Activités numériques sur 12 points. Fonction : image et antécédents. Exercice 2 Décomposition d un multiple de 4

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Activités numériques sur 12 points. Fonction : image et antécédents. Exercice 2 Décomposition d un multiple de 4"

Transcription

1 Activités numériques sur 12 points Rappels : Exercice 1 Fonction : image et antécédents L image d un nombre par une fonction se lit sur l axe des ordonnées (axe vertical). Le ou les antécédents d un nombre par une fonction se lit(sent) sur l axe des abscisses (axe horizontal) quand il en existe. 1) L image par h du nombre 8 est 2. 2) h( 1) = 3 3) Les antécédents par h du nombre 0 sont 3 et 7. 4) Les antécédents par h du nombre 2 sont -2 ; 0 ; 2 et 8. 5) x et 6 h(x) Exercice 2 Décomposition d un multiple de 4 1) 7² 5² = = 16 = 4 4 donc, le nombre 7² 5² est un multiple de 4. 10² 8² = = 36 = 4 9 donc, le nombre 10² 8² est un multiple de 4. 25² 23² = = 96 = 4 24 donc, le nombre 25² 23² est un multiple de 4. On peut conjecturer que : ( n +2 )² n² est un multiple de 4 pour tout nombre n. 2) Démontrons la conjecture précédente. ( n +2 )² n² = ( n² + 4n + 4 ) n² = 4n + 4 = 4( n + 1 ) = 4 ( n + 1 ) Par conséquent, le nombre (n+2)² n² est un multiple de 4 pour tout nombre n.

2 3) Décomposition du nombre 52. De la question précédente, on peut affirmer qu un multiple de 4 peut s écrire sous la forme d une différence de deux carrés. Montrons tout d abord que 52 est un multiple de 4. Comme 52 = 4 13, le nombre 52 est un multiple de 4 donc on peut utiliser la question précédente à savoir que 4 ( n + 1 ) = ( n + 2 )² n². 52 = 4 13 = 4 ( ) = ( )² 12² = 14² 12² Par conséquent, le nombre 52 s écrit comme la différence de deux carrés d entiers. Exercice 3 Question de pourcentage Il ne fallait pas répondre trop rapidement! Il fallait bien lire l énoncé et bien observer les deux diagrammes circulaires et les légendes associées. Déjà, il fallait remarquer que les deux villes ne comptaient pas le même nombre de voitures, donc on ne peut pas comparer les secteurs circulaires des deux diagrammes donnés! Calculons le nombre de voitures blanches dans chaque ville en utilisant le pourcentage correspondant. Faire attention à la légende du diagramme et plus particulièrement aux hachures associées aux couleurs! Dans la ville A, il y a 25% de voitures blanches. 25% de voitures correspond au calcul Dans la ville A, il y a voitures blanches. Dans la ville B, il y a 60% de voitures blanches. 60% de voitures correspond au calcul Dans la ville B, il y a voitures blanches. Par suite, il y a plus de voitures blanches dans la ville A que dans la ville B. Et, par conséquent, l élève n a pas raison.

3 Activités géométriques sur 12 points Exercice 1 Octogone et Disque dans un carré 1) Dans la figure ci-contre : ABCD est un carré de côté 9cm AI = IJ = JB = 3cm BK = KL = LC = 3cm CM = MN = ND = 3cm DO = OP = PA = 3cm Les diagonales [AC] et [BD] se coupent en S Le cercle a pour centre S et de diamètre 9cm. 2) Pour calculer la longueur JK, je vais utiliser la propriété de Pythagore dans le triangle JBK rectangle en B. «Si un triangle est rectangle alors le carré de la longueur de l hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.» Comme le triangle JBK est rectangle en B, je peux utiliser la propriété de Pythagore et écrire : JK² = JB² + BK² d où JK² = (3c + (3c = = 18c donc, JK= La longueur JK est cm. Ou encore, JK= question supplémentaire : L octogone IJKLMNOP est-il régulier? Rappel : Un polygone est régulier si tous ses côtés ont la même longueur. Comme JK IJ, l octogone n est pas régulier.

4 3) Pour calculer l aire de l octogone IJKLMNOP, je vais décomposer le calcul comme indiqué ci-dessous : = - aire de l octogone IJKLMNOP A= aire du carré ABCD L aire de l octogone IJKLMNOP est de 63cm². aire des 4 triangles 4) J utilise la formule suivante : A disque Le diamètre du disque est 9cm donc son rayon est de 4,5cm A d = La valeur exacte de l aire du disque est. Pour le nombre la calculatrice affiche 63, L aire du disque est de 63,6 cm² à 0,1cm² près. L aire du disque est de 63,62 cm² à 1mm² près. Or, l aire de l octogone est de 63cm². Par conséquent, l aire du disque est supérieure à l aire de l octogone. Exercice 2 des calculs de Volumes 1) J utilise la formule suivante : V cylindre Le diamètre du disque de base est 4cm donc le rayon est de 2cm V 1 = La valeur exacte du volume du cylindre est de.

5 Le volume de ce verre est de 113 à 1 près. 2) La capacité d un verre est d environ 11,3cL et la capacité de la bouteille est de 70cL. Avec une bouteille de 70cL, on peut remplir 6 verres entièrement. Exercice 3 Triangle et angle 1) Pour démontrer que les droites (DE) et (AB) sont parallèles, je vais utiliser la réciproque de la propriété de Thalès Si les quotients et sont égaux et si les points D, C, A et les points E, C,B sont alignés dans ce même ordre alors les droites (DE) et (AB) sont parallèles. Comme les points D, C, A sont alignés, CD = AD AC = 12,6cm 7cm = 5,6cm. Comme les points E, C, B sont alignés, CB = BE CE = 10,8cm 4,8cm = 6cm. D une part, D autre part, = Donc, = Comme les quotients et sont égaux et comme les points D, C, A et les points E, C, B sont alignés dans ce même ordre alors je peux conclure que les droites (DE) et (AB) sont parallèles d après la réciproque de la propriété de Thalès.

