Chaque fois qu on est confronté à une situation d évolutions successives d une grandeur de t%, on peut définir une suite géométrique de raison 1+ t

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chaque fois qu on est confronté à une situation d évolutions successives d une grandeur de t%, on peut définir une suite géométrique de raison 1+ t"

Transcription

1 I SUITES GÉOMÉTRIQUES 1 DÉFINITION Dire qu une suite (u n ) est géométrique signifie qu il existe un nombre réel q non nul tel que, pour tout entier n, u n+1 = qu n Le réel q est appelé la raison de la suite géométrique. ÉVOLUTION EN POURCENTAGE Augmenter une grandeur de t% équivaut à multiplier sa valeur par 1+ t 100. Diminuer une grandeur de t% équivaut à multiplier sa valeur par 1 t 100. Chaque fois qu on est confronté à une situation d évolutions successives d une grandeur de t%, on peut définir une suite géométrique de raison 1+ t t (augmentation) ou (diminution) EXEMPLES 1. Un capital de C est placé au taux d intérêt composé de 1,5% par an. On note C n le capital disponible au bout de n années alors : ( C n+1 = 1+ 1,5 ) C n = 1,015 C n 100 Ainsi, la suite (C n ) est une suite géométrique de premier terme C 0 = 2000 et de raison q=1, Pour lutter contre la pollution, un groupe industriel décide de réduire progressivement sa quantité de rejets de 4% par an. En 2012, la quantité de rejets était de tonnes. On note r n la quantité de rejets l année 2012+n d où : ( r n+1 = 1 4 ) r n = 0,96 r n 100 Ainsi, la suite (r n ) est une suite géométrique de premier terme r 0 = et de raison 0,96. 2 PROPRIÉTÉ 1 Soit (u n ) une suite géométrique de raison q et de premier terme u 0 alors pour tout entier n, u n = u 0 q n EXEMPLE L objectif du groupe industriel est de réduire progressivement la quantité de rejets pour atteindre une quantité inférieure ou égale à tonnes (soit une réduction de 40%). Cet objectif sera-t-il atteint au bout de 10 ans? Au bout de 10 ans, la quantité de rejets est de : r 10 = , Avec un réduction de 4 % par an, en 2022 l objectif du groupe industriel ne sera pas atteint. A. YALLOUZ Page 1 sur 16

2 Lycée JANSON DE SAILLY 3 PROPRIÉTÉ 2 Si (u n ) une suite géométrique de raison q alors pour tout entier n et pour tout entier p, u n = u p q n p 4 MONOTONIE Soit (u n ) une suite géométrique de raison q et de premier terme u 0 donc : u n+1 u n = u 0 q n+1 u 0 q n = u 0 q n (q 1) La monotonie de la suite dépend du signe de u 0, q n et (q 1) Si q<0 alors q n est positif pour n pair, négatif pour n impair donc la suite n est pas monotone. Si q>0 alors la suite est monotone, croissante ou décroissante selon le signe du produit u 0 (q 1). Si q>1 Si 0<q<1 Si u 0 > 0, alors la suite (u n ) est croissante Si u 0 < 0, alors la suite (u n ) est décroissante Si u 0 > 0, alors la suite (u n ) est décroissante Si u 0 < 0, alors la suite (u n ) est croissante u n n u n n u n n u n n Nous pouvons en déduire les deux théorèmes suivants THÉORÈME 1 Soit q un réel non nul. Si q<0 alors la suite (q n ) n est pas monotone. Si q>1 alors la suite (q n ) est strictement croissante. Si 0<q<1 alors la suite (q n ) est strictement décroissante. Si q=1 alors la suite (q n ) est constante. THÉORÈME 2 Soit (u n ) une suite géométrique de raison q non nulle et de premier terme u 0 non nul Si q<0 alors la suite (u n ) n est pas monotone. Si q>0 et u 0 > 0 alors la suite (u n ) a le même sens de variation que la suite (q n ). Si q>0 et u 0 < 0 alors la suite (u n ) a le sens de variation contraire de celui de la suite (q n ). A. YALLOUZ Page 2 sur 16

3 Lycée JANSON DE SAILLY 5 SOMME DE TERMES CONSÉCUTIFS Soit (u n ) une suite géométrique de raison q 1 et de premier terme u 0 alors pour tout entier n, u 0 + u 1 + +u n = Cette formule peut se retenir de la façon suivante : n i=0 ( 1 q n+1) u i = u 0 1 q La somme S de termes consécutifs d une suite géométrique de raison q 1 est : S=premier terme 1 qnombre de termes 1 q II LIMITE D UNE SUITE On étudie le comportement d une suite (u n ) quand n prend de grandes valeurs. 1 LIMITE INFINIE DÉFINITION On dit qu une suite (u n ) admet une limite égale à + quand n tend vers + si pour tout nombre réel A strictement positif, tous les termes de la suite sont supérieurs à A à partir d un certain rang p. On écrit : lim u n =+ n + Concrètement, une suite (u n ) tend vers + si u n est aussi grand que l on veut dès que n est suffisamment grand. INTERPRÉTATION GRAPHIQUE On a représenté ci-dessous une suite (u n ) ayant une limite égale à+ u n A Pour tout entier n p, u n > A. p est le seuil à partir duquel u n > A p n A. YALLOUZ Page 3 sur 16

4 Lycée JANSON DE SAILLY DÉFINITION On dit qu une suite (u n ) admet une limite égale à quand n tend vers + si pour tout nombre réel A strictement négatif, tous les termes de la suite sont inférieurs à A à partir d un certain rang p. On écrit : lim u n = n + 2 LIMITE FINIE DÉFINITION Soit (u n ) une suite définie sur Æ et l un réel. 1. Dire que la suite (u n ) admet pour limite le réel l signifie que tout intervalle ouvert de la forme ]l r; l + r[ contient tous les termes de la suite à partir d un certain rang p. On écrit : lim u n =l n + 2. Une suite qui admet pour limite un réel l est dite convergente. Autrement dit, une suite (u n ) est convergente vers un réel l si tous les termes de la suite à partir d un certain rang p peuvent être aussi proches que voulu del. INTERPRÉTATION GRAPHIQUE Si on représente la suite convergente par un nuage de points dans un repère, à partir d un certain rang p, tous les points sont dans la bande délimitée par les droites d équation y=l r et y=l+r. u n l+r l l r Le rang p est le seuil à partir duquel «u n est à une distance de l inférieure à r» p n PROPRIÉTÉ La suite (u n ) converge vers un réel l si, et seulement si, la suite (u n ) l est convergente vers un 0. REMARQUE Une suite peut ne pas admettre de limite. Par exemple la suite de terme général ( 1) n prend alternativement les valeurs 1 et 1. Elle n admet pas de limite. A. YALLOUZ Page 4 sur 16

