Les Nombres de Fermat
|
|
|
- Marie Beaudry
- il y a 9 ans
- Total affichages :
Transcription
1 Les Nombres de Fermat Résumé Ce document traite des principales propriétés des nombres de la forme F n = 2 2n + 1, appelés Nombre de Fermat. Des conseils, des suggestions? N hésitez pas à laisser un message : <[email protected]> Table des matières 1 Introduction Un peu d histoire Pourquoi 2 2n + 1? Des diviseurs premiers particuliers Sur la relation entre deux Nombres de Fermat consécutifs Sur la relation entre deux nombres de Fermat distincts Sur la forme d un diviseur premier de F n Euler, F 5, et les autres Sur les diviseurs de F F 723, F 724 F Le chiffre des unités Introduction 1.1 Un peu d histoire... Pierre de Fermat, homme de loi et conseiller au Parlement de Toulouse 1, postula en 1640 dans un courrier à son ami Bernard Frenicle de Bessy 2, et 1. Les mathématiques, et en particulier l arithmétique, constituaient en effet plus un loisir qu un métier, et la frontière entre «amateur» et «professionnel», notions pour le moins relatives, n était pas encore tracée. 2. Mathématicien français, membre de la première Académie des Sciences.
2 2 Les Nombres de Fermat cela au regard de certains résultats, que tout nombre de la forme F n = 2 2n +1, avec n entier naturel, était premier. Ne réussissant pas à démontrer ce résultat, il proposa ce problème difficile à Blaise Pascal, accompagné du commentaire du suivant : «Je ne vous demanderais pas de travailler à cette question si j avais pu la résoudre moi-même» Ce dernier ne s y intéressant guère, il soumit également cette question à Lord William Brouncker et John Wallis 3, en vain... Et pour cause : la conjecture de Fermat était fausse. Ce fut le mathématicien Leonhard Euler qui, en proposant une factorisation de F 5, démontra que Fermat s était trompé 4. Et pourtant l espoir était là d avoir enfin trouvé une suite d entier dont les termes décrivent une partie de la suite infinie des nombres premiers. 1.2 Pourquoi 2 2n + 1? Avant tout, posons-nous la question : pourquoi ces nombres-ci et pas d autres? L intérêt porté à ces nombres résulte avant tout de l attention accordée aux critères de primalité des nombres de la forme a m + 1 résumés dans le théorème suivant : Théorème Tout nombre premier de la forme a m + 1 vérifiant a > 1 et m > 1 est de la forme a 2n + 1 et l entier a est pair. Démonstration : Supposons en effet que m ne soit pas une une puissance de deux, alors m admet un diviseur impair q 3, et donc : a m + 1 = a qk + 1 = (a k ) q ( 1) q, k N Or, d après la formule du binôme 5, cette expression se factorise de la façon suivante : (a k ) q ( 1) q = (a k + 1)((a k ) q 1 (a k ) q ) (1) 3. Mathématiciens anglais. Wallis contribua énormément au développement du calcul différenciel, et est considéré à ce titre comme un des mathématiciens les plus influents avant Newton. 4. Il est à noter qu à ce jour, il s agit de la seule conjecture de Fermat qui se soit avérée fausse. 5. a n b n = (a b)(a n 1 + a n 2 b + + ab n 2 + b n 1 ), n N.
