la réciproque du théorème de Pythagore On conclut : le triangle ABC est un triangle rectangle en B. Page 2

3 Théorème Si un triangle est inscrit dans un cercle et si un côté du triangle est un diamètre du cercle, alors ce triangle est rectangle. Note : Dire qu un triangle est inscrit dans un cercle signifie que ses trois sommets appartiennent au cercle - Le triangle ABC est inscrit dans le cercle (A, B et C appartiennent au cercle) ABC est un triangle rectangle en A - [BC] est un diamètre du cercle Théorème Si le milieu d un côté d un triangle est à égale distance des trois sommets du triangle, alors ce triangle est un triangle rectangle. I milieu de [BC] IA = IB = IC ABC est un triangle ABC est un triangle rectangle en A Note : C est le théorème précédent énoncé différemment. En effet, si I est le milieu de [BC] et AI = BC/2 alors A appartient au cercle de diamètre [BC] et donc, d après le théorème précédent, le triangle ABC est rectangle en A. Page 3

4 Comment démontrer que deux droites sont parallèles? Si deux droites sont perpendiculaires à une même droite, alors ces deux droites sont parallèles entre elles. Si deux droites sont parallèles à une même droite, alors ces deux droites sont parallèles entre elles. Les angles Si deux droites coupées par une sécante déterminent deux angles alternes-internes égaux, alors ces deux droites sont parallèles. Si les angles a et b sont égaux, alors (d) // (d ). Si deux droites coupées par une sécante déterminent deux angles correspondants égaux, alors ces deux droites sont parallèles. Si les angles a et c sont égaux, alors (d) // (d ). Note : ces théorèmes généralisent le premier théorème du paragraphe. Le théorème des milieux Dans un triangle : Si une droite passe par les milieux de deux côtés, alors elle est parallèle au troisième côté. I milieu de [AB] J milieu de [AC] (IJ) // (BC) Note : c est un cas particulier de la réciproque du théorème de Thalès. Page 4

5 La réciproque du théorème de Thalès Dans les deux configurations ci-dessus : Si les points O, A, A ainsi que les points O, B, B sont alignés et si OA OB est égal à OA OB alors, les droites (A B ) et (AB) sont parallèles. Exemple : Les points E et F appartiennent aux côtés [AB] et [AC] du triangle ABC. Démontrer que (EF) // (BC) Solution Calculons séparément AE AB AE AB = 3 3+4,5 = 3 7,5 = 0,4 AF AC = = 2 5 = 0,4 et AF AC On sait que : E [AB] F [AC] et AE AB est égal à AF AC On utilise : la réciproque du théorème de Thalès On conclut : les droites (EF) et (BC) sont parallèles. Page 5

6 Comment calculer une longueur? Le théorème de Pythagore. Si un triangle est rectangle, alors le carré de l hypoténuse est égal à la somme des carrés des deux autres côtés. Formulation dans un triangle ABC : Si ABC est un triangle rectangle en A, alors BC² = AB² + AC² Exemple 1 : Exemple 2 : Calculer BC Calculer FE On sait que : On sait que : Le triangle ABC est rectangle en A Le triangle EFG est rectangle en F On utilise : le théorème de Pythagore On utilise : le théorème de Pythagore On conclut : On conclut : BC² = AB² + AC² EG² = FG² + FE² BC² = 4² + 3² 8² = 5² + FE² BC² = = 25 + FE² BC² = 25 FE² = = 39 BC = 25 FE = 39 valeur exacte BC = 5 FE 6,2 valeur arrondie au dixième Page 6

7 Théorème Si un triangle est rectangle, alors le milieu de l hypoténuse est à égale distance des trois sommets du triangle. ABC rectangle en A I milieu de [BC] IA = IB = IC Note : c est une autre formulation du théorème : «Le cercle circonscrit à un triangle rectangle a pour centre le milieu de l hypoténuse.» Le théorème des milieux Dans un triangle, le segment qui a pour extrémités les milieux de deux côtés a pour longueur la moitié de celle du troisième côté. Formulation dans un triangle ABC : Si I milieu de [AB] et J milieu de [AC], alors IJ est égal à BC 2 Note : c est un cas particulier du théorème de Thalès. Page 7

8 Le théorème de Thalès Si les points O, A, A ainsi que les points O, B, B sont alignés et si (A B ) // (AB) alors OA OA = OB OB = A B AB Exemple : L unité de longueur est le cm. E [AB] et F [AC] Les droites (EF) et (BC) sont parallèles Calculer AB et EF. Solution On sait que : E (AB) et F (AC) et (EF) // (BC) On utilise : Le théorème de Thalès On conclut : AE AB = AF AC = EF BC C est à dire : 3 AB = 2 5 = EF 10 Calcul de AB : Calcul de EF : 3 AB = = EF 10 donc 3 5 = 2 AB 15 = 2AB AB = 15/2 = 7,5 donc EF = = 4. AB = 7,5 cm et EF = 4 cm Page 8

9 Comment démontrer que deux angles ont la même mesure? Angles alternes-internes, angles correspondants Si deux angles alternes-internes sont déterminés par deux droites parallèles, alors ces deux angles ont la même mesure. Si (d) // (d ), alors les angles alternes-internes a et b ont la même mesure. Si deux angles correspondants sont déterminés par deux droites parallèles, alors ces deux angles ont la même mesure. Si (d) // (d ), alors les angles correspondants a et c ont la même mesure. Angles opposés par le sommet Les angles a et b déterminés par les deux droites sécantes (d) et (d ) sont dits opposés par le sommet. Deux angles opposés par le sommet ont la même mesure. Angles de base d un triangle isocèle Si un triangle est isocèle, alors ses angles de base ont la même mesure. Le triangle AMB est isocèle en M d A = d B Page 9