5 3 LIMITES D UNE SUITE GÉOMÉTRIQUE THÉORÈME (admis) Soit q un nombre réel : Si 1<q<1 alors la suite géométrique de terme général q n converge vers 0 : lim n + qn = 0. Si q>1 alors la suite géométrique de terme général q n a pour limite + : lim n + qn =+. Si q< 1 alors la suite géométrique de terme général q n n admet pas de limite finie ou infinie. REMARQUE Pour q = 1, la suite (q n ) est constante et égale à 1 donc convergente. Pour q = 1, la suite (q n ) prend alternativement les valeurs 1 et 1 suivant la parité de n, elle n admet pas de limite. COROLLAIRE Soit (u n ) une suite géométrique de premier terme u 0 non nul et de raison q strictement positive. Si 0<q<1 alors la suite (u n ) converge et lim n + u n = 0. Si q=1 alors la suite (u n ) est constante et égale à u 0. Si q>1 alors la suite (u n ) admet une limite infinie avec : lim u n = si u 0 < 0 et lim u n =+ si u 0 > 0 n + n + RECHERCHE D UN SEUIL À L AIDE D UN ALGORITHME EXEMPLE 1 Soit (r n ) la suite géométrique de raison 0,96 et de premier terme r 0 = Comme 0<0,96<1 la suite (r n ) est décroissante et converge vers 0 : lim n ,96n = 0. L algorithme suivant permet d obtenir le seuil à partir duquel le terme général de la suite est inférieur à C est à dire déterminer le plus petit entier p tel que pour tout entier n p, ,96 n INITIALISATION : A=50000 ; I = 0; TRAITEMENT : TANT_QUE A > FAIRE I prend la valeur I+ 1 ; A prend la valeur 0,96 A ; FIN TANT_QUE SORTIE : Afficher I Initialisation : A=50000 I = 0 PROGRAMME TEXAS CASIO PROGRAM : SEUIL ===== SEUIL ===== : A A : 0 I 0 I : While A > While A > : I + 1 I I + 1 I : 0.96*A A 0.96*A A : End WhileEnd : Disp I I Traitement : Tant que la condition A>30000 est vraie, on effectue la suite d instructions situées à l intérieur de la boucle "TANT_ QUE" et "FIN TANT_ QUE" A. YALLOUZ Page 5 sur 16

6 A > ? VRAI VRAI VRAI VRAI FAUX I = 1 A=48000 I = 2 A=46080 I = 13 A= 29410,... SORTIE BOUCLE TANT QUE Sortie : La calculatrice affiche 13. Donc pour tout entier n 13, ,96 n EXEMPLE 2 Soit (u n ) la suite géométrique de raison 1,015 et de premier terme u 0 = ,015> 1 et u 0 > 0 donc la suite (u n ) est croissante et lim n ,015n =+. L algorithme suivant permet d obtenir le seuil à partir duquel le terme général de la suite est supérieur à C est à dire déterminer le plus petit entier p tel que pour tout entier n p, ,015 n > 3000 INITIALISATION : A=2000 ; I = 0; TRAITEMENT : TANT_QUE A 3000 FAIRE I prend la valeur I+ 1 ; A prend la valeur 1,015 A ; FIN TANT_QUE SORTIE : Afficher I La calculatrice affiche 28. Donc pour tout entier n 28, ,015 n > III SUITES ARITHMÉTICO-GÉOMÉTRIQUES 1 DÉFINITION Soient a et b deux réels. La suite (u n ) définie pour tout entier n, par la relation de récurrence u n+1 = au n + b et de terme initial u 0 est une suite arithmético-géométrique REMARQUE Si a=1 la suite est arithmétique. Si b=0 la suite est géométrique. Dans les autres cas, la suite n est ni arithmétique ni géométrique. 2 ÉTUDIER UNE SUITE ARITHMÉTICO-GÉOMÉTRIQUE a et b sont deux réels tels que a 1 et b 0. (u n ) est la suite arithmético-géométrique définie par u 0 et pour tout entier n, u n+1 = au n + b. REPRÉSENTATION GRAPHIQUE On trace la courbe représentative de la fonction affine f : x ax + b et la droite d équation y = x A. YALLOUZ Page 6 sur 16

7 y a<0 y a>0 y=ax+b 1 y=ax+b 0 1 u 1 u 3 u 5 u 7 l u 8 u 6 u 4 u 2 u 0 x 0 1 u 0 u 1 u 2 u 3 u 4 u 5 u 6 l x Le graphique permet d obtenir un certain nombre de conjectures à propos de la monotonie ou de la convergence de la suite. 1 UNE SUITE AUXILIAIRE PROPOSITION Soit l le réel tel que l=al+b. La suite (v n ) définie pour tout entier n, par v n = u n l est géométrique. PREUVE Pour tout entier n, v n+1 = u n+1 l = au n + b l = au n + b (al+b) = au n al = a (u n l) Ainsi, pour tout entier n, v n = a v n donc (v n ) est une suite géométrique de raison a. CONSÉQUENCE (v n ) est une suite géométrique de raison a et v 0 = u 0 l donc pour tout entier n, v n =(u 0 l) a n. Comme v n = u n l u n = v n +l, on en déduit que : Pour tout entier n, u n =l+a n (u 0 l). EXEMPLE Chloé dépose 1000 C sur un compte d épargne rémunéré au taux mensuel de 0,2% et choisit d y ajouter à la fin de chaque mois la somme de 250 C. On note u n le montant, en euros, du capital acquis au bout de n mois. 1. Exprimer u n+1 en fonction de u n. Le coefficient multiplicateur associé à un taux d intérêt de 0,2% est 1,002. Donc pour tout entier n, u n+1 = 1,002 u n Soit (v n ) la suite définie pour tout entier n, par v n = u n Montrer que v n est une suite géométrique dont on précisera la raison et le premier terme. Pour tout entier n, v n+1 = u n = 1,002 u n = 1,002 (u n ) = 1,002 v n A. YALLOUZ Page 7 sur 16