3 Les Nombres de Fermat 3 On déduit du résultat (1) que a m + 1 admet a k + 1 comme diviseur. Celui-ci n étant ni égal à 1 (a > 1, donc a k + 1 > 2), ni égal à a m + 1 (dans ce cas là, nous aurions alors q = 1, contraire à l hypothèse sur q), l entier a m + 1 n est donc pas premier. m est donc une puissance de deux. Et compte-tenu des hypothèses sur a et m, il est clair que a m + 1 est un nombre premier impair, et que donc a m est un nombre pair, ce qui revient à dire que a est pair. Les éventuels nombres premiers de la forme a m + 1 sont donc à chercher dans les listes de type a 2n + 1 avec a pair et n entier naturel. Or, il s avère que pour a = 2, les 5 premiers termes de la suite F n = 2 2n + 1 sont premiers : F n n Tab. 1 Les 5 premiers Nombres de Fermat Seulement voilà : à l image de F 5 = = , les termes de cette suite deviennent rapidement énorme ce qui rend quasiment impossible la vérification par le calcul commun du fait qu il soit premier. Aussi l hypothèse de Fermat reposa-t-elle uniquement sur les 5 premiers termes, et probablement aussi sur la difficulté à trouver un diviseur à des termes plus grand. 2 Des diviseurs premiers particuliers Après avoir évoqué les relations existant entre les Nombres de Fermat, nous aborderons dans cette section le résultat qui permit à Euler de montrer que F 5 n était pas premier. 2.1 Sur la relation entre deux Nombres de Fermat consécutifs Lemme Etant donné n N, F n+1 = (F n 1)
4 4 Les Nombres de Fermat Démonstration : Etant donné n N, on a : F n+1 = 2 2n = (2 2n ) = (F n 1) Sur la relation entre deux nombres de Fermat distincts Démontrons avant tout le lemme suivant : Lemme Etant donné n 1, n N, on a F n 2 = n 1 k=0 F k Démonstration : Démontrons ce résultat par récurrence. Pour n = 1, nous avons F 1 2 = 3 = F 0, donc vrai pour n = 1 Etant donné un entier naturel m 1, supposons la proposition vraie au rang m, et montrons que celle-ci est vraie au rang m + 1. D après le lemme précédent, nous avons : F m+1 2 = [(F m 1) 2 + 1] 2 = (F m 1) 2 1 = F m (F m 2) Ce qui d après l hypothèse de récurence nous donne : m 1 F m+1 2 = F m k=0 F k = k=m Ce lemme nous permet alors d introduire un résultat intéressanrt : k=0 F k Théorème Soient m, n > 0 deux entier naturels distincts. Alors F m et F n sont premiers entre eux. Démonstration : Nous supposons ici n > m (la démonstration est identique dans le cas m > n). D après le corollaire précédent, nous avons : m 1 F n 2 = F m ( F k )( k=0 n 1 k=m+1 F k ) Soit : F n = qf m + 2, q Z
5 Les Nombres de Fermat 5 Soit d = P GCD(F m, F n ). 2 étant le reste dans la division euclidienne de F n par F m, on a 6 : d = P GCD(F m, 2) Les seuls diviseurs positifs de 2 étant 1 et 2, on a donc P GCD(F m, 2) = 1, puisque F m ne peut être pair. Soit : P GCD(F m, F n ) = Sur la forme d un diviseur premier de F n Nous désignons pour le résultat suivant a comme étant un entier et p un nombre premier ne divisant pas a. On suppose alors qu il existe au moins un entier naturel k non nul tel que a k 1[p], et définissons k 0 comme étant le plus petit d entre eux. Lemme Tout entier naturel k est un multiple de k 0. Démonstration : Supposons que k ne soit pas un multiple de k 0. Il existe alors (q,r) Z N tel que k = qk 0 + r, 0 < r < k 0 De plus : a qk 0+r 1[p] (2) a k 0 1[p] a qk 0 1[p] a qk 0+r a r [p] (3) Nous avons donc d après (2) et (3) : a r 1[p] Or ce dernier résultat contredit l hypothèse selon laquelle k 0 est le plus petit entier à vérifier cette propriété. On a donc bien r = 0 Ce résultat nous permet alors d introduire ce théorème fondamental : Théorème Soit p un diviseur premier de F n tel que p F n. Alors il existe un entier k tel que p = 2 n+1 k + 1, k admettant un diviseur impair supérieur ou égal à On montre en effet facilement que dans une division euclidienne, le PGCD du dividende et du diviseur est identique au PGCD du diviseur et du reste.
6 6 Les Nombres de Fermat Démonstration : Sachant que p divise F n, nous avons donc : 2 2n + 1 0[p] 2 2n 1[p] 2 2n+1 1[p] Montrons alors que 2 n+1 est le plus petit entier à vérifier cette relation. Soit m le plus petit entier à vérifier cette relation. Nous savons d après le lemme précédent que m divise 2 n+1. Il existe donc un entier q n + 1 tel que m = 2 q. Supposons alors q < n + 1, ce qui équivaut à dire que q n. Il existe alors un entier h 0 tel que n = q + h. 2 2q 1[p] 2 2q+h 1[p] 2 2n 1[p] Or cela contredit le fait que nous avons 2 2n 1[p]. L hypothèse q < n + 1 est donc fausse, ce qui implique q = n n+1 est bien le plus petit entier à vérifier la relation précédente. Montrons ensuite que p 1 vérifie la relation 2 p 1 1[p]. Nous savons d après le petit théorème de Fermat 7 que 2 p 2[p]. Il existe donc un entier q tel que 2 p 2 = pq, soit 2(2 p 1 1) = pq. On en déduit d après le théorème de Gauss que p divise 2 p 1 1, soit : 2 p 1 1[p] Compte-tenu de ces deux résultats, nous déduisons du lemme précédent que p 1 est un multiple de 2 n+1. Il existe donc un entier k tel que : p = 2 n+1 k + 1 Reste à montrer que k admet un diviseur impair supérieur ou égal à 3. Raisonnons par l absurde et supposons que k soit une puissance de 2. Dans ce cas-là, nous avons p = 1+2 m avec m entier naturel non nul. Sachant que p est premier, nous déduisons du théorème (1.2.1) que m est nécessairement une puissance de deux, ce qui fait tout simplement de p un Nombre de Fermat. Sachant de plus que p est distinct de F n on en déduit d après le que p est premier avec F n, ce qui contredit le fait que p est un diviseur de F n. k admet bien un diviseur impair superieur ou égal à Etant donnés un entier a et un nombre premier p tel que p ne divise pas a, alors a p a[p].