6 2) Dans tout triangle ABC, on a la formule suivante : Pour déterminer la mesure de l angle, on va utiliser la formule valable dans tout triangle. Dans le triangle CBA, on connait : a = CB = 6cm et b= CA= 7cm et cherche la mesure de l angle. 53 et on On a donc l égalité Les produits en croix sont égaux D où Avec la calculatrice, on trouve un angle d environ 43, L angle mesure 43 à 1 près. Remarque 1: Avec les nouvelles calculatrices, on peut taper la séquence suivante seconde sin 6 sin 5 3 ) 7 ) EXE Sur l écran de la calculatrice, apparait le calcul Remarque 2: La formule de Héron d Alexandrie donne l aire d un triangle. Dans tout triangle ABC, on a la formule suivante : Aire (ABC) = où est le demi-périmètre du triangle ABC

7 Problème sur 12 points Première épreuve : la descente en tyrolienne Le quadrilatère AMEB a 3 angles droits donc c est un rectangle et par suite les côtés [AB] et [ME] ont la même longueur ainsi AB = ME. Pour calculer la longueur ME, je vais utiliser la trigonométrie dans le triangle DME rectangle en M. d où ME = m donc AB=69,73m à 1cm près. La distance entre les deux arbres est de 69,73m à 1cm près.

8 Deuxième épreuve : le parcours du cross 1) Comme le triangle FBC est rectangle en B, je peux utiliser la propriété de Pythagore et écrire : FC² = FB² + BC² d où FC² = (300 + (400 = = donc, FC= = 500 m La longueur FC est de 500m. 2) Pour calculer la longueur DF, je vais utiliser la propriété de Thalès dans les triangles BFC et BGH. Si, dans les triangles BFC et BGH, les droites (FC) et (GH) sont parallèles alors les longueurs des côtés de ces triangles sont proportionnelles c-à-d que : Dans les triangles BFC et BGH, étant donné que F [BG] et C [BH] et comme les droites (FC) et (GH) sont parallèles, je peux utiliser la propriété de Thalès et écrire : (*) Comme les points B, C et H sont alignés, on a BH = BC + CH = 400m + 800m = 1200m d où On peut déduire que : La longueur BG est de 900m Comme les points B, F et G sont alignés, on a FG = BG BF = 900m 300m = 600m La longueur FG est de 600m 3) Pour calculer la longueur GH, je vais utiliser les égalités (*) obtenues à la question précédente. d où On peut déduire que : La longueur GH est de 1500m (*)

9 Remarque : On pouvait aussi appliquer la propriété de Pythagore dans le triangle GBH rectangle en B. GH² = GB² + BH² d où GH² = (900 + (1200 = = Donc GH = m = 1 500m 4) Pour calculer la longueur totale du parcours entre D et H, je vais additionner 6 longueurs L = DE + EB + BC + CF + FG + GH L = 70m + 5m + 400m + 500m + 600m m =3 075m La longueur totale du parcours entre D et H est de 3 075m. 5) Calcul de la vitesse de l élève 1 ère méthode en raisonnant sur les durées En 15minutes, l élève a parcouru une distance de 3 075m ; or 1h = 60min = 4 15min Donc en une heure, il aura parcouru une distance 4 fois plus grande soit = m m = 12,3km L élève a parcouru 12,3km en 1h ce qui signifie que sa vitesse est de 12,3km/h. 2 ème méthode en utilisant la formule de la vitesse Distance parcourue : 3 075m = 3,075km Durée du parcours : 15min = 0,25h Si la distance de l épreuve en VTT représente les Troisième épreuve : le parcours en VTT distance totale de la première et de la deuxième épreuve représente de la distance totale de la compétition alors la de la distance totale de la compétition m du parcours total Il suffit donc de multiplier par 3 la distance 3 075m pour obtenir la distance à faire en VTT m 3 = 9 225m La distance à parcourir en VTT est de 9 225m (distance que l on retrouve sur le graphique ci-dessous)

10 Des lectures graphiques Nicolas a pris son VTT orange à 14H. 1) A quelle heure Cyril a-t-il pris son VTT gris? 14h10 2) A quelle heure Nicolas et Cyril se sont-ils rencontrés? 14h15.. 3) A quelle distance du point H Nicolas et Cyril se sont-ils rencontrés? environ 1550m 4) A quelle heure Nicolas et Cyril sont-ils arrivés? 15h20 5) Qui a été le plus rapide? Cyril c est de la logique! Cyril est parti après Nicolas et ils arrivent ensemble!! Questions complémentaires : 1) Déterminer la vitesse moyenne de Nicolas en VTT Durée sur le parcours pour Nicolas 15h20 14h =1h20= 1h+ = V Nicolas 6,92 km/h 2) Déterminer la vitesse moyenne de Cyril en VTT Durée sur le parcours pour Cyril 15h20 14h10 =1h10= 1h+ = V Cyril 7,91 km/h 3) Commenter leur allure sur le parcours en VTT. Nicolas a roulé de façon presque uniforme sur l ensemble du parcours tandis que Cyril a roulé plus vite dès le départ, puis il a ralenti, puis il a accéléré jusqu à l arrivée en A.

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse.