10 Comment démontrer qu un triangle est isocèle? En utilisant les angles Si un triangle a deux angles de même mesure, alors ce triangle est isocèle d A = d B Le triangle AMB est isocèle en M En utilisant une médiatrice Si un point appartient à la médiatrice d un segment, alors ce point est à égale distance des extrémités du segment. M appartient à la médiatrice de [AB] MA = MB Page 10

COLLEGE ROLAND DORGELES 75018 PARIS. GEOMETRIE EN 3ème

COLLEGE ROLAND DORGELES 75018 PARIS. GEOMETRIE EN 3ème COLLEGE ROLAND DORGELES 75018 PARIS GEOMETRIE EN 3ème Démontrer qu'un point est le milieu d un segment... 2 Démontrer qu'un point est le centre du cercle circonscrit d un triangle... 3 Démontrer qu'un

Plus en détail

Réponse BC² = AB² + AC. Réponse

Réponse BC² = AB² + AC. Réponse 1 Théorème de Pythagore Si un triangle est rectangle alors le carré de son hypoténuse est égal à la somme des carrés des côtés de l angle droit. Si un triangle est rectangle alors le carré de son hypoténuse

Plus en détail

L essentiel des propriétés utiles aux démonstrations

L essentiel des propriétés utiles aux démonstrations L essentiel des propriétés utiles aux démonstrations Sésamath Troisième L essentiel des propriétés utiles aux démonstrations http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Illustrations

Plus en détail

Le théorème de Pythagore et le cercle circonscrit au triangle rectangle (Rappel)

Le théorème de Pythagore et le cercle circonscrit au triangle rectangle (Rappel) Le théorème de Pythagore et le cercle circonscrit au triangle rectangle (Rappel) I) Le théorème de Pythagore 1) Définition : Dans un triangle rectangle le côté opposé à l angle droit est appelé hypoténuse.

Plus en détail

Outils de démonstration

Outils de démonstration Outils de démonstration Comment démonter que... Année 2009 et 2010 Classe: 4D,4A Collège Fontbruant -Comment démontrer qu un triangle est un triangle isocèle? -Comment démontrer qu un triangle est un triangle

Plus en détail

Fichier de géométrie

Fichier de géométrie Fichier de géométrie Sommaire F1 F2 F3 F4 Périmètres Aires Volumes Tableaux de conversions F5 F6 Comment démontrer que deux droites sont parallèles Comment démontrer que deux droites sont perpendiculaires

Plus en détail

Glossaire de propriétés pour la démonstration

Glossaire de propriétés pour la démonstration Glossaire de propriétés pour la démonstration non exhaustif niveau sixième niveau cinquième niveau quatrième niveau troisième Démontrer qu'un point appartient à la médiatrice d'un segment ❶ propriété :

Plus en détail

L essentiel des propriétés utiles aux démonstrations

L essentiel des propriétés utiles aux démonstrations L essentiel des propriétés utiles aux démonstrations Sésamath Cinquième L essentiel des propriétés utiles aux démonstrations http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Illustrations

Plus en détail

Quelques théorèmes de géométrie du triangle

Quelques théorèmes de géométrie du triangle Quelques théorèmes de géométrie du triangle Z, auctore 1 er novembre 2005 1 Propriété des angles Théorème 1 Dans un triangle, la somme des trois angles vaut 180. Précisément, pour un triangle, on a la

Plus en détail

Chapitre 2 Triangle rectangle - Cours -

Chapitre 2 Triangle rectangle - Cours - - Cours - Définition : Dans un triangle rectangle, le côté opposé à l'angle droit est appelé l'hypoténuse. C'est le côté le plus long. I. Cercle circonscrit à un triangle rectangle Rappel : Le cercle circonscrit

Plus en détail

Sommaire. 1 Rappels. 2

Sommaire. 1 Rappels. 2 Sommaire 1 Rappels. 2 2 Triangle rectangle et cercle circonscrit. 7 2.1 Propriété n 1............................. 7 2.2 Exemple d utilisation de la propriété n 1.............. 8 2.3 Propriété n 2.............................

Plus en détail

Réponse. Réponse. Réponse

Réponse. Réponse. Réponse Exercice 1 La médiatrice d un segment est la droite qui est perpendiculaire à ce segment et qui passe par son milieu. Justifier avec rigueur l affirmation suivante : La droite (d) est la médiatrice du

Plus en détail

Des clés pour démontrer :

Des clés pour démontrer : es clés pour démontrer : I- omment démontrer que trois points sont alignés. hypothèses Un angle plat. Soit : = 180 () (d ) ; ( ) // d Si l angle est plat, alors les trois points, et sont alignés Par un

Plus en détail

Rappels de géométrie euclidienne. Les configurations

Rappels de géométrie euclidienne. Les configurations TABLE DES MATIÈRES 1 Rappels de géométrie euclidienne. Les configurations Paul Milan LMA Seconde le 1 er avril 01 Table des matières 1 Rappels de géométrie euclidienne 3 1.1 Euclide...................................