7 Les Nombres de Fermat 7 3 Euler, F 5, et les autres Sur les diviseurs de F 5 Nous connaissons désormais la forme d un diviseur premier de F n. Intéressons nous alors au cas de F 5 = Supposons que F 5 admette un diviseur premier p. Nous savons alors d après le théorème (2.3.1) qu il existe un entier k tel que p = 2 6 k + 1 = 64k + 1. Les diviseurs premiers potentiels de F 5 sont donc de la forme 64k + 1, où k admet un diviseur impair 3. Les valeurs possibles de k sont donc 3, 5, 6, 7, Pour k = 10 il s avère que nous avons p = 641 qui est un nombre premier. Maintenant que nous avons un candidat, voyons si celui-ci correspond à nos attentes : 2 16 = = [641] Soit Donc : = = ( ) 1[641] [641] F 5 admet donc bien un diviseur premier différent de lui-même, ce qui dans le même temps infirme la conjecture de Fermat F 723, F 724 F Il faut attendre plus d un siècle pour qu un mathématicien du nom de Landry, qui factorise alors beaucoup de nombre de la forme 2 n + 1 et 2 n 1, démontre que F 6 est le produit de deux nombres premiers, à savoir et , alors que l on avait déjà découvert que F 12 était divisible par Les Nombres de Fermat, tout comme les Nombres de Mersenne, constituent dès lors un terrain d entraînement idéal pour les tests de primalité et les méthodes de factorisation 8, ce qui dans le même temps tend à montrer que Fermat s est probablement entièrement trompé, étant donné qu il ne semble plus y avoir de nombre premier au delà de F Aujourd hui encore, ces nombres continuent à faire l objet de recherche. C est ainsi que F 7 a été factorisé en 1970, alors que l on trouva un diviseur premier de F 8 en 1981 seulement.
8 8 Les Nombres de Fermat 3.3 Le chiffre des unités A tout cela s ajoute une propriété singulière : Lemme Pour n 2, le chiffre des unité de F n vaut 7. Démonstration : Pour n = 2, le résultat est évident. Soit un entier naturel k. Supposons la propriété vraie au rang k, et montrons celle-ci au rang k + 1. D après l hypothèse de récurrence, nous avons : F k 7[10] F k 1 6[10] (F k 1) [10] On en déduit d après le lemme précédent que : F k+1 7[10] Sachant qu un nombre est congru au chiffre des ses unités modulo dix 9, on en déduit que 7 est le chiffre des unités de F n pour n Un entier 10 auquel on ôte le chiffre des unités est en effet un multiple de 10.
108y= 1 où x et y sont des entiers
Polynésie Juin 202 Série S Exercice Partie A On considère l équation ( ) relatifs E :x y= où x et y sont des entiers Vérifier que le couple ( ;3 ) est solution de cette équation 2 Déterminer l ensemble
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
Triangle de Pascal dans Z/pZ avec p premier
Triangle de Pascal dans Z/pZ avec p premier Vincent Lefèvre (Lycée P. de Fermat, Toulouse) 1990, 1991 1 Introduction Nous allons étudier des propriétés du triangle de Pascal dans Z/pZ, p étant un nombre
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
FONDEMENTS DES MATHÉMATIQUES
FONDEMENTS DES MATHÉMATIQUES AYBERK ZEYTİN 1. DIVISIBILITÉ Comment on peut écrire un entier naturel comme un produit des petits entiers? Cette question a une infinitude d interconnexions entre les nombres
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
Logique. Plan du chapitre
Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels
Développement décimal d un réel
4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce
Cours d arithmétique Première partie
Cours d arithmétique Première partie Pierre Bornsztein Xavier Caruso Pierre Nolin Mehdi Tibouchi Décembre 2004 Ce document est la première partie d un cours d arithmétique écrit pour les élèves préparant
avec des nombres entiers
Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Nombres premiers. Comment reconnaître un nombre premier? Mais...