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse. EC 4A : ELEMENTS DE MATHEMATIQUES THEOREMES DE PYTHAGORE ET DE THALES COURS Objectifs du chapitre : Déterminer des longueurs dans un triangle en utilisant le théorème de Pythagore ou de Thalès. Démontrer

Plus en détail

Théorèmes et réciproques de Pythagore et Thales

Théorèmes et réciproques de Pythagore et Thales Théorèmes et réciproques de Pythagore et Thales I) Théorème de Pythagore : Soit ABC un triangle rectangle en B : Théorème de Pythagore : Si ABC est un triangle rectangle en B alors AC² = AB² + BC² Exemple

Plus en détail

I. Propriétés de géométrie analytique.

I. Propriétés de géométrie analytique. I. Propriétés de géométrie analytique. Activité 1 Dans un repère orthonormé (O ; I ; J), a. Distance entre deux points. Dans un repère orthonormée (O ; I ; J) on considère deux point A(2 ; 1) et B(5 ;

Plus en détail

Activités numériques sur 12 points

Activités numériques sur 12 points Activités numériques sur 1 points Exercice 1 (1,5 points) La calculatrice 1) On s intéresse au calcul suivant Le numérateur de A est la racine carrée du nombre (5² 3²), donc c est un nombre positif. Le

Plus en détail

Les programmes de calcul

Les programmes de calcul Activités numériques sur 12 points Exercice 1 Arithmétique 1) J utilise l algorithme d Euclide pour calculer le PGCD de 1105 et 935. Nombre a Nombre b Reste de la division euclidienne de a par b 1105 935

Plus en détail

Théorème de Pythagore Exercice 1 : Le triangle DEF est rectangle en F, DF = 36 mm, DE = 85 mm, calculer EF.

Théorème de Pythagore Exercice 1 : Le triangle DEF est rectangle en F, DF = 36 mm, DE = 85 mm, calculer EF. Théorème de Pythagore Exercice 1 : Le triangle D est rectangle en F, = 36 mm, DE = 85 mm, calculer. Le triangle D est rectangle en F. D'après le théorème de Pythagore : ED 85 36 75-196 599 599 77 mm Exercice

Plus en détail

Mathématiques Brevet blanc n 1

Mathématiques Brevet blanc n 1 Section 3 ème Mathématiques Brevet blanc n 1 Partie numérique Exercice 1 : Pour chaque ligne du tableau ci-dessous, choisir et entourer la bonne réponse parmi les trois proposées. Aucune justification

Plus en détail

Exercices type brevet. EXERCICE 4 : (VOLUME) Dans une boîte cubique dont l'arête mesure 7 cm, on place une boule de 7 cm de diamètre (voir le schéma).

Exercices type brevet. EXERCICE 4 : (VOLUME) Dans une boîte cubique dont l'arête mesure 7 cm, on place une boule de 7 cm de diamètre (voir le schéma). EXERCICE 1 : (CALCULS NUMERIQUES) Soit A = 5 3 7 3 9 4 Exercices type brevet ; B = 45 1 5 ; C = ( ) 4 3 10 1, 10 3 0, 10 1) Calculer A et donner le résultat sous la forme d une fraction irréductible. )

Plus en détail

3 ème BREVET : théorème de Thalès

3 ème BREVET : théorème de Thalès Exercice 1 1 Tracer en triangle ABC rectangle en A tel que : AB = 5 cm et AC = 3 cm. Placer le point D sur [AB] tel que BD = 4 cm. Tracer la perpendiculaire à (AB) passant par D, elle coupe [BC] en E.

Plus en détail

EPREUVE D ENTRAÎNEMENT 21 MAI 2012

EPREUVE D ENTRAÎNEMENT 21 MAI 2012 EPREUVE D ENTRAÎNEMENT 21 MAI 2012 MATHEMATIQUES Durée : 2 heures L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation et de la rédaction entrent dans l appréciation des copies

Plus en détail

Le questionnaire à choix multiples

Le questionnaire à choix multiples Activités numériques sur 12 points Exercice 1 Le questionnaire à choix multiples Réponse A Réponse B Réponse C 1 Les nombres 49 et 64 sont premiers entre eux sont divisibles par 7 sont divisibles par 8

Plus en détail

Partie I : Activités numériques (12 points)

Partie I : Activités numériques (12 points) Correction du brevet blanc mars 2012 Partie I : Activités numériques (12 points) Exercice 1 ( points) Voici un programme de calcul : - Prendre un nombre et calculer le produit de ce nombre par 2,5 ; -

Plus en détail

Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net :

Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net : Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net : http://titaile.free.fr (sans le www) I. Calcul. Revoir impérativement «développer, factoriser, résoudre

Plus en détail

Classes de 3 ème MATHEMATIQUES 1 février NOM : Prénom : Classe : Observations : Note : Signature :

Classes de 3 ème MATHEMATIQUES 1 février NOM : Prénom : Classe : Observations : Note : Signature : NOM : Prénom : Classe : Observations : Note : Signature : Durée 2 heures Il sera tenu compte de la clarté et de la présentation de la copie. Exercice 1 (2 points) Calculer et simplifier : A = 34 2 : 4

Plus en détail

Exercices à savoir faire à l'entrée en 2nde

Exercices à savoir faire à l'entrée en 2nde Exercices à savoir faire à l'entrée en 2nde Exercice 1 : Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, une seule des réponses proposées est exacte. Laquelle? Il faut

Plus en détail

M. MORICEAU, brevet (DNB) CORRECTION de l épreuve de mathématiques (DNB) de 2012

M. MORICEAU, brevet (DNB)  CORRECTION de l épreuve de mathématiques (DNB) de 2012 M. MORICEAU [Collège Montgaillard - Saint Denis (REUNION)] Mathématiques, 28 juin 2012, ème, BREVET (DNB) CORRECTION de l épreuve de mathématiques (DNB) de 2012 Activités numériques (12 points) V Premier

Plus en détail

COLLÈGE NAZARETH BREVET BLANC N MATHÉMATIQUES Durée : 2 heures.

COLLÈGE NAZARETH BREVET BLANC N MATHÉMATIQUES Durée : 2 heures. COLLÈGE NAZARETH BREVET BLANC N 2-2009- MATHÉMATIQUES Durée : 2 heures. Les calculatrices sont autorisées ainsi que les instruments usuels de dessin. Présentation, orthographe et rédaction : 4 points.

Plus en détail

Collège Blanche de Castille. Partie I : Activités numériques (12 points)

Collège Blanche de Castille. Partie I : Activités numériques (12 points) 3 ème A - B - C Composition 1 de MATHÉMATIQUES Date : 10/11/2010 Durée : 2h Collège Blanche de Castille Coefficient : 3 Note sur : 40 Présentation : /4 Les calculatrices sont autorisées (il est interdit

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

x(a + b) = 2 Pythagore et Thalès

x(a + b) = 2 Pythagore et Thalès Pythagore et Thalès Exercice 1 : On a découpé 4 exemplaires de la figure 0 pour les assembler et obtenir la figure 1. La mesure de l aire de la figure 1 est celle d un carré dont le côté a pour mesure

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

Correction du Brevet blanc n 1.

Correction du Brevet blanc n 1. Correction du Brevet blanc n 1. Exercice 1 : Cet exercice est un questionnaire à choix multiple (QCM). Pour chaque question, quatre réponses sont proposées : une seule d entre elles est exacte. Pour chaque

Plus en détail

Collège Blanche de Castille. Les calculatrices sont autorisées (il est interdit de se les échanger) ainsi que les instruments usuels de dessin.

Collège Blanche de Castille. Les calculatrices sont autorisées (il est interdit de se les échanger) ainsi que les instruments usuels de dessin. 3 ème A - B C Composition 2 de MATHÉMATIQUES Date : 03/03/2010 Durée : 2h Collège Blanche de Castille Coefficient : Note sur : 0 Présentation : / Les calculatrices sont autorisées (il est interdit de se

Plus en détail

Mercredi 28 janvier Collège La Charme

Mercredi 28 janvier Collège La Charme BREVET BLANC ÉPREUVE DE MATHÉMATIQUES Mercredi 28 janvier 2009 Collège La Charme Durée : 2 heures L emploi des calculatrices est autorisé En plus des point prévus pour chacune des trois parties de l épreuve,

Plus en détail

Métropole La Réunion Mayotte Juin 2010 Brevet Page 1 sur 5 Corrigés

Métropole La Réunion Mayotte Juin 2010 Brevet Page 1 sur 5 Corrigés Métropole La Réunion Mayotte Juin 010 Brevet Page 1 sur 5 Exercice 1 : 1) a) et b) Activités numériques (sur 1 points) choisir un nombre de départ 3 multiplier ce nombre par ( ) ( ) = 3 ( ) = 6 ajouter

Plus en détail

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES?

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles On sait que

Plus en détail

Cours 2 nde D. CRESSON

Cours 2 nde D. CRESSON Cours 2 nde D. CRESSON 15 novembre 2008 Chapitre 1 LES NOMBRES I Ensembles de nombres 1 Dénomination On note N l ensemble des nombres entiers naturels N = {0; 1; 2; 3;...; 1643722;...} On note Z l ensemble

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

Exercices Géométrie plane

Exercices Géométrie plane I Notions élémentaires et compléments sur les vecteurs Savoir-faire 1 : Démontrer avec des vecteurs Exercice 1 ABCD et BDFE sont deux parallélogrammes. Le point K est défini par BK = CB. 1. Justifier les

Plus en détail

THEOREMES DES MILIEUX DROITES PARALLELES Corrigés 1/9

THEOREMES DES MILIEUX DROITES PARALLELES Corrigés 1/9 DROITES PARALLELES Corrigés 1/9 Corrigé 01 Corrigé 02 On sait que ABC est un triangle, que I est le milieu de [ AB ] et J le milieu de [ BC ]. (IJ) est donc parallèle à la droite (BC). Corrigé 03 On sait

Plus en détail

FG² = EF² + EG² 7² = 2² + EG² 49 = 4 + EG² EF = 2, FG = 7, EG =? EG² = 49 4 = 45 EG = = 3 EG 6,7

FG² = EF² + EG² 7² = 2² + EG² 49 = 4 + EG² EF = 2, FG = 7, EG =? EG² = 49 4 = 45 EG = = 3 EG 6,7 EC 4A : ELEMENTS DE MATHEMATIQUES THEOREMES DE PYTHAGORE ET DE THALES EXERCICES CORRECTION EXERCICE N 1 : Figure 1 : ABC est rectangle en A, donc, BC² = AB² + AC² BC² = 5² + 7² BC² = 25 + 49 AB = 5, AC

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Novembre 0 ÉPREUVE DE MATHÉMATIQUES classe de e Durée : heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments usuels

Plus en détail

Cours configurations du plan

Cours configurations du plan I Polygones a) Polygones particuliers triangles Propriété : La somme des angles d un triangle est égale à 180. Définition : Un triangle isocèle a deux côtés de même longueur. Propriétés caractéristiques

Plus en détail

Cet exercice est un questionnaire à choix multiples (QCM). Aucune justification n'est demandée.

Cet exercice est un questionnaire à choix multiples (QCM). Aucune justification n'est demandée. Devoir maison pour le 16 mai 201 Exercice 1 (5 points) : Dans une classe de troisième de 24 élèves, les délégués ont fait passer une enquête concernant le temps de travail à la maison chaque soir. Il résulte

Plus en détail

Théorème de Pythagore

Théorème de Pythagore Théorème de Pythagore C H A P I T R E 6 Énigme du chapitre. Objectifs du chapitre. Tom veut rejoindre l école le plus rapidement possible. Il doit traverser une rivière de 1 mètre de large. Où faut-il

Plus en détail

Exercices pour préparer le brevet blanc n 2. Collège Maurice Rollinat. Programme de révisions : Chapitres 1 à 10.

Exercices pour préparer le brevet blanc n 2. Collège Maurice Rollinat. Programme de révisions : Chapitres 1 à 10. Exercices pour préparer le brevet blanc n 2. Collège Maurice Rollinat. Programme de révisions : Chapitres 1 à 10. Exercice 1 : 1) Les nombres 255 et 612 sont-ils premiers entre eux? Justifier. (sans calculer

Plus en détail

3 5e Anniversaire

3 5e Anniversaire 5e Anniversaire 196 1998 Concours canadien de mathématiques Une activité du Centre d'éducation en mathématiques et en informatique, Université de Waterloo, Waterloo, Ontario 1998 s Concours Pascal (9 e

Plus en détail

DIPLÔME NATIONAL DU BREVET BLANC n 2

DIPLÔME NATIONAL DU BREVET BLANC n 2 DIPLÔME NATIONAL DU BREVET BLANC n 2 SESSION 2013 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Ce sujet comporte 4 pages numérotées de 1/4 à 4/4. Dès qu il vous est remis, assurez-vous qu il

Plus en détail

1. Tracer un triangle ABC et placer le point M milieu de [AB]. Soit le point N symétrique

1. Tracer un triangle ABC et placer le point M milieu de [AB]. Soit le point N symétrique 4 ème D DS4 triangles : milieux, parallèles sujet 1 2009-2010 Agrandissement - réduction NOM : Prénom : Note : 20 Objectif Acquis En cours Non Acquis d acquisition Connaître et utiliser les théorèmes relatifs

Plus en détail

Epreuve de Mathématiques Durée 2 heures

Epreuve de Mathématiques Durée 2 heures Collège Jules Ferry Session 2012 Diplôme National du Brevet Blanc n 1 Epreuve de Mathématiques Durée 2 heures L emploi des calculatrices est autorisé (circulaire n 99 186 du 16 Novembre 1999 publiée au

Plus en détail

DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007

DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007 1 sur 7 http://www.ilemaths.net/maths_3-sujet-brevet-07-07-correction.php#c... DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007 L'emploi de la calculatrice est autorisé. La rédaction

Plus en détail

FORMULAIRE MATHEMATIQUES

FORMULAIRE MATHEMATIQUES Collège Mont Miroir FORMULAIRE MATHEMATIQUES Tout ce que vous devez savoir pour réussir au brevet, et même après. Mr Mougin 2015/2016 Page 2 SOMMAIRE ARITHMÉTIQUE... 5 Définitions... 5 Critères de divisibilité...

Plus en détail

SECTIONS AGRANDISSEMENT REDUCTION

SECTIONS AGRANDISSEMENT REDUCTION ECTION AGRANDIEMENT REDUCTION * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * A - ECTION D'UN PAVE DROIT PAR UN PLAN La section d'un pavé droit par un plan

Plus en détail

THEOREMES DE GEOMETRIE

THEOREMES DE GEOMETRIE THEOREMES DE GEOMETRIE DROITES REMARQUABLES D'UN TRIANGLE Hauteurs : On appelle hauteur d'un triangle une droite qui passe par un sommet du triangle et qui est perpendiculaire au coté opposé à ce sommet.

Plus en détail

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle.

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle. 6 e Décrire des figures usuelles Objectif 04 Livre 12 Mots clefs. Cercle Rayon, diamètre, corde et arc d un cercle Équidistance Triangle, triangle isocèle, triangle rectangle, triangle équilatéral Base

Plus en détail

FICHE REVISION GEOMETRIE EN PREVISION DU DEVOIR COMMUN DE FEVRIER

FICHE REVISION GEOMETRIE EN PREVISION DU DEVOIR COMMUN DE FEVRIER Exercice n 1 : FICHE REVISION GEOMETRIE EN PREVISION DU DEVOIR COMMUN DE FEVRIER Sur la figure ci-contre : les points K, A, F, C sont alignés ; les points G, A, E, B sont alignés ; (EF) et (BC) sont parallèles

Plus en détail

Triangles rectangles et trigonométrie

Triangles rectangles et trigonométrie Chapitre 6 Triangles rectangles et trigonométrie I] Rappels a) Définition Un triangle qui a un angle droit est un triangle rectangle. Le côté opposé à l angle droit est l hypoténuse, c est le plus grand

Plus en détail

BREVET BLANC DE MATHÉMATIQUES N janvier 2011

BREVET BLANC DE MATHÉMATIQUES N janvier 2011 CORRECTION BREVET BLANC DE MATHÉMATIQUES N 1 19 janvier 2011 -L emploi des calculatrices est autorisé. -Toutes les réponses devront être soigneusement rédigées sur la copie ( sauf indication contraire).

Plus en détail

Vérifier la validité de l observation en déplaçant un des 4 sommets du quadrilatère.

Vérifier la validité de l observation en déplaçant un des 4 sommets du quadrilatère. 50 - Aires 3 Cabri Enoncé : ABCD est un quadrilatère quelconque, I le point d intersection de ses diagonales. Calculer le produit des aires des deux triangles grisés et le produit des aires des deux autres

Plus en détail

Exercice 1 Voici deux programmes de calcul. Programme A Choisir un nombre. Lui ajouter 2. Multiplier le résultat par le nombre de départ.

Exercice 1 Voici deux programmes de calcul. Programme A Choisir un nombre. Lui ajouter 2. Multiplier le résultat par le nombre de départ. Exercice 1 Voici deux programmes de calcul. Programme A Lui ajouter 2. Multiplier le résultat par le nombre de départ. Programme B Calculer le carré du nombre de départ. Ajouter le double du nombre de

Plus en détail

Cercles et polygones

Cercles et polygones Cercles et polygones I) Le cercle : a) Soit O un point donné et R un nombre décimal positif. On appelle cercle C de centre O et de rayon R, l ensemble des points M situés à la distance R du point O. On

Plus en détail

BREVET BLANC DE MATHEMATIQUES n 1

BREVET BLANC DE MATHEMATIQUES n 1 BREVET BLANC DE MATHEMATIQUES n 1 JANVIER 2016 Durée : 2h L usage de la calculatrice est autorisé. 4 points sont attribués à la qualité de la présentation et à la rédaction. Attention! Ce sujet comporte

Plus en détail

Seconde 4 Repérage dans le plan Vecteurs

Seconde 4 Repérage dans le plan Vecteurs Exercice 1 : repères du plan coordonnées de points et de vecteurs Quadrillage à maille carrée Lire les coordonnées dans le repère (O ; i ; j ) : a) des points A, B, C, D, E b) des vecteurs u et v Exercice

Plus en détail

Angles : Définitions utiles. Angles : Propriétés utiles. Triangle : Droite des milieux. Triangle : Généralités

Angles : Définitions utiles. Angles : Propriétés utiles. Triangle : Droite des milieux. Triangle : Généralités Angles : Définitions utiles Angles : Propriétés utiles D1: Deux angles qui ont un sommet commun et un côté commun sont dits adjacents. Sur la figure ci contre, l angle en rouge et l angle en vert ont en

Plus en détail

a. 9 x 2 25 b. 3 x 2 30 x+25 c. 9 x 2 30 x+25

a. 9 x 2 25 b. 3 x 2 30 x+25 c. 9 x 2 30 x+25 Q.C.M : (Issues de brevets) 1. L'expression développée de (3 x 5) 2 est : a. 9 x 2 25 b. 3 x 2 30 x+25 c. 9 x 2 30 x+25 (3 x 5) 2 =(3 x) 2 2 3 x 5+ 5 2 =9 x 2 30 x+ 25 2. On considère la fonction f définie

Plus en détail

Décrire la méthode utilisée pour trouver le nombre de rosiers nécessaires.

Décrire la méthode utilisée pour trouver le nombre de rosiers nécessaires. 3 ème A IE3 théorème de Thalès 2015-2016 S1 Utiliser la figure suivante pour démontrer que les droites (TU) et (RS) sont parallèles. Calculer ensuite RS. UT = 3,5 cm OT = 3 cm OU = 2,7 cm OR = 7,2 cm OS

Plus en détail

Collège Blanche de Castille

Collège Blanche de Castille 3 ème A - B C Composition 3 de MATHÉMATIQUES Date : 11/05/2010 Durée : 2 h Collège Blanche de Castille Coefficient : 3 Note sur : 40 Présentation : /4 Les calculatrices sont autorisées (il est interdit

Plus en détail

MATHÉMATIQUES 3e. 3 e - Contrôle d acquisitions. DURÉE 1h 50. Devoir n 6 - ALGEBRE. h(t) 1/7. Devoirs n 6 (Algèbre) et n 7 (géométrie)

MATHÉMATIQUES 3e. 3 e - Contrôle d acquisitions. DURÉE 1h 50. Devoir n 6 - ALGEBRE. h(t) 1/7. Devoirs n 6 (Algèbre) et n 7 (géométrie) e - Contrôle d acquisitions er Trimestre Novembre 200 MATHÉMATIQUES e Devoirs n 6 (Algèbre) et n 7 (géométrie) Les deux devoirs sont à faire sur des copies différentes. On mettra les copies l une dans

Plus en détail

3 e Révisions Pythagore

3 e Révisions Pythagore 3 e Révisions Pythagore Pour prendre un bon départ. Compléter le tableau suivant en utilisant la figure Triangle Rectangle en Théorème de Pythagore ACI C AI² = AC² + CI² DEI CHI HIM JLM JLK JKM HJK GFH

Plus en détail

Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé.

Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé. Activités numériques (12 points) Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé. Exercice 1 :(détailler chacun des calculs suivants)

Plus en détail

DIFFÉRENTES MOYENNES...

DIFFÉRENTES MOYENNES... DIFFÉRENTES MOYENNES... - LA MOYENNE ARITHMÉTIQUE a) Exemple :Un rectangle de 3 m sur 5 m a le même périmètre qu un carré de côté c. Calculer c. b) Cas général avec un rectangle dont les côtés sont a et

Plus en détail

Collège PITHOU Brevet Blanc Avril Vendredi 18 Avril Mathématiques. Durée de l épreuve : 2 heures 9h à 11h

Collège PITHOU Brevet Blanc Avril Vendredi 18 Avril Mathématiques. Durée de l épreuve : 2 heures 9h à 11h BREVET BLANC Vendredi 18 Avril 2014 Mathématiques Durée de l épreuve : 2 heures 9h à 11h Les calculatrices sont autorisées Conseils : Dans un même exercice, fais les questions dans l ordre. N oublie pas

Plus en détail

J ai 3 côtés de même longueur. J ai 4 côtés égaux, 4 angles droits et mes diagonales sont de même longueur et perpendiculaires. J ai 2 côtés de même longueur. J ai 4 angles droits et mes côtés opposés

Plus en détail

Brevet blanc de mathématiques avril 2015

Brevet blanc de mathématiques avril 2015 Durée de l épreuve : 2 h 00 Ce sujet comporte 4 pages numérotées de 1/4 à 4/4. Dès que ce sujet vous est remis, assurez-vous qu il est complet. L usage de la calculatrice est autorisé. Exercice 1 Exercice

Plus en détail

2.5 Solutions des exercices

2.5 Solutions des exercices .5 Solutions des exercices Réponses au questionnaire à choix multiples.1.5 Vrai Faux 1 Deux angles et sont complémentaires si + = 180. V F Deux angles et sont supplémentaires si + = 180. V F 3 Un polygone

Plus en détail

D après des exemples tirés des manuels Cap Maths, sauf mention contraire

D après des exemples tirés des manuels Cap Maths, sauf mention contraire 1 / 6 Exemples d'activités géométriques D après des exemples tirés des manuels Cap Maths, sauf mention contraire Reproduction de figures Activité 1 : Avec la règle, sans mesurer... On a commencé à reproduire

Plus en détail

Exercices sur les vecteurs

Exercices sur les vecteurs Exercices sur les vecteurs Exercice 1 : Associativité de la somme de trois vecteurs. On donne trois vecteurs u, v et w. Sur les deux figures suivantes tracer la somme u + v + w de deux manières : u + v

Plus en détail

Corrigé non officiel de la partie mathématique de la deuxième épreuve d admissibilité. groupement académique 3 CRPE session 2014 (14 juin 2013)

Corrigé non officiel de la partie mathématique de la deuxième épreuve d admissibilité. groupement académique 3 CRPE session 2014 (14 juin 2013) Corrigé non officiel de la partie mathématique de la deuxième épreuve d admissibilité. groupement académique 3 CRPE session 2014 (14 juin 2013) Exercice 1 1. L affirmation 1 est vraie. 4 7 5 18 = 2 14

Plus en détail

DIPLÔME NATIONAL DU BREVET. Série Collège MATHÉMATIQUES

DIPLÔME NATIONAL DU BREVET. Série Collège MATHÉMATIQUES Collège Georges Brassens PERSAN Janvier 2011 DIPLÔME NATIONAL DU BREVET Série Collège MATHÉMATIQUES Durée : 2 heures (aucune sortie ne sera acceptée avant ce temps) L emploi de la calculatrice est autorisé.