Plus en détail

TRIANGLE RECTANGLE ET

TRIANGLE RECTANGLE ET THEME : TRIANGLE RECTANGLE ET CERCLE CORRECTION 1 Exercice 1 : Brevet des Collèges Groupe Est - 2005 Tracer un segment [EF] de 10 cm de longueur puis un demi-cercle de diamètre [EF]. Placer le point G

Plus en détail

- La masse de trois boules de pétanque pesant 750 g chacune est : g.

- La masse de trois boules de pétanque pesant 750 g chacune est : g. Exercice 1 A = ( ) ( ). B = = = = = =. C = = = ( ) = =. PGCD ( 11 501 ; 9 275 ) = PGCD ( 9 275 ; 2 226 ) = PGCD ( 2 226 ; 71 ) = 71. Donc D = = = Exercice 2 - La masse de trois boules de pétanque pesant

Plus en détail

TRIANGLE RECTANGLE ET CERCLE

TRIANGLE RECTANGLE ET CERCLE THEME : TRIANGLE RECTANGLE ET CERCLE Exercice 1 : Brevet des Collèges Groupe Est - 2005 Tracer un segment [EF] de 10 cm de longueur puis un demi-cercle de diamètre [EF]. Placer le point G sur ce demi-cercle,

Plus en détail

Chapitre 1 : Géométrie repérée dans le plan

Chapitre 1 : Géométrie repérée dans le plan Chapitre 1 : Géométrie repérée dans le plan I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ ]. On appelle médiatrice du segment [ ] la droite perpendiculaire en I à ( ). Propriétés

Plus en détail

Triangles isométriques Triangles semblables - Agrandissements et réductions Homothéties. Triangles isométriques Triangles semblables

Triangles isométriques Triangles semblables - Agrandissements et réductions Homothéties. Triangles isométriques Triangles semblables Triangles isométriques Triangles semblables - Agrandissements et réductions Homothéties 1 Triangles isométriques Triangles semblables Dire que deux triangles sont isométriques signifie que leurs côtés

Plus en détail

BASES DE LA GEOMETRIE.

BASES DE LA GEOMETRIE. SECTION 19 : BASES DE LA GEOMETRIE. exo 1. COURS. I- Triangles. 1 ) Triangles particuliers. sommet principal Si un triangle est isocèle alors il a deux côtés de même longueur. Si un triangle est isocèle

Plus en détail

BREVET BLANC. Lundi 28 Février. Mathématiques 3 ème. La calculatrice est autorisée. L épreuve dure 2 heures

BREVET BLANC. Lundi 28 Février. Mathématiques 3 ème. La calculatrice est autorisée. L épreuve dure 2 heures Mathématiques 3 ème Lundi 28 Février BREVET BLANC La calculatrice est autorisée. L épreuve dure 2 heures La rédaction et la présentation seront notées sur 4 points Page 1 Activités Numériques (12 points)

Plus en détail

Triangle rectangle et cercle circonscrit

Triangle rectangle et cercle circonscrit Triangle rectangle et cercle circonscrit Pierre Delouya Collège Janson Paris 16 mai 2015 Pierre Delouya (Collège Janson Paris) Triangle rectangle et cercle circonscrit 16 mai 2015 1 / 16 Triangle rectangle

Plus en détail

Lexique illustré de géométrie.

Lexique illustré de géométrie. 1 Lexique illustré de géométrie. LEXIQUE GÉOMÉTRIE COLLÈGE A Abscisse K Sur un axe gradué L Le point K a pour abscisse -6. Le point L a pour abscisse 3,5 Dans un repère Le point A a pour abscisse 3,5.

Plus en détail

Angles alternes-internes : À l'intérieur des parallèles, de part et d'autre de la sécante.

Angles alternes-internes : À l'intérieur des parallèles, de part et d'autre de la sécante. 1. Angles a) Définitions de base Angles opposés par le sommet : Angles qui ont le même sommet et dont les côtés de l'un sont dans le prolongement des côtés de l'autre angle. Lorsque deux parallèles sont

Plus en détail

Cosinus d un angle aigu (trigonométrie) Exercices corrigés

Cosinus d un angle aigu (trigonométrie) Exercices corrigés Cosinus d un angle aigu (trigonométrie) Exercices corrigés Sont abordés dans cette fiche : Exercices 1 et 2 : calcul de la longueur d un côté adjacent à un angle aigu Exercice 3 : calcul de la longueur

Plus en détail

Thème N 17 : ANGLE INSCRIT - ANGLE AU CENTRE POLYGONES REGULIERS

Thème N 17 : ANGLE INSCRIT - ANGLE AU CENTRE POLYGONES REGULIERS Thème N 17 : NGLE INSRIT - NGLE U ENTRE PLYGNES REGULIERS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Pour prendre un bon départ Exercice n 1 : n considère

Plus en détail

Géométrie - notion : Angles, cercles, triangles

Géométrie - notion : Angles, cercles, triangles Géométrie - notion : Angles, cercles, triangles 1. Angles a) Vocabulaire Angle nul : L angle nul est formé par deux demi-droites identiques et donc de même origine. Angle plat : Un angle est plat si les

Plus en détail

Correction du brevet blanc du 27 mars 2013

Correction du brevet blanc du 27 mars 2013 Correction du brevet blanc du 27 mars 2013 Exercice 1 ( sur 3pts) 1) C 2) B 3) C En effet x² - 100 x² - 10² c est une différence de 2 carrés donc on peut appliquer la 3 ème identité et on obtient x² -