Introduction Nombres premiers Nombres premiers Rutger Noot IRMA Université de Strasbourg et CNRS Le 19 janvier 2011 IREM Strasbourg Definition Un nombre premier est un entier naturel p > 1 ayant exactement
Suites numériques 3. 1 Convergence et limite d une suite
Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n
Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :
MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
1 Définition et premières propriétés des congruences
Université Paris 13, Institut Galilée Département de Mathématiques Licence 2ème année Informatique 2013-2014 Cours de Mathématiques pour l Informatique Des nombres aux structures Sylviane R. Schwer Leçon
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Chapitre VI - Méthodes de factorisation
Université Pierre et Marie Curie Cours de cryptographie MM067-2012/13 Alain Kraus Chapitre VI - Méthodes de factorisation Le problème de la factorisation des grands entiers est a priori très difficile.
Extrait du poly de Stage de Grésillon 1, août 2010
MINI-COURS SUR LES POLYNÔMES À UNE VARIABLE Extrait du poly de Stage de Grésillon 1, août 2010 Table des matières I Opérations sur les polynômes 3 II Division euclidienne et racines 5 1 Division euclidienne
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Chapitre 2. Matrices
Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
6. Les différents types de démonstrations
LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,
Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R.
Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R. Démonstration : Soit la fonction %:& %&!= &!, elle est dérivable sur R et & R, %. &!= &! = &! = %&! [email protected]
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Quelques tests de primalité
Quelques tests de primalité J.-M. Couveignes (merci à T. Ezome et R. Lercier) Institut de Mathématiques de Bordeaux & INRIA Bordeaux Sud-Ouest [email protected] École de printemps C2 Mars
III- Raisonnement par récurrence
III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,
FONCTION EXPONENTIELLE ( ) 2 = 0.
FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
La persistance des nombres
regards logique & calcul La persistance des nombres Quand on multiplie les chiffres d un nombre entier, on trouve un autre nombre entier, et l on peut recommencer. Combien de fois? Onze fois au plus...
Correction du baccalauréat S Liban juin 2007
Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau
Cryptographie RSA. Introduction Opérations Attaques. Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 1
Cryptographie RSA Introduction Opérations Attaques Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 1 Introduction Historique: Rivest Shamir Adleman ou RSA est un algorithme asymétrique de cryptographie à clé
Factorisation d entiers (première partie)
Factorisation d entiers ÉCOLE DE THEORIE DES NOMBRES 0 Factorisation d entiers (première partie) Francesco Pappalardi Théorie des nombres et algorithmique 22 novembre, Bamako (Mali) Factorisation d entiers
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction
Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Exo7. Limites de fonctions. 1 Théorie. 2 Calculs
Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
Cours de mathématiques
DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
Cryptographie et fonctions à sens unique
Cryptographie et fonctions à sens unique Pierre Rouchon Centre Automatique et Systèmes Mines ParisTech [email protected] Octobre 2012 P.Rouchon (Mines ParisTech) Cryptographie et fonctions
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
O, i, ) ln x. (ln x)2
EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient
par un nombre entier I La division euclidienne : le quotient est entier Faire l activité division. Exemple Sur une étagère de 4mm de large, combien peut on ranger de livres de mm d épaisseur? La question
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la
Tests de primalité et cryptographie
UNIVERSITE D EVRY VAL D ESSONNE Tests de primalité et cryptographie Latifa Elkhati Chargé de TER : Mr.Abdelmajid.BAYAD composé d une courbe de Weierstrass et la fonction (exp(x), cos (y), cos(z) ) Maîtrise
Date : 18.11.2013 Tangram en carré page
Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches
Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015
Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé
Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H
Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro.
Chapitre : Les nombres rationnels Programme officiel BO du 8/08/08 Connaissances : Diviseurs communs à deux entiers, PGCD. Fractions irréductibles. Opérations sur les nombres relatifs en écriture fractionnaire.
1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)
1/4 Objectif de ce cours /4 Objectifs de ce cours Introduction au langage C - Cours Girardot/Roelens Septembre 013 Du problème au programme I passer d un problème exprimé en français à la réalisation d
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels.
Cette partie est consacrée aux nombres. Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels. L aperçu historique vous permettra
CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»
Corrigé Cours de Mr JULES v3.3 Classe de Quatrième Contrat 1 Page 1 sur 13 CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» «Correction en rouge et italique.» I. Les nombres décimaux relatifs.