8 Ainsi, (v n ) est une suite géométrique de raison 1,002 et de premier terme v 0 = = Exprimer u n en fonction de n. (v n ) est une suite géométrique de raison 1,002 et de premier terme v 0 = donc pour tout entier n, v n = ,002 n. Donc pour tout entier n, u n = ,002 n Étude de la suite (u n ). a) Variation Pour tout entier n, u n = ,002 n Donc pour tout entier n, u n+1 u n = ( ,002 n ) ( ,002 n ) = ,002 n ,002 n = ,002 n (1,002 1) = 252 1,002 n D où u n+1 u n > 0. Par conséquent, la suite (u n ) est strictement croissante. b) Limite Comme 1,002 > 1, lim n + 1,002n =+ donc lim n ,002n =+. c) Combien de mois sont nécessaires pour que le montant du capital disponible dépasse C? On cherche à déterminer le plus petit entier n 0 tel que pour tout entier n n 0, u n > L algorithme suivant permet d obtenir le seuil à partir duquel le terme général de la suite (u n ) est supérieur à A=1000 ; I = 0; TANT_QUE A FAIRE I prend la valeur I+ 1 ; A prend la valeur 1,002 A+250 ; FIN TANT_QUE Afficher I La calculatrice affiche 53. Donc le capital disponible dépassera C au bout de 53 mois. A. YALLOUZ Page 8 sur 16

9 EXERCICE 1 Soit (u n ) la suite définie par : u 0 = 16 et pour tout entier naturel n, u n+1 = 3 4 u n. PARTIE A 1. a) Quelle est la nature de la suite (u n )? b) Exprimer, pour tout entier naturel n, u n en fonction de n. c) Étudier la monotonie de la suite (u n ). 2. On a tracé ci-dessous dans un repère orthonormé, la courbe représentative de la fonction f définie pour tout réel x par f(x)=0,75x et la droite D d équation y=x. y D A1 M u 1 u 0 x a) Construire sur le graphique les termes de la suite u 2, u 3,,u 10. b) Que peut-on conjecturer à propos de la limite de la suite (u n )? 3. On considère l algorithme suivant : Les variables sont l entier naturel N et le réel U. Initialisation : Affecter à N la valeur 0 Affecter à U la valeur 16 Traitement : TANT QUE U > 0,01 Affecter à N la valeur N+ 1 Affecter à U la valeur 0,75 U Sortie : FIN TANT QUE Afficher N A. YALLOUZ Page 9 sur 16

10 Par rapport à la suite (u n ), quelle est la signification de l entier N affiché? PARTIE B On note S n la somme des n+1 premiers termes de la suite u n : 1. Calculer S 4. S n = n k=0 u k = u 0 + u 1 + u u n. 2. Recopier et compléter l algorithme suivant pour qu il affiche la valeur de la somme S n pour un n donné. Les variables sont l entier naturel N, les réels U et S. Initialisation : Affecter à U la valeur... Affecter à S la valeur... Entrée : Saisir la valeur de l entier naturel N Traitement : POUR i variant de 1 à N FIN POUR Sortie : Afficher... U prend la valeur... S prend la valeur a) Montrer que pour tout entier n, S n = 64 ( 1 0,75 n+1). b) Vers quel réel tend S n quand n tend vers +? EXERCICE 2 Soit (u n ) la suite géométrique définie par : u 0 = 1 2 et pour tout entier naturel n, u n+1 = 8 5 u n. 1. a) Exprimer, pour tout entier naturel n, u n en fonction de n. b) Étudier le sens de variation de la suite (u n ). 2. a) Dans le plan muni d un repère orthonormé, utiliser les droites d équations y = x et y = 1,6x pour construire les huit premiers termes de la suite (u n ). b) Que peut-on conjecturer à propos de la limite de la suite (u n )? 3. À l aide de la calculatrice, déterminer le plus petit entier n tel que u n On considère la suite (S n ) définie pour tout entier n par a) Calculer S 4. b) Exprimer S n en fonction de n. c) La suite (S n ) est-elle convergente? n 1 S n = k=0 u k = u 0 + u 1 + u u n 1. EXERCICE 3 Le premier jour ce chaque mois on effectue un versement de 300 C sur un compte épargne dont le taux d intérêt mensuel est égal à 0,1 %. Quelle est la somme disponible au terme du 12 e mois? EXERCICE 4 En 2012, la population d une ville était de habitants. Une étude portant sur l évolution démographique, a permis d établir que chaque année, 8 % des habitants quittent la ville et nouvelles personnes emménagent. On note u n le nombre de milliers d habitants de cette ville l année 2012+n; on a donc u 0 = 40. A. YALLOUZ Page 10 sur 16

11 1. Selon ce modèle, à combien peut-on évaluer la population de cette ville en 2013? 2. Justifier que pour tout entier naturel n, u n+1 = 0,92 u n On considère l algorithme suivant : Initialisation : Affecter à N la valeur 0 Affecter à U la valeur 40 Traitement : Tant_que U 44 : Affecter à N la valeur N+ 1 Affecter à U la valeur 0,92 U+ 4 Fin Tant_que Sortie : Afficher N Recopier et compléter le tableau suivant autant que nécessaire en arrondissant les résultats au millième près. Quel nombre obtient-on en sortie de l algorithme? Interpréter ce résultat. N U Test U 44 Vrai On considère la suite (v n ) définie pour tout entier naturel n par v n = u n 50. a) Démontrer que la suite (v n ) est une suite géométrique dont on précisera le premier terme et la raison. b) Exprimer v n en fonction de n. En déduire que pour tout entier naturel n, u n = ,92 n. 5. Étudier la monotonie de la suite u n. 6. Déterminer la limite de la suite (u n ). Interpréter ce résultat. EXERCICE 5 Une revue spécialisée est diffusée uniquement par abonnement. En 2010, il y avait 40 mille abonnés à cette revue. Depuis cette date, on a remarqué que chaque année 85 % des abonnés renouvellent leur abonnement et 12 mille nouvelles personnes souscrivent un abonnement. On note a n le nombre de milliers d adhérents pour l année 2010+n; on a donc a 0 = Pour tout entier naturel n, exprimer a n+1 en fonction de a n. 2. On considère l algorithme suivant : Variables : n et S sont des entiers naturels A est un réel. Entrée : Demander à l utilisateur la valeur de S Initialisation : Affecter à n la valeur 0 Affecter à A la valeur 40 Traitement : Tant_que A S : Affecter à n la valeur n+1 Affecter à A la valeur 0,85 A+12 Fin Tant_que Sortie : Afficher n L utilisateur saisit en entrée le nombre S = 65. Recopier et compléter le tableau suivant autant que nécessaire en arrondissant les résultats au millième près. Quel nombre obtient-on en sortie? Interpréter ce résultat. n A Test A S Vrai Soit la suite (u n ) définie par u n = a n 80 pour tout n 0. A. YALLOUZ Page 11 sur 16

12 a) Montrer que la suite (u n ) est une suite géométrique dont on précisera la raison et le premier terme. b) Démontrer que, pour tout entier naturel n, a n = ,85 n. c) Selon ce modèle, le directeur de cette revue peut-il envisager de la diffuser à 90 mille exemplaires? EXERCICE 6 (D après sujet bac 2016) Un centre de vacances possède une piscine de 600 m 3 soit litres. L eau du bassin contient du chlore qui joue le rôle de désinfectant. Toutefois le chlore se dégrade et 25 % de celui-ci disparaît chaque jour, en particulier sous l effet des ultra-violets et de l évaporation. Le 31 mai à 9 h, le responsable analyse l eau du bassin à l aide d un kit distribué par un magasin spécialisé. Le taux de chlore disponible dans l eau est alors de 1,25 mg/l (milligrammes par litre). DOCUMENT Réglementation des piscines publiques Paramètres contrôlés Seuils de qualité réglementaire Incidences sur la qualité de l eau < 2 mg/l : sous chloration Risque de Au minimum 2 mg/l Présence de Chlore prolifération bactérienne dans l eau > 4 mg/l : surchloration Irritation de la Au maximum 4 mg/l peau Source : Agence Régionale de Santé À partir du l er juin pour compenser la perte en chlore, la personne responsable de l entretien ajoute, chaque matin à 9 h, 570 g de chlore dans la piscine. Pour le bien-être et la sécurité des usagers, le responsable souhaite savoir si cet apport journalier en chlore permettra de maintenir une eau qui respecte la réglementation donnée par l Agence Régionale de Santé pour les piscines publiques. PARTIE A 1. Pour tout entier naturel n on note u n la quantité de chlore disponible, exprimée en grammes, présente dans l eau du bassin le n ième jour suivant le jour de l analyse, immédiatement après l ajout de chlore. Ainsi u 0 est la quantité de chlore le 31 mai à 9 h et u 1 est la quantité de chlore le 1 er juin à 9 h après l ajout de chlore. a) Montrer que la quantité de chlore, en grammes, présente dans l eau du bassin le 31 mai à 9 h est u 0 = 750. Au regard des recommandations de l agence régionale de santé, le responsable pouvait-il donner l accès à la piscine le 31 mai? b) Montrer que u 1 = 1132,5. c) Justifier que pour tout entier naturel n, u n+1 = 0,75u n d) La suite (u n ) est-elle géométrique? 2. Soit l algorithme ci-dessous : Variables u : un nombre réel N : un nombre entier naturel k : un nombre entier naturel Initialisation Saisir la valeur de N u prend la valeur 750 Traitement Pour k allant de 1 à N u prend la valeur 0,75u+570 Fin du Pour Sortie Afficher u A. YALLOUZ Page 12 sur 16

13 a) Quel est le rôle de cet algorithme? b) Recopier et compléter le tableau suivant, par des valeurs exactes, en exécutant cet algorithme «pas à pas» pour N = 3 : Variables Initialisation Etape 1 Etape 2 Etape 3 u 750 Au regard des recommandations de l agence régionale de santé, au bout de combien de jours la piscine peut-elle être ouverte? c) Calculer une valeur approchée à 10 3 près de la quantité de chlore le 15 ième jour juste après l ajout de chlore. PARTIE B Au fil du temps, la quantité de chlore évolue. On note d n l écart de quantité de chlore d un jour à l autre en grammes. Pour tout entier naturel n, on a d n = u n+1 u n. 1. a) Calculer d 0, d 1 et d 2. On donnera une valeur exacte. b) Justifier que d 0, d 1 et d 2 semblent être les termes d une suite géométrique. 2. Vérifier que u n+1 u n = 0,25u n Démontrer que la suite (d n ) est une suite géométrique dont on précisera le premier terme et la raison. a) Justifier que d n = 382,5 0,75 n. b) En déduire que pour tout entier naturel n, on a u n = ,75 n. c) Déterminer la limite de la suite (u n ). Interpréter le résultat trouvé. EXERCICE 7 (D après sujet bac Polynésie 2013) On considère la suite numérique (u n ) définie par : u 0 = 8 et, pour tout entier naturel n, u n+1 = 0,4u n Calculer u 1 et u 2. On utilise un tableur pour calculer les premiers termes de cette suite. Une copie d écran sur laquelle les termes u 1 et u 2 ont été effacés est donnée ci-dessous. A B 1 n u(n) , , , , , , Quelle formule a-t-on pu saisir dans la cellule B3 de la feuille de calcul afin d obtenir les premiers termes de cette suite par recopie vers le bas? 3. En utilisant cette copie d écran, que peut-on conjecturer sur la limite de la suite (u n )? 4. On considère l algorithme suivant : A. YALLOUZ Page 13 sur 16

14 Les variables sont l entier naturel N et le réel U. Initialisation : Affecter à N la valeur 0 Affecter à U la valeur 8 Traitement : TANT QUE U 5>0,01 Affecter à N la valeur N + 1 Affecter à U la valeur 0,4U+3 Fin TANT QUE Sortie : Afficher N Par rapport à la suite (u n ), quelle est la signification de l entier N affiché? 5. On considère la suite (v n ) définie pour tout entier naturel n, par v n = u n 5. a) Démontrer que la suite (v n ) est une suite géométrique dont on précisera le premier terme et la raison. b) Exprimer v n en fonction de n. c) Déterminer la limite de la suite (v n ). d) Le résultat précédent permet-il de valider la conjecture faite à la question 3? Pourquoi? EXERCICE 8 (D après sujet bac Antilles Guyane 2015) En 2010, un opérateur de téléphonie mobile avait un million de clients. Depuis, chaque année, l opérateur perd 10 % de ses clients, mais regagne dans le même temps nouveaux clients. 1. a) On donne l algorithme ci-dessous. Expliquer ce que l on obtient avec cet algorithme. VARIABLES : k, NbClients TRAITEMENT : Affecter à k la valeur 0 Affecter à NbClients la valeur Tant que k<8 Affecter à k la valeur k+1 Affecter à NbClients la valeur 0,9 NbClients Afficher NbClients Fin Tant que b) Recopier et compléter le tableau ci-dessous avec toutes les valeurs affichées pour k de 0 jusqu à 5. k NbClients 2. En supposant que cette évolution se poursuit de la même façon, la situation peut être modélisée par la suite (U n ) définie pour tout entier naturel n, par : { U0 = 1000 U n+1 = 0,9U n Le terme U n donne une estimation du nombre de clients, en millier, pour l année 2010+n. Pour étudier la suite (U n ), on considère la suite (V n ) définie pour tout entier naturel n par V n = U n 600. a) Montrer que la suite (V n ) est géométrique de raison 0,9. b) Déterminer l expression de V n en fonction de n. c) Montrer que pour tout entier naturel n, on a U n = 400 0,9 n d) Montrer que la suite (U n ) est décroissante. Interpréter le résultat dans le contexte de ce problème. 3. À la suite d une campagne publicitaire conduite en 2013, l opérateur de téléphonie observe une modification du comportement de ses clients. Chaque année à compter de l année 2014, l opérateur ne perd plus que 8 % de ses clients et regagne nouveaux clients. On admet que le nombre de clients comptabilisés en 2014 était égal à En supposant que cette nouvelle évolution se poursuive durant quelques années, déterminer le nombre d années nécessaire pour que l opérateur retrouve au moins un million de clients. A. YALLOUZ Page 14 sur 16

15 EXERCICE 9 (D après sujet bac Centres étrangers 2015) Depuis le 1 er janvier 2015, une commune dispose de vélos en libre service. La société Bicycl Aime est chargée de l exploitation et de l entretien du parc de vélos. La commune disposait de 200 vélos au 1 er janvier La société estime que, chaque année, 15 % des vélos sont retirés de la circulation à cause de dégradations et que 42 nouveaux vélos sont mis en service. On modélise cette situation par une suite (u n ) où u n représente le nombre de vélos de cette commune au 1 er janvier de l année n. 1. Déterminer le nombre de vélos au 1 er janvier Justifier que la suite(u n ) est définie par u 0 = 200 et, pour tout entier naturel n, par u n+1 = 0,85u n On donne l algorithme suivant : VARIABLES : N entier U réel INITIALISATION : N prend la valeur 0 U prend la valeur 200 TRAITEMENT : Tant que N < 4 U prend la valeur 0,85 U+ 42 N prend la valeur N+ 1 Fin Tant que SORTIE : Afficher U a) Recopier et compléter le tableau suivant en arrondissant les résultats à l unité. Quel nombre obtient-on à l arrêt de l algorithme? U 200 N Condition N < 4 Vrai b) Interpréter la valeur du nombre U obtenue à l issue de l exécution de cet algorithme. 4. On considère la suite (v n ) définie pour tout entier n par v n = u n 280. a) Montrer que la suite (v n ) est géométrique de raison 0,85 et de premier terme v 0 = 80. b) Pour tout entier naturel n, exprimer v n en fonction de n. c) En déduire que, pour tout entier naturel n, on a u n = 80 0,85 n d) Calculer la limite de la suite (u n ) et interpréter ce résultat. 5. La société Bicycl Aime facture chaque année à la commune 300 C par vélo en circulation au 1 er janvier. Déterminer le coût total pour la période du 1 er janvier 2015 au 31 décembre 2019, chacun des termes utilisés de la suite (u n ) étant exprimé avec un nombre entier. EXERCICE 10 En raison de l évaporation, une piscine perd chaque semaine 3 % de son volume d eau. On remplit ce bassin avec 90 m 3 d eau et, pour compenser la perte due à l évaporation, on décide de rajouter chaque semaine 2,4 m 3 d eau dans le bassin. 1. Calculer le volume d eau contenu dans ce bassin au bout de deux semaines. 2. On note u n le nombre de m 3 d eau contenu dans ce bassin au bout de n semaines. Exprimer u n+1 en fonction de u n. 3. On considère la suite (v n ) définie pour tout entier naturel n par v n = u n 80. a) Démontrer que la suite (v n ) est une suite géométrique dont on précisera le premier terme et la raison. b) Exprimer v n en fonction de n. En déduire que pour tout entier naturel n, u n = ,97 n. A. YALLOUZ Page 15 sur 16