Plus en détail

Nombres complexes : Forme Trigonométrique

Nombres complexes : Forme Trigonométrique Nombres complexes : Forme Trigonométrique I) Module et argument d un nombre complexe 1) Définitions Soit le nombre complexe On note M le point d affixe dans le repère orthonormé ;, ) On appelle module

Plus en détail

THEME : THEOREME DE THALES. Exercices corriges

THEME : THEOREME DE THALES. Exercices corriges THEME : THEOREME DE THALES Exercices corriges Exercice 1 : On sait que les droites (BC) et (MP) sont parallèles De plus, on a : AP = AM = 5 et AC = 6. Calculer AB. Dans les triangles ACB et APM P [AC]

Plus en détail

Chapitre 4 - Les triangles

Chapitre 4 - Les triangles Chapitre 4 - Les triangles I- Définitions et triangles particuliers Un triangle est un polygone qui a trois côtés. Dessiner trois triangles : un quelconque (classique), un qui est équilatéral et un qui

Plus en détail

TD d exercices sur les vecteurs et la géométrie analytique.

TD d exercices sur les vecteurs et la géométrie analytique. TD d exercices sur les vecteurs et la géométrie analytique. Exercice 1 : (Brevet 2006) 1) Placer les points A (-3 ; 1), B (-l,5 ; 2,5) et C (3 ; -2) dans un repère orthonormé (O, I, J). 2) Montrer que

Plus en détail

Séquence 2 : Géométrie. Chapitre 4 : Théorème de Pythagore et sa réciproque

Séquence 2 : Géométrie. Chapitre 4 : Théorème de Pythagore et sa réciproque Séquence 2 : Géométrie Chapitre 4 : Théorème de Pythagore et sa réciproque Chapitre 4 : Théorème de Pythagore et sa réciproque Objectifs du chapitre : - Caractériser le triangle rectangle par le théorème

Plus en détail

Rappels de géométrie euclidienne. Les configurations

Rappels de géométrie euclidienne. Les configurations ERNIÈRE IMPRESSIN LE 11 mars 015 à 1:17 Rappels de géométrie euclidienne. Les configurations Table des matières 1 Rappels de géométrie euclidienne 1.1 Euclide................................... 1. Éléments

Plus en détail

BREVET BLANC n 1 EPREUVE DE MATHEMATIQUES 23 janvier 2014 DUREE 2 H

BREVET BLANC n 1 EPREUVE DE MATHEMATIQUES 23 janvier 2014 DUREE 2 H BREVET BLANC n 1 EPREUVE DE MATHEMATIQUES 23 janvier 2014 DUREE 2 H Collège Paul Sixdenier La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans

Plus en détail

Triangle rectangle et cercle circonscrit. Théorème de Pythagore et réciproque

Triangle rectangle et cercle circonscrit. Théorème de Pythagore et réciproque Chapitre 7 Triangle rectangle et cercle circonscrit. Théorème de Pythagore et réciproque 1. Triangle rectangle et cercle circonscrit Rappelons que le cercle circonscrit d'un triangle ABC est le cercle

Plus en détail

Exercice 1 : (6 points) On considère le programme de calcul suivant : Choisir un nombre Ajouter 5 Prendre le carré de cette somme

Exercice 1 : (6 points) On considère le programme de calcul suivant : Choisir un nombre Ajouter 5 Prendre le carré de cette somme Brevet blanc de Mathématiques Janvier 2014 Durée : 2h La calculatrice est autorisée. Aucun échange de matériel pendant l'épreuve. Le soin et la qualité de la rédaction seront notés sur 4 points. Exercice

Plus en détail

Conclusion : KI = KC et LC = LI. Donc KI = KC = CL = LI..

Conclusion : KI = KC et LC = LI. Donc KI = KC = CL = LI.. Fiche d'exercices EXERCICES Exercice 1 a) Rappeler la définition de la bissectrice d un angle. b) Construire et faire la liste des données de la figure suivante : BAC est un triangle rectangle en A. La

Plus en détail

2. Repère du plan Coordonnées d un. point Configurations planes

2. Repère du plan Coordonnées d un. point Configurations planes . Repère du plan oordonnées d un point onfigurations planes ctivité introductive : Démonter avec les milieu D est le trapèze ci-contre telle que ( D )//() D et sont les milieu respectifs des segments []

Plus en détail

4ème FRACTIONS N4. On simplifie les signes des fractions. On termine le calcul. On simplifie le résultat.

4ème FRACTIONS N4. On simplifie les signes des fractions. On termine le calcul. On simplifie le résultat. 4ème FRACTIONS N4 A) LES SIGNES DANS UNE FRACTION : 1) Règle : -a b = a -b = - a -a b -b = a b 2) Exemples : -1-3 = 1 3 4-5 = -4 5 B) PRODUIT DE PLUSIEURS FRACTIONS : A = -6-5 20-3 -9-7 A = 6 5-20 3 9

Plus en détail

Repères dans le plan - configurations planes

Repères dans le plan - configurations planes Repères dans le plan - configurations planes ) Repères dans le plan : a) notion de repère dans un plan : Définition : Un repère est constitué d'un point origine, de deux droites orientées et graduées (axes).