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Feuille d exercices 2 : Espaces probabilisés
Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un
Cours de mathématiques Première année. Exo7
Cours de mathématiques Première année Eo7 2 Eo7 Sommaire Logique et raisonnements 9 Logique 9 2 Raisonnements 4 2 Ensembles et applications 9 Ensembles 20 2 Applications 23 3 Injection, surjection, bijection
Carl-Louis-Ferdinand von Lindemann (1852-1939)
Par Boris Gourévitch "L'univers de Pi" http://go.to/pi314 [email protected] Alors ça, c'est fort... Tranches de vie Autour de Carl-Louis-Ferdinand von Lindemann (1852-1939) est transcendant!!! Carl Louis
FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12
1 2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Algorithmes récursifs
Licence 1 MASS - Algorithmique et Calcul Formel S. Verel, M.-E. Voge www.i3s.unice.fr/ verel 23 mars 2007 Objectifs de la séance 3 écrire des algorithmes récursifs avec un seul test rechercher un élément
UNIVERSITE IBN ZOHR Faculté des sciences Agadir. Filière SMA & SMI. Semestre 1. Module : Algèbre 1
UNIVERSITE IBN ZOHR Faculté des sciences Agadir Filière SMA & SMI Semestre 1 Module : Algèbre 1 Année universitaire : 011-01 A. Redouani & E. Elqorachi 1 Contenu du Module : Chapitre 1 : Introduction Logique
Mathématiques Algèbre et géométrie
Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices
Lycée Pierre de Fermat 2012/2013 MPSI 1 Feuille d exercices Manipulation des relations d ordre. Relation d ordre Exercice 1. Soit E un ensemble fixé contenant au moins deux éléments. On considère la relation
D'UN THÉORÈME NOUVEAU
DÉMONSTRATION D'UN THÉORÈME NOUVEAU CONCERNANT LES NOMBRES PREMIERS 1. (Nouveaux Mémoires de l'académie royale des Sciences et Belles-Lettres de Berlin, année 1771.) 1. Je viens de trouver, dans un excellent
Calcul différentiel. Chapitre 1. 1.1 Différentiabilité
Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace
Compter à Babylone. L écriture des nombres
Compter à Babylone d après l article de Christine Proust «Le calcul sexagésimal en Mésopotamie : enseignement dans les écoles de scribes» disponible sur http://www.dma.ens.fr/culturemath/ Les mathématiciens
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
BACCALAUREAT GENERAL MATHÉMATIQUES
BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la
Pour l épreuve d algèbre, les calculatrices sont interdites.
Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.
PRIME D UNE OPTION D ACHAT OU DE VENTE
Université Paris VII - Agrégation de Mathématiques François Delarue) PRIME D UNE OPTION D ACHAT OU DE VENTE Ce texte vise à modéliser de façon simple l évolution d un actif financier à risque, et à introduire,
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
Nombre dérivé et tangente
Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Synthèse «Le Plus Grand Produit»
Introduction et Objectifs Synthèse «Le Plus Grand Produit» Le document suivant est extrait d un ensemble de ressources plus vastes construites par un groupe de recherche INRP-IREM-IUFM-LEPS. La problématique
Résolution de systèmes linéaires par des méthodes directes
Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.
Problèmes arithmétiques issus de la cryptographie reposant sur les réseaux
Problèmes arithmétiques issus de la cryptographie reposant sur les réseaux Damien Stehlé LIP CNRS/ENSL/INRIA/UCBL/U. Lyon Perpignan, Février 2011 Damien Stehlé Problèmes arithmétiques issus de la cryptographie
Corps des nombres complexes, J Paul Tsasa
Corps des nombres complexes, J Paul Tsasa One Pager Février 2013 Vol. 5 Num. 011 Copyright Laréq 2013 http://www.lareq.com Corps des Nombres Complexes Définitions, Règles de Calcul et Théorèmes «Les idiots
INF 4420: Sécurité Informatique Cryptographie II
: Cryptographie II José M. Fernandez M-3106 340-4711 poste 5433 Aperçu Crypto II Types de chiffrement Par bloc vs. par flux Symétrique vs. asymétrique Algorithmes symétriques modernes DES AES Masque jetable
Chapitre 14. La diagonale du carré
Chapitre 4 La diagonale du carré Préambule Examinons un puzzle tout simple : on se donne deux carrés de même aire et on demande, au moyen de quelques découpages, de construire un nouveau carré qui aurait
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Par combien de zéros se termine N!?
La recherche à l'école page 79 Par combien de zéros se termine N!? par d es co llèg es An dré Do ucet de Nanterre et Victor Hugo de Noisy le Grand en seignants : Danielle Buteau, Martine Brunstein, Marie-Christine
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Sur certaines séries entières particulières
ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane
Le produit semi-direct
Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.
I. Ensemble de définition d'une fonction
Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux