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

Théorème de Pythagore

Théorème de Pythagore Théorème de Pythagore A) Vocabulaire. Définition : Dans un triangle rectangle l hypoténuse est le côté opposé à l angle droit. Exemple : Si ABC est un triangle rectangle en A alors le côté [BC] est sont

Plus en détail

Progression 4e - MATHEMATIQUES

Progression 4e - MATHEMATIQUES PREMIER TRIMESTRE ADDITION ET SOUSTRACTION DES NOMBRES RELATIFS (Chap1) I) Addition de deux nombres relatifs II) Soustraction de deux nombres relatifs III) Notation simplifiée Activités : CALCUL MENTAL,

Plus en détail

Si k > 1, il s agit d un agrandissement à l échelle k. Si 0 < k < 1, il s agit d une réduction à l échelle k. Si k = 1, on parle de reproduction.

Si k > 1, il s agit d un agrandissement à l échelle k. Si 0 < k < 1, il s agit d une réduction à l échelle k. Si k = 1, on parle de reproduction. 1 THALES : THEOREME, RECIPROQUE CONTRAPOSEE I- AGRANDISSEMENT REDUCTION Définition : On appelle agrandissement ou réduction d une figure, la figure obtenue en multipliant toutes les longueurs de la figure

Plus en détail

Exercice 1 (4 points) Dans chacun des cas suivants, calculer AB. On donnera la valeur exacte puis la valeur arrondie au dixième.

Exercice 1 (4 points) Dans chacun des cas suivants, calculer AB. On donnera la valeur exacte puis la valeur arrondie au dixième. 4 ème D DS3 théorème de Pythagore sujet 1 2009-2010 NOM : Prénom : Compétences Acquis En cours d acquisition Caractériser le triangle rectangle par le théorème de Pythagore et sa réciproque Calculer la

Plus en détail

CHAPITRE 9 GÉOMÉTRIE

CHAPITRE 9 GÉOMÉTRIE CHAPITRE 9 GÉOMÉTRIE A) Le triangle (Rappels) 1) Droites et points remarquables a) Médianes et centre de gravité Les médianes sont les droites issues des sommets et passant par le milieu du côté opposé

Plus en détail

CUEEP. Théorème de Pythagore Département Mathématiques. Juin 2006 GEOMETRIE E 325 1/14 DIVERS PROBLEMES. 1 - Les barreaux

CUEEP. Théorème de Pythagore Département Mathématiques. Juin 2006 GEOMETRIE E 325 1/14 DIVERS PROBLEMES. 1 - Les barreaux 006 E 35 1/14 Situations DIVERS PROBLEMES 1 - Les barreaux 7 barreaux équidistants forment un porche en demi-cercle. Calculer la longueur totale des barreaux. - La tente Une tente canadienne est large

Plus en détail

IDENTITES REMARQUABLES ET RAPPELS DE CALCUL LITTERAL... 2 PGCD DE DEUX NOMBRES... 3 LES EQUATIONS... 5 FONCTIONS LINEAIRES... 6 FONCTIONS AFFINES...

IDENTITES REMARQUABLES ET RAPPELS DE CALCUL LITTERAL... 2 PGCD DE DEUX NOMBRES... 3 LES EQUATIONS... 5 FONCTIONS LINEAIRES... 6 FONCTIONS AFFINES... IDENTITES REMARQUABLES ET RAPPELS DE CALCUL LITTERAL.... 2 PGCD DE DEUX NOMBRES... 3 LES EQUATIONS... 5 FONCTIONS LINEAIRES... 6 FONCTIONS AFFINES... 7 LES PROBABILITES... 8 PUISSANCES... 9 RACINES CARREES...

Plus en détail

S13. Autour des théorèmes de PYTHAGORE et THALES

S13. Autour des théorèmes de PYTHAGORE et THALES CRPE S1. Autour des théorèmes de PYTHAGORE et THALES Mise en route A. Dans chaque exercice, une configuration à reconnaître une propriété à connaitre une démonstration à rédiger 1. ARC est un triangle

Plus en détail

4 ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : Note : ème C IE5 triangles : milieux, parallèles sujet

4 ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : Note : ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : ABC est un triangle rectangle en A. Le point I est le milieu du segment [BC]. Le point J est le milieu du segment [AB]. Démontrer que les droites (IJ) et (AB) sont perpendiculaires. Note

Plus en détail

Collège E. ATGET Vendredi 20 mai 2011 BREVET BLANC MATHEMATIQUES. CORRIGE

Collège E. ATGET Vendredi 20 mai 2011 BREVET BLANC MATHEMATIQUES. CORRIGE Collège E. ATGET Vendredi 20 mai 2011 BREVET BLANC MATHEMATIQUES. CORRIGE Devoir de 2 heures, noté sur 40 (dont 4 points pour la qualité de la présentation et de la rédaction). La machine à calculer est

Plus en détail

Diplôme National du Brevet Brevet Blanc n 2

Diplôme National du Brevet Brevet Blanc n 2 Session 2009 Diplôme National du Brevet Brevet Blanc n 2 MATHÉMATIQUES Série Collège L usage de la calculatrice est autorisé Le candidat remettra sa copie et les 2 annexes (1 feuille recto verso) au surveillant

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Décembre 0 ÉPREUVE DE MATHÉMATIQUES classe de e Durée : heures Présentation et orthographe : points Les calculatrices sont autorisées, ainsi que les instruments usuels

Plus en détail

LE TRIANGLE RECTANGLE ET LE THEOREME DE PYTHAGORE

LE TRIANGLE RECTANGLE ET LE THEOREME DE PYTHAGORE Corrigés 1/10 Corrigé 01 Théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés de l'angle droit. Réciproque du théorème de Pythagore : Si dans