Plus en détail

THEOREMES DES MILIEUX DROITES PARALLELES Exercices 1/7

THEOREMES DES MILIEUX DROITES PARALLELES Exercices 1/7 DROITES PARALLELES Exercices 1/7 01 Citer les deux théorèmes des milieux. 02 Soit un triangle ABC. Soit I le milieu de [ AB ] et J le milieu de [ ] est parallèle à la droite (BC). BC. Démontrer que la

Plus en détail

Correction du Devoir Commun de Quatrième Lundi 13 février 2006

Correction du Devoir Commun de Quatrième Lundi 13 février 2006 Correction du Devoir Commun de Quatrième Lundi 13 février 006 L usage des calculatrices est autorisé. Vous rédigerez les parties sur des feuilles doubles différentes. La qualité de la présentation (propreté

Plus en détail

Ses hauteurs [AP], [BQ] et [CR] se coupent au point H.

Ses hauteurs [AP], [BQ] et [CR] se coupent au point H. D 9 E EE D EUE Soit un triangle. Ses hauteurs [], [] et [] se coupent au point. es milieux de [], [] et [] sont respectivement, et, ceux de [], [] et [] sont respectivement, et. Démontre qu il existe un

Plus en détail

Les triangles. CAS PARTICULIERS : Propriété 2 (admise) : Si les points A, B et C sont alignés dans cet ordre, alors AC=AB+BC.

Les triangles. CAS PARTICULIERS : Propriété 2 (admise) : Si les points A, B et C sont alignés dans cet ordre, alors AC=AB+BC. Les triangles. Activité avec des spaghettis cassées en 3 parties. Peut-on toujours construire un triangle? Activité : les triangles sont-ils constructibles. I- Construction d un triangle. a. Inégalité

Plus en détail

Brevet Blanc de Mathématiques avril 2012

Brevet Blanc de Mathématiques avril 2012 Brevet Blanc de Mathématiques avril 2012 Le soin, l orthographe et la clarté des raisonnements seront notés sur 4 points Les calculatrices sont autorisées ACTIVITES NUMERIQUES (12 points) Exercice n 1

Plus en détail

TRIANGLE RECTANGLE ET THÉORÈME DE PYTHAGORE

TRIANGLE RECTANGLE ET THÉORÈME DE PYTHAGORE 1 Les devoirs de préparation Présupposés méthodologiques Exemple 1 : Recherche sur internet - savoir manipuler l outil informatique - savoir utiliser un moteur de recherche / - À l aide d internet je réponds

Plus en détail

pour vendredi 23 novembre : n 21, 22, 28 à 32 p 175

pour vendredi 23 novembre : n 21, 22, 28 à 32 p 175 pour vendredi 3 novembre : n 1,, 8 à 3 p 175 n 1 p 175 1) a) Les médiatrices d un triangle sont concourantes en un point qui est le centre du cercle circonscrit à ce triangle. Tout triangle est donc inscriptible

Plus en détail

Théorème de Thalès (révisions Pythagore)

Théorème de Thalès (révisions Pythagore) 008-009 Théorème de Thalès (révisions Pythagore) I. Théorème de Thalès 1/ Rappels Produit en croix a, b, c et d représentent quatre nombres non nuls. a c Si alors a d b c. b d onséquences (calcul de la

Plus en détail

Nom et prénom :... Collège Blanche de Castille. Partie I : Activités numériques (12 points)

Nom et prénom :... Collège Blanche de Castille. Partie I : Activités numériques (12 points) Nom et prénom :... 3 ème A - B - C Composition 2 de MATHÉMATIQUES Date : 31/01/2011 Durée : 2h Collège Blanche de Castille Coefficient : 3 Note sur : 40 Présentation : /4 Les calculatrices sont autorisées

Plus en détail

THEME 14 (bis) : TRIANGLE RECTANGLE (2) CERCLE CIRCONSCRIT - MEDIANE

THEME 14 (bis) : TRIANGLE RECTANGLE (2) CERCLE CIRCONSCRIT - MEDIANE THEME 14 (bis) : TRINGLE RETNGLE (2) ERLE IRNSRIT - MEINE Exercice n 1 : onstruis le triangle NMP rectangle en N, ainsi que son cercle circonscrit, sachant que MN = et PN = 4 cm. M Si un triangle est rectangle

Plus en détail

3 ème A DS4 Géométrie dans l'espace - probabilités 2011-2012 sujet 1

3 ème A DS4 Géométrie dans l'espace - probabilités 2011-2012 sujet 1 ème A DS Géométrie dans l'espace - probabilités 0-0 sujet Exercice : Que de triangles! ( points) La figure ci-contre représente une sphère de centre O et de rayon cm. [AB] et [EF] sont deux diamètres perpendiculaires

Plus en détail

THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX

THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX Pour prendre un bon départ Initiation à la démonstration 1 ) Lire la partie A de la synthèse : «Notion de démonstration» 2 ) Complète les raisonnements

Plus en détail

Le théorème de Thalès et droite des milieux

Le théorème de Thalès et droite des milieux Le théorème de Thalès et droite des milieux A) Droite des milieux. 1. Théorème de la droite des milieux. Théorème : Dans un triangle, si une droite passe par le milieu d un côté et est parallèle à un second

Plus en détail

Angle inscrit et angle au centre Géométrie Exercices corrigés

Angle inscrit et angle au centre Géométrie Exercices corrigés Angle inscrit et angle au centre Géométrie Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : angle inscrit dans un cercle (reconnaissance d un

Plus en détail

Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3

Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3 Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3 Exercice 4 (Aix Marseille 1996) 1. Rappel : tracé de l hexagone. On place un point, qu on nomme O. On trace un cercle de centre O, de rayon

Plus en détail

Epreuve de Mathématiques Durée 2 heures

Epreuve de Mathématiques Durée 2 heures ollège Jules Ferry Session 010 iplôme National du revet lanc n 1 preuve de Mathématiques urée heures L emploi des calculatrices est autorisé (circulaire n 99 18 du 1 Novembre 1999 publiée au.o. n 4 du

Plus en détail

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse.