16 4. Étudier la monotonie de la suite u n. 5. Déterminer la limite de la suite (u n ). Interpréter ce résultat. EXERCICE 11 (D après sujet bac Pondichéry 2014) Une association décide d ouvrir un centre de soin pour les oiseaux sauvages victimes de la pollution. Leur but est de soigner puis relâcher ces oiseaux une fois guéris. Le centre ouvre ses portes le 1 er janvier 2013 avec 115 oiseaux. Les spécialistes prévoient que 40 % des oiseaux présents dans le centre au 1 er janvier d une année restent présents le 1 er janvier suivant et que 120 oiseaux nouveaux sont accueillis dans le centre chaque année. On s intéresse au nombre d oiseaux présents dans le centre au 1 er janvier des années suivantes. La situation peut être modélisée par une suite(u n ) admettant pour premier terme u 0 = 115, le terme u n donnant une estimation du nombre d oiseaux l année n. 1. Calculer u 1 et u 2. Avec quelle précision convient-il de donner ces résultats? 2. Les spécialistes déterminent le nombre d oiseaux présents dans le centre au 1 er janvier de chaque année à l aide d un algorithme. a) Parmi les trois algorithmes proposés ci-dessous, seul l algorithme 3 permet d estimer le nombre d oiseaux présents au 1 er janvier de l année 2013+n. Expliquer pourquoi les deux premiers algorithmes ne donnent pas le résultat attendu. Variables : Variables : Variables : U est un nombre réel U est un nombre réel U est un nombre réel i et N sont des nombres entiers i et N sont des nombres entiers i et N sont des nombres entiers Début Début Début Saisir une valeur pour N Saisir une valeur pour N Saisir une valeur pour N Affecter 115 à U Pour i de 1 à N faire Affecter 115 à U Pour i de 1 à N faire Affecter 115 à U Pour i de 1 à N faire Affecter 0,6 U à U Affecter 0,4 U à U Affecter 0,4 U+ 120 à U Fin Pour Fin Pour Fin Pour Afficher U Afficher U Afficher U Fin Fin Fin algorithme 1 algorithme 2 algorithme 3 b) Donner, pour tout entier naturel n, l expression de u n+1 en fonction de u n. 3. On considère la suite (v n ) définie pour tout entier naturel n par v n = u n 200. a) Montrer que (v n ) est une suite géométrique de raison 0,4. Préciser v 0. b) Exprimer, pour tout entier naturel n, v n en fonction de n. c) En déduire que pour tout entier naturel n, u n = ,4 n. d) La capacité d accueil du centre est de 200 oiseaux. Est-ce suffisant? Justifier la réponse. 4. Chaque année, le centre touche une subvention de 20 euros par oiseau présent au 1 er janvier. Calculer le montant total des subventions perçues par le centre entre le 1 er janvier 2013 et le 31 décembre 2018 si l on suppose que l évolution du nombre d oiseaux se poursuit selon les mêmes modalités durant cette période. A. YALLOUZ Page 16 sur 16

Chaque fois qu on est confronté à une situation d évolutions successives d une grandeur de t%, on peut définir une suite géométrique de raison 1+ t

Chaque fois qu on est confronté à une situation d évolutions successives d une grandeur de t%, on peut définir une suite géométrique de raison 1+ t I SUITES GÉOMÉTRIQUES 1 DÉFINITION Dire qu une suite (u n ) est géométrique signifie qu il existe un nombre réel q non nul tel que, pour tout entier n, u n+1 = qu n Le réel q est appelé la raison de la

Plus en détail

MATHÉMATIQUES Enseignement spécifique et de spécialité. y=e x. Ce polycopié regroupe les documents distribués aux élèves en cours d année.

MATHÉMATIQUES Enseignement spécifique et de spécialité. y=e x. Ce polycopié regroupe les documents distribués aux élèves en cours d année. T le ES MATHÉMATIQUES Enseignement spécifique et de spécialité 0,4 y y=e x 0,3 0, -3-0,1-1 0 1 N (0;1) e y=lnx 1 un+1=au n + b 0 1 e 0 1 1 1 1 0 0 1 0 1 0 0 x Ce polycopié regroupe les documents distribués

Plus en détail

2. u 3 = 16, u 7 = 1 et u p = 1 8.

2. u 3 = 16, u 7 = 1 et u p = 1 8. EXERCICE 1 (u n ) est une suite arithmétique de raison a, déterminer l entier k dans chacun des cas suivants : 1. u 21 = 34, a=1,5 et u k = 1 2. u 10 = 64, u 5 = 14 et u k = 114. EXERCICE 2 (u n ) est

Plus en détail

Devoir n 10 - Suites - 1S

Devoir n 10 - Suites - 1S Devoir n 0 - Suites - S 2 mai 204 - h30 Exercice (3 pts) :. ( ) est une suite géométrique de premier terme et de raison telle que 486 et 4374. Déterminer et. On a une suite géométrique de raison et de

Plus en détail

TES/Spé TL Eléments de correction du D.N.S. n 11 dujeudi 15 Mai 2014

TES/Spé TL Eléments de correction du D.N.S. n 11 dujeudi 15 Mai 2014 TES/Spé TL Eléments de correction du D.N.S. n 11 dujeudi 15 Mai 2014 Objectifs : Modélisation d un problème à l aide d une suite Etude de fonctions et calcul d une intégrale Exercice 1 : Pondichéry 2014

Plus en détail

Suites. 1 Suite géométrique. Chapitre I. 1.1 Définition. 1.2 Propriétés

Suites. 1 Suite géométrique. Chapitre I. 1.1 Définition. 1.2 Propriétés Chapitre I Suites Exercices 8, 9, 0, 3, 4, 6, 3, 3, 34 page 34 pour revoir les notions de première sur les suites (récurrence, sens de variation...) Suite géométrique. Définition Définition Une suite u

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE. MATHÉMATIQUES Séries STI2D et STL spécialité SPCL

BACCALAURÉAT TECHNOLOGIQUE. MATHÉMATIQUES Séries STI2D et STL spécialité SPCL BACCALAURÉAT TECHNOLOGIQUE SESSION 2016 EPREUVE DU JEUDI 16 JUIN 2016 MATHÉMATIQUES Séries STI2D et STL spécialité SPCL Durée de l épreuve : 4 heures Coefficient : 4 Ce sujet comporte 7 pages numérotées

Plus en détail

Thème 7 Limites de suites

Thème 7 Limites de suites Terminale S 2016 2017 Exercices Thème 7 Limites de suites Vérification des acquis Savoir utiliser les théorèmes de comparaison pour déterminer la limite d une suite. Savoir étudier la limite d une somme,

Plus en détail

1 Taux d évolution et pourcentages

1 Taux d évolution et pourcentages 1 Taux d évolution et pourcentages Exercice 1 Taux d évolution et pourcentages Répondre par vrai ou faux aux affirmations suivantes en justifiant : 1. Dans un camping le nombre de clients est passé de

Plus en détail

Baccalauréat Métropole 16 juin 2016 STI2D STL spécialité SPCL

Baccalauréat Métropole 16 juin 2016 STI2D STL spécialité SPCL Durée : 4 heures Baccalauréat Métropole 16 juin 2016 STI2D STL spécialité SPCL EXERCICE 1 3 points Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des

Plus en détail

Suites. d 1 = 1 e 1 = 20 a 2 = 4 b 2 = 1 2. c 2 = 1,75= 7 4. d 2 = 3 e 2 = 4 a 3 = 9 b 3 = 1 3. c 3 = 1,875= c 4 = 1,9375= 31.