Plus en détail

Ch3 : configurations du plan - repérage d un point

Ch3 : configurations du plan - repérage d un point Ch3 : configurations du plan - repérage d un point 1. Coordonnées d un point sur un plan : repère orthonormé 1 (O,I,J et repérage d un point distance de deux points - démonstration avec le théorème de

Plus en détail

Composition n 2 de Mathématiques Seconde. Mercredi 30 Janvier 2013 Classe : NOTE : Nom : Signature : Prénom : /20. Observations :

Composition n 2 de Mathématiques Seconde. Mercredi 30 Janvier 2013 Classe : NOTE : Nom : Signature : Prénom : /20. Observations : Nom : Composition n 2 de Mathématiques Seconde Mercredi 30 Janvier 2013 Classe : NOTE : Signature : Prénom : /20 Observations : 1 La calculatrice est autorisée. Il sera tenu compte de la rigueur et du

Plus en détail

Aide mémoire Géométrie 3 è m e

Aide mémoire Géométrie 3 è m e Sinus d'un angle aigu: ide mémoire Géométrie è m e Sinus: est un triangle rectangle en. le sinus de l'angle, noté sin, est le rapport sin = longueur du côté opposé de l'angle longueur de 'hypoténuse côté

Plus en détail

CLÉ DE CORRECTION. Exercice 1. Section 6. Partie 1 : Théorème de Pythagore. Triangle rectangle Triangle isocèle Triangle rectangle isocèle

CLÉ DE CORRECTION. Exercice 1. Section 6. Partie 1 : Théorème de Pythagore. Triangle rectangle Triangle isocèle Triangle rectangle isocèle Section 6 Partie 1 : Théorème de Pythagore CLÉ DE CORRECTION Exercice 1 Triangle rectangle Triangle isocèle Triangle rectangle isocèle Triangle scalène Triangle équilatéral Exercice 2 1. 2. 2 3. L angle

Plus en détail

Epreuve de Mathématiques Durée 2 heures

Epreuve de Mathématiques Durée 2 heures Collège Jules Ferry Session 2016 Diplôme National du Brevet Blanc n 1 Epreuve de Mathématiques Durée 2 heures L utilisation de la calculatrice est autorisée (circulaire n 99 186 du 16 Novembre 1999). L

Plus en détail

Correction Brevet des Collèges Pondichéry Avril 2012

Correction Brevet des Collèges Pondichéry Avril 2012 Correction Brevet des Collèges Pondichéry Avril 2012 Activités numériques Exercice 1 : PGCD 1/ L ouvrier peut-il choisir des plaques de 10 cm de côté sans qu il n ait de pertes? Si l ouvrier découpe des

Plus en détail

0,13 Donc en 2010 le pourcentage de Français qui vivaient sous le seuil de pauvreté était proche de 13 %.

0,13 Donc en 2010 le pourcentage de Français qui vivaient sous le seuil de pauvreté était proche de 13 %. La répartition des points par exercice est donnée à titre indicatif. 4 points sont réservés à la maîtrise de la langue. Exercice 1 (3 points) 789 personnes parmi les 992 utilisateurs ont choisi le moteur

Plus en détail

, en déduire la nature du triangle ORS.

, en déduire la nature du triangle ORS. Groupe seconde chance Feuille d exercices n 6 Exercice On appelle triangles pythagoriciens les triangles rectangles dont les trois côtés ont pour mesure un nombre entier. Soit a, b, c les mesures des côtés

Plus en détail

Trigonométrie et angles orientés

Trigonométrie et angles orientés Trigonométrie et angles orientés A) Angles orientés. 1. Le radian. Le radian est une unité de mesure d un angle comme le degré. Il est défini comme la longueur de l arc entre deux points du cercle unité

Plus en détail

Le théorème de Thalès

Le théorème de Thalès Le théorème de Thalès Programmes : 4 e : - Triangles, milieux et parallèles : théorèmes relatifs aux milieux de deux côtés d un triangle - Triangles déterminés par 2 droites parallèles coupant deux demi-droites

Plus en détail

Brevet blanc des Collèges Collège Saint-Joseph ETAPLES - Académie de Lille.

Brevet blanc des Collèges Collège Saint-Joseph ETAPLES - Académie de Lille. Brevet blanc des Collèges Collège Saint-Joseph ETAPLES - Académie de Lille. La calculatrice personnelle est autorisée, mais aucun matériel ne peut être prêté ou emprunté au voisin. La qualité de la rédaction

Plus en détail

p(p a)(p b)(p c) où p = 1 (a + b +c)

p(p a)(p b)(p c) où p = 1 (a + b +c) ème E DS4 racines carrées 01-014 sujet 1 Eercice 1 : (4 points) Les figures ci-dessous ont toutes une aire de cm². Donner la valeur eacte de en cm, dans chacun des cas. (1) () () (4) 1 Eercice : au brevet

Plus en détail

Collège Catherine de Vivonne

Collège Catherine de Vivonne Collège Catherine de Vivonne BREVET BLANC DE MATHEMATHIQUES 2014 Correction Exercice 1 : pts On donne le programme de calcul suivant : Choisir un nombre. Ajouter 1. Calculer le carré du résultat obtenu.

Plus en détail

Géométrie _ Equations de droites

Géométrie _ Equations de droites Géométrie _ Equations de droites Exercice 1 : Cinéma et concert Sous thème : Coordonnées d un point, droites (livre Maths, 2 nde, Nathan 2010) Un groupe d amis, dont certains sont étudiants, va au cinéma.

Plus en détail

Copyright 2012 PLANETE WORK

Copyright 2012 PLANETE WORK Page 1 sur 36 TABLE DES MATIÈRES CALCUL LITTÉRAL... 5 DÉVELOPPER UNE EXPRESSION LITTÉRALE... 5 FACTORISER UNE EXPRESSION LITTÉRALE... 6 SUPPRESSION DE PARENTHÈSES DEVANT DES SOMMES ALGÉBRIQUES... 6 RÉDUCTION

Plus en détail