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse. EC 4A : ELEMENTS DE MATHEMATIQUES THEOREMES DE PYTHAGORE ET DE THALES COURS Objectifs du chapitre : Déterminer des longueurs dans un triangle en utilisant le théorème de Pythagore ou de Thalès. Démontrer

Plus en détail

1 Quelques rappels fondamentaux de géométrie

1 Quelques rappels fondamentaux de géométrie Partie D A propos des angles droits 1 Quelques rappels fondamentaux de géométrie 1.1 Médiatrice d'un segment Définition 1: la médiatrice d'un segment est la droite perpendiculaire à celui-ci passant par

Plus en détail

6 ème exercices : Introduction à la géométrie

6 ème exercices : Introduction à la géométrie Droites, demi-droites et segments. Exercice 1 Réponse 1 Placer trois points A, B et C non alignés. Tracer la droite qui passe par les points B et C. Tracer le segment d extrémités A et B. Tracer la demi-droite

Plus en détail

Symétrie Axiale. La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu.

Symétrie Axiale. La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu. Symétrie Axiale 1 Médiatrice d un segment. 1 a Définition La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu. Exemple : (d) est la médiatrice du segment [AB]

Plus en détail

Exercice 1 : On considère la figure ci-contre où ABCD est un parallélogramme :

Exercice 1 : On considère la figure ci-contre où ABCD est un parallélogramme : Exercice 1 : On considère la figure ci-contre où est un parallélogramme : 1) Quelle est la longueur du segment [AB]? ) Quelle est la mesure de l angle BCD? Exercice : Sur la figure ci-contre, et BCEF sont

Plus en détail

Pondichery avril 2009 CORRECTION

Pondichery avril 2009 CORRECTION BREVET : ACTIVITES NUMERIQUES ( 12 points ) Exercice 1 : 1. Calcul de A : 7 4 5 A 15 15 8 Nous avons ( la multiplication est prioritaire ) : 7 4 5 A 15 15 8 7 4 5 A 15 5 2 4 7 1 14 5 9 A 15 6 0 0 0 10

Plus en détail

I Rappels sur les symétries :

I Rappels sur les symétries : I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ AB ]. On appelle médiatrice du segment [ AB ] la droite perpendiculaire en I à ( AB ). Propriétés : La médiatrice de [ AB ]

Plus en détail

Classe de 3ème. Chapitre 5 Trigonométrie dans le triangle rectangle

Classe de 3ème. Chapitre 5 Trigonométrie dans le triangle rectangle Classe de 3ème Chapitre Trigonométrie dans le triangle rectangle I. Introduction Trigonométrie, définition du Larousse : (du grec trigônon, triangle) nom féminin MATHÉMATIQUES Étude des propriétés des

Plus en détail

Définition 2 Un nombre décimal est un nombre dont l écriture fractionnaire irréductible est de la forme

Définition 2 Un nombre décimal est un nombre dont l écriture fractionnaire irréductible est de la forme CORRIGE EXERCICE 1 [2 points = 0,25 7 + 0,25 suivant qu'une définition est donnée ou pas] Définition 1 Un nombre décimal est un nombre rationnel (une fraction) qui peut s écrire sous la forme d une fraction

Plus en détail

cm², soit environ 21,33 cm².

cm², soit environ 21,33 cm². Exercice p 97, n 4 : SABCD est une pyramide dont la base est le rectangle ABCD. On place sur sa hauteur [ SA ] le point A tel que SA = 6cm. En coupant la pyramide SABCD par un plan passant par le point

Plus en détail

Collège Jean Mounès 44210 PORNIC. Épreuve de mathématiques. Sujet série «Collège» et corrigé

Collège Jean Mounès 44210 PORNIC. Épreuve de mathématiques. Sujet série «Collège» et corrigé Collège Jean Mounès 44210 PORNIC Entraînement au Diplôme National du Brevet Épreuve de mathématiques Sujet série «Collège» et corrigé L épreuve comporte quatre exercices obligatoires, indépendants. Il

Plus en détail

Thème N 1 : RACINES CARREES (1)

Thème N 1 : RACINES CARREES (1) Thème N 1 : RACINES CARREES (1) EQUATION (1) ESPACE (1) CALCUL LITTERAL (1) A la fin du thème, tu dois savoir : Utiliser le théorème de Pythagore (rappels de 4 ). Réduire une écriture littérale (rappels

Plus en détail

3 ème Cours : Théorème de Thalès

3 ème Cours : Théorème de Thalès I Points alignés : Deux droites sont parallèles si elles n ont aucun point commun ou si elles sont confondues. Conséquence : Si deux droites sont parallèles et possèdent un point commun alors elles sont

Plus en détail

LEÇON N 30 : 30.1 Le cercle. 30.1.1 Définition et propriétés

LEÇON N 30 : 30.1 Le cercle. 30.1.1 Définition et propriétés LEÇON N 30 : Le cercle. Positions relatives d une droite et d un cercle, de deux cercle. Point de vue géométrique et point de vue analytique. Lien entre les deux points de vue. Pré-requis : Médiatrices,

Plus en détail

Chapitre 4 : Triangles.