Suites. d 1 = 1 e 1 = 20 a 2 = 4 b 2 = 1 2. c 2 = 1,75= 7 4. d 2 = 3 e 2 = 4 a 3 = 9 b 3 = 1 3. c 3 = 1,875= c 4 = 1,9375= 31. 1 Exemples simples Exercice 1.1 Á partir de leurs premiers termes On connaît les premiers termes de quelques suites. Suites Suite a n ) Suite b n ) Suite c n ) Suite d n ) Suite e n ) a 0 = 0 c 0 = 1 e

Plus en détail

Annales Logarithme népérien

Annales Logarithme népérien Annales Logarithme népérien Antilles Guyane Juin 2012 (5 points) Commun à tous les candidats Soit la suite définie pour tout entier naturel non nul par 1) Calculer et. 2) a) Démontrer que, pour tout entier

Plus en détail

LES SUITES EXERCICES BAC

LES SUITES EXERCICES BAC LES SUITES EXERCICES BAC Les suites, exercices bac TES 1/6 I. Antilles Guyane 19 juin 2014 (5 points) Un opérateur de téléphonie mobile constate que, chaque année, il perd 8% de ses précédent abonnés et

Plus en détail

Chapitre 1 : Suites. Suites arithmétiques. - Son premier terme est =2. Représentation graphique y

Chapitre 1 : Suites. Suites arithmétiques. - Son premier terme est =2. Représentation graphique y Chapitre 1 : Suites Leçon I. Suites arithmétiques et géométriques 1) Rappels de Première Suites arithmétiques Exemple : la suite des nombres impairs est une suite arithmétique 1 3 5 7 9 Exemples Suites

Plus en détail

BACCALAURÉAT BLANC SPÉCIALITÉ. Lycée JANSON DE SAILLY MATHÉMATIQUES. Série ES. Ce sujet comporte 4 pages numérotées de 1 à 4

BACCALAURÉAT BLANC SPÉCIALITÉ. Lycée JANSON DE SAILLY MATHÉMATIQUES. Série ES. Ce sujet comporte 4 pages numérotées de 1 à 4 BACCALAURÉAT BLANC Lycée JANSON DE SAILLY MATHÉMATIQUES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT 7 Ce sujet comporte 4 pages numérotées de 1 à 4 L utilisation de la calculatrice est autorisé SPÉCIALITÉ

Plus en détail

TES/TL spé maths Eléments de correction du Bac Blanc n 1 Jeudi 18 décembre 2014

TES/TL spé maths Eléments de correction du Bac Blanc n 1 Jeudi 18 décembre 2014 TES/TL spé maths Eléments de correction du Bac Blanc n Jeudi 8 décembre 4 Calculatrice autorisée - Aucun document n'est autorisé. Exercice. (5 points) Le barème est noté sur points. Partie : Fonctions

Plus en détail

Raisonnement par récurrence. Limite d une suite

Raisonnement par récurrence. Limite d une suite Exercices 2 octobre 2014 Raisonnement par récurrence. Limite d une suite Raisonnement par récurrence Exercice 1 Prouver que pour tout entier n, 4 n + 5 est un multiple de 3. Exercice 2 Prouver que pour

Plus en détail

Fiche(1) Suites arithmétiques et géométriques. Exercice 1. Exercice 2. Exercice 3. Exercice 4. Exercice 5. Exercice 6. Exercice 7.

Fiche(1) Suites arithmétiques et géométriques. Exercice 1. Exercice 2. Exercice 3. Exercice 4. Exercice 5. Exercice 6. Exercice 7. Soit la suite arithmétique définie par et. Calculer et. Fiche(1) Exercice 2 Soit la suite arithmétique définie par et. Calculer et. Exercice 3 Soit la suite arithmétique définie par et. Calculer et. Exercice

Plus en détail

Limites de suites. Révisions

Limites de suites. Révisions Limites de suites Révisions Soit ( ) une suite définie pour tout n N par = n 2 + n Exprimer en fonction de n : a b + c + 2 La suite ( ) est-elle arithmétique? 3 Quel est le sens de variation de ( )? 2

Plus en détail

Exercices supplémentaires : Suites

Exercices supplémentaires : Suites Exercices supplémentaires : Suites Partie A : Calculs de termes et représentation graphique Exercice On considère la suite définie par 4 3 pour tout N. Calculer,, et Exercice On considère la suite définie

Plus en détail

1 S DEVOIR DE MATHEMATIQUES N 4 SUJET A 5/04/ H

1 S DEVOIR DE MATHEMATIQUES N 4 SUJET A 5/04/ H S DEVOIR DE MATHEMATIQUES N SUJET A 5/0/0 H Nom prénom Exercice : Soit q un réel différent de,prouver l égalité : points + q + q + q 3 +...q n = qn+ q Exercice :. Calculer la somme des 00 premiers multiples

Plus en détail

Annales Calcul intégral

Annales Calcul intégral Annales Calcul intégral Polynésie - Juin 2012 (5 points) Commun à tous les candidats Le plan est rapporté à un repère orthonormal On considère les points et et la droite d équation. On note la fonction

Plus en détail

Baccalauréat ES Polynésie septembre 2006

Baccalauréat ES Polynésie septembre 2006 Baccalauréat ES Polynésie septembre 006 EXERCICE 1 Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Pour chacune des huit questions, trois réponses sont proposées ; une

Plus en détail

Chap 1 Suites géométriques

Chap 1 Suites géométriques Chap 1 Suites géométriques Terminale ES Chap 1 - Suites géométriques I Notion de suite géométrique (TES110, TES111, TES112)4 1) Définition4 2) Relation entre les termes4 II Monotonie d'une suite géométriques

Plus en détail

Convergence des suites monotones

Convergence des suites monotones Convergence des suites monotones Suites majorée, minorée, bornée Définition Une suite (u # ) est majorée par un nombre réel M si pour tout n N, u # M Une suite (u # ) est minorée par un nombre réel m si

Plus en détail

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches.