Chapitre 4 : Triangles. Chapitre 4 : Triangles. I Somme des angles d un triangle. 1 Propriété. La somme des mesures des angles d un triangle est égale à 180. Dans le triangle JKL, on a + + = 180. 2 Triangles particuliers. Triangle

Plus en détail

Corrigé des exercices sur les vecteurs. Septembre 2010

Corrigé des exercices sur les vecteurs. Septembre 2010 Septembre 2010 Exercice 1 Soient un triangle ABC et les points I et J tels que AI = 1 AB et AJ = 3 AC 3 1 Exprimer le vecteur BJ en fonction des vecteurs BA et AC. 2 Exprimer le vecteur IC en fonction

Plus en détail

Brevet - Session 2006 Corrigé

Brevet - Session 2006 Corrigé Brevet - Session 2006 Corrigé ACTIVITES NUMERIQUES (12 points) 1. Exercice 1 : ( points) A = = = 1 4. 2 4 7 = 7 4 7 9 2 4 7 = 9 2 4 7 = 7 4 7 = 7 4 7 A = 1 4. 2. B = 00 4 + 12 = 10 2 4 + 2 2 = 10 2 4 +

Plus en détail

Groupe seconde chance Feuille d exercices numéro 5

Groupe seconde chance Feuille d exercices numéro 5 Groupe seconde chance Feuille d exercices numéro 5 Exercice Ecrire chacun des nombres ci-dessous sous forme d une puissance d un nombre entier. On laissera visible les étapes du calcul. = 2 0 x 4 3 = 3

Plus en détail

3 ème A DS2 : théorème de Thalès et calcul littéral 2011-2012 sujet 1

3 ème A DS2 : théorème de Thalès et calcul littéral 2011-2012 sujet 1 ème A DS : théorème de Thalès et calcul littéral 011-01 sujet 1 Consignes : justifier les réponses en citant correctement les théorèmes utilisés. Exercice 1 (6 points) Dans la figure suivante, ABCD est

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

DROITES REMARQUABLES DU TRIANGLE

DROITES REMARQUABLES DU TRIANGLE Exercices 1/8 01 Donner la définition d une : - médiane - médiatrice - hauteur - bissectrice 02 Nommer les droites suivantes : (AC) : (BC) : (BD) : (BE) :. 03 Compléter les phrases relatives aux propriétés

Plus en détail

I.1 ) LES EXERCICES. ENONCES.

I.1 ) LES EXERCICES. ENONCES. 1 Seconde. Géométrie plane. Exercices et problèmes I.1 ) LES EXERCICES. ENONCES. Exercice n 1 ABC, AC et AE sont trois triangles équilatéraux disposés comme sur la figure ci-contre émontrer que le triangle

Plus en détail

Théorème de Pythagore : Exercices d applications

Théorème de Pythagore : Exercices d applications Théorème de Pythagore : Exercices d applications 1- alcul de l hypoténuse : LJN est un triangle rectangle en J, tel que : LJ = 2,5 cm et JN = 4 cm. alculer LN ( donner la valeur exacte, puis l arrondi

Plus en détail

Angles inscrits au collège

Angles inscrits au collège Angles inscrits au collège Angles inscrits égaux et supplémentaires, théorème limite de cocyclicité, milieux d'arcs et bissectrices, quadrilatères inscriptibles. Sommaire 1. Angles inscrits 2. Angle inscrit

Plus en détail

Citer les propriétés qui permettent de justifier chacune des affirmations suivantes :

Citer les propriétés qui permettent de justifier chacune des affirmations suivantes : Exercice 1 : Citer les propriétés qui permettent de justifier chacune des affirmations suivantes : 1) ABCD est un parallélogramme donc les longueurs AB et CD sont égales. 2) MINE est un losange donc les

Plus en détail

Dossier 17 Thème : Géométrie métrique

Dossier 17 Thème : Géométrie métrique Dossier 17 Thème : Géométrie métrique Ce dossier porte sur le thème de la géométrie métrique, plus particulièrement il s'agit d'un problème géométrique de calculs de grandeurs (longueur, angle, aire, volume).

Plus en détail

DISTANCES ET TANGENTES Corrigés 1/7

DISTANCES ET TANGENTES Corrigés 1/7 DISTANCES ET TANGENTES Corrigés 1/7 Corrigé 01 Soit une droite D et un point A, on appelle distance du point A à la droite D la distance de A au pied de la perpendiculaire à D passant par A. Corrigé 02

Plus en détail

Chapitre 20 Trigonométrie

Chapitre 20 Trigonométrie Chapitre 20 Trigonométrie OBJECTIF DU CHAPITRE - Savoir utiliser les formules trigonométriques pour calculer la longueur d un côté ou la mesure d un angle d un triangle rectangle Trigonométrie vient de

Plus en détail

Exercices supplémentaires : trigonométrie

Exercices supplémentaires : trigonométrie xercices supplémentaires : trigonométrie xercice 1 1 epérer dans un triangle rectangle epasser en couleur les côtés demandés. a. Le côté adjacent à l'angle. b. Le côté opposé à l'angle ON. 2 Nommer dans

Plus en détail

Epreuve de Mathématiques Durée 2 heures

Epreuve de Mathématiques Durée 2 heures Collège Jules Ferry Session 2016 Diplôme National du Brevet Blanc n 2 Epreuve de Mathématiques Durée 2 heures L utilisation de la calculatrice est autorisée (circulaire n 99 186 du 16 Novembre 1999). L

Plus en détail

TRIANGLE RECTANGLE ET CERCLE CIRCONSCRIT

TRIANGLE RECTANGLE ET CERCLE CIRCONSCRIT TRINGLE RETNGLE ET ERLE IRONSRIT I) onjecture : Tracer les médiatrices des segments [] et [] des trois triangles rectangles suivant. Tracer le cercle circonscrit de chacun des triangles rectangles suivant.

Plus en détail

GEOMETRIE DANS L ESPACE EXERCICES CORRIGES

GEOMETRIE DANS L ESPACE EXERCICES CORRIGES GEOMETRIE DANS L ESPACE EXERCICES CORRIGES Parallélisme Exercice n 1. ABCDEFGH est un pavé droit. 1) Démontrez que la droite (AE) est parallèle au plan (BFHD). 2) Démontrez que la droite (EH) est parallèle

Plus en détail

1 Préambule Vocabulaire La racine carré d un nombre Qui était Pythagore... 3

1 Préambule Vocabulaire La racine carré d un nombre Qui était Pythagore... 3 Sommaire 1 Préambule. 2 1.1 Vocabulaire............................... 2 1.2 La racine carré d un nombre..................... 3 1.3 Qui était Pythagore.......................... 3 2 Théorème de Pythagore.

Plus en détail

4 e Révisions Triangles

4 e Révisions Triangles 4 e Révisions Triangles vant de commencer ces exercices, il faut connaître les définitions et propriétés du cours. xercice 1 Tracer les médianes et le centre de gravité G du Tracer les médiatrices et le

Plus en détail

1) Trace un carré ABCD de 3 cm de côté. 2) Place E et F respectivement les milieux de [CD] et [AD]. 3) Trace les segments [EF], [BF] et [BE].

1) Trace un carré ABCD de 3 cm de côté. 2) Place E et F respectivement les milieux de [CD] et [AD]. 3) Trace les segments [EF], [BF] et [BE]. Corrigé des programmes de construction de la séance 2 du jeudi 15/09/11 1) Trace un carré ABCD de 3 cm de côté. 2) Trace la diagonale [BD]. 3) Place E et F respectivement les milieux de [AD] et [AB]. 4)

Plus en détail

Mathématiques au Brevet

Mathématiques au Brevet Préparer et réussir l épreuve de Mathématiques au Brevet C. Witzel N o m b r e s e t c a l c u l s Organisation et gestion de données, fonctions G é o m é t r i e Bien démarrer : Les verbes de consignes...

Plus en détail

CORRECTION LIVRET DE O P Q R. Savoirs

CORRECTION LIVRET DE O P Q R. Savoirs LIVRET E ORRETION Savoirs O P Q R 2011-2012 ORRETIONS O éterminer une longueur ou un angle Savoir O1 Utiliser les propriétés des triangles particuliers O1.1 1) Le triangle EFG est un triangle isocèle en

Plus en détail

Milieux, parallèles et triangles

Milieux, parallèles et triangles hapitre. Milieux, parallèles et triangles.théorème de la droite des milieux Dans un triangle, la droite qui passe par les milieux de deux cotés dans le socle est le milieu de [] llustration: Dans, est

Plus en détail

Ces quelques formules sont censées être sues à la fin de la classe de quatrième!

Ces quelques formules sont censées être sues à la fin de la classe de quatrième! Ces quelques formules sont censées être sues à la fin de la classe de quatrième! I. Multiplication et division de nombres relatifs Le produit (ou le quotient) de deux nombres de même signe est positif.

Plus en détail

Collège Jules Ferry Génelard. Correction du Brevet Blanc n 1 année 2006-2007. Mathématiques 7 5 + 11 10 = 14

Collège Jules Ferry Génelard. Correction du Brevet Blanc n 1 année 2006-2007. Mathématiques 7 5 + 11 10 = 14 Collège Jules Ferry Génelard Correction du Brevet Blanc n 1 année 200-2007 Activités numériques (12 points) Mathématiques Exercice 1 : On donne A = 7 5 + 3 5 x 11 = 7 5 + 11 10 = 14 10 + 11 10 = 25 10

Plus en détail

Seconde Chapitre 5 : Les vecteurs Page 1 sur 12

Seconde Chapitre 5 : Les vecteurs Page 1 sur 12 Seconde Chapitre 5 : Les vecteurs Page 1 sur 12 Activités 1, 2 et 3 sur les translations I ) Vecteurs 1) Qu est ce qu un vecteur? Idée à retenir : «Un vecteur sert à décrire un déplacement» Un vecteur

Plus en détail

NOM : DROITE DES MILIEUX 4ème

NOM : DROITE DES MILIEUX 4ème Exercice 1 Soit ABCD un carré de côté 8cm. On appelle I le milieu de [AB] et L le milieu de [DA]. 1) Faire une figure. 2) Montrer que les droites (IL) et (BD) sont parallèles. 3) En utilisant les propriétés

Plus en détail

Seconde Géométrie 2 : Les vecteurs Page 1 sur 6

Seconde Géométrie 2 : Les vecteurs Page 1 sur 6 Seconde Géométrie 2 : Les vecteurs Page 1 sur 6 Seconde Géométrie 2 : Les vecteurs Page 2 sur 6 II) Vecteurs : 1) Qu est ce qu un vecteur? Un vecteur ( non nul ) est la donnée de trois éléments : 1) une

Plus en détail