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches. Sujet Centres Étrangers 203 EXERCICE. [6 pts] Lois continues Un industriel fabrique des vannes électroniques destinées à des circuits hydrauliques. Les quatre parties A, B, C, D sont indépendantes. Partie

Plus en détail

TS Rappels sur les suites Cours. Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m

TS Rappels sur les suites Cours. Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m 1 TS Rappels sur les suites Cours I. Définitions Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m L image u(n) de l entier n est notée

Plus en détail

Epreuve commune mathématiques TS mardi 4 avril Sujet obligatoire

Epreuve commune mathématiques TS mardi 4 avril Sujet obligatoire Epreuve commune mathématiques TS mardi 4 avril 2017 Sujet obligatoire EXERCICE 1 Dans le plan muni d un repère orthonormé ( O, ı, j représentative de la fonction u définie sur l intervalle ]0 ; + [ par

Plus en détail

Etude de limites de suites définies par

Etude de limites de suites définies par Etude de limites de suites définies par récurrence u n+1 = f(u n ) I) Généralités 1) Définition Une suite définie par récurrence est une suite définie par son premier terme et par une relation de récurrence,

Plus en détail

Suites numériques. Christophe ROSSIGNOL. Année scolaire 2012/2013

Suites numériques. Christophe ROSSIGNOL. Année scolaire 2012/2013 Suites numériques Christophe ROSSIGNOL Année scolaire 01/013 Table des matières 1 Suites géométriques : Rappels et compléments 1.1 Définition, exemples........................................... 1. Expression

Plus en détail

Baccalauréat ES. Index des exercices avec des suites de 2013 à 2016

Baccalauréat ES. Index des exercices avec des suites de 2013 à 2016 Baccalauréat ES Index des exercices avec des suites de 2013 à 2016 Tapuscrit : GUILLAUME SEGUIN N o Lieu et date géo arith-géo limite inéquation somme si pour tant que 1 Antilles juin 2016 pb ouvert 2

Plus en détail

Leçon 41 : Suites arithmétiques, suites géométriques

Leçon 41 : Suites arithmétiques, suites géométriques Leçon 41 : Suites arithmétiques, suites géométriques Pré-requis : Raisonnement par récurrence, limites de suite, résolution d'un système d'équations, notions de suites (définition, étude de monotonie),

Plus en détail

Chapitre 1 COMPLEMENTS SUR LES SUITES TES

Chapitre 1 COMPLEMENTS SUR LES SUITES TES Chapitre 1 COMPLEMENTS SUR LES SUITES TES Petit historique sur les suites L un des premiers travaux portant sur les suites de nombres semble provenir d Archimède (très brillant scientifique grec de Sicile,

Plus en détail

RAISONNEMENT PAR RECURRENCE

RAISONNEMENT PAR RECURRENCE Exemple: Montrons par récurrence que pour tout n Initialisation : pour n = 1 RAISONNEMENT PAR RECURRENCE i=1 i =1 et i=1 N i=n *, P (n) : i = 1 + + 3 +...+ ( n -1) + n = n n 1 i=1 n n 1 Hérédité : supposons

Plus en détail

Baccalauréat S Liban 27 mai 2014

Baccalauréat S Liban 27 mai 2014 EXERCICE 1 Baccalauréat S Liban 27 mai 2014 Les trois parties A, B et C peuvent être traitées de façon indépendante. Les probabilités seront arrondies au dix millième. Un élève doit se rendre à son lycée

Plus en détail

Correction du bac blanc N 1

Correction du bac blanc N 1 Exercice I : QCM. ( 4 points ) Correction du bac blanc N 1 Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 0,5 point. Pour chacune des questions posées, une seule des quatre

Plus en détail

q 6 q 5 = q 4 q 6 q 4 q 3 q 2 q 1

q 6 q 5 = q 4 q 6 q 4 q 3 q 2 q 1 Lcée JANSON DE SAILLY 6 novembre 07 FONCTION EXPONENTIELLE T le ES CONSTRUCTION EXPÉRIMENTALE DE LA FONCTION f : x q x, AVEC q > 0 Soit q > 0 un réel strictement positif. (u n ) est la suite géométrique

Plus en détail

pour tout réel a strictement positif, il existe un unique réel α tel que e α = a

pour tout réel a strictement positif, il existe un unique réel α tel que e α = a 6 janvier 07 FONCTION LOGARITHME T le ES I FONCTION LOGARITHME NÉPÉRIEN La fonction exponentielle est continue, strictement croissante et pour tout réel x, e x ]0;+ [. D après le corollaire du théorème

Plus en détail

Chapitre 1 Suites. Table des matières. Chapitre 1 Suites TABLE DES MATIÈRES page -1

Chapitre 1 Suites. Table des matières. Chapitre 1 Suites TABLE DES MATIÈRES page -1 Chapitre 1 Suites TABLE DES MATIÈRES page -1 Chapitre 1 Suites Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

1.1 Rappels de 1re S, suites arithmétiques et géométriques

1.1 Rappels de 1re S, suites arithmétiques et géométriques CHAPITRE 1. SUITES Chapitre 1 Suites I Exercices 1.1 Rappels de 1re S, suites arithmétiques et géométriques Les exercices suivants permettent de revoir ce qui a été étudié sur les suites en première S.

Plus en détail

Sachant que pour tout réel ( q>0 ) et. Pour tous entiers relatifs m et p, f(m) f(p)=q m q p = q m+p = f(m+ p)

Sachant que pour tout réel ( q>0 ) et. Pour tous entiers relatifs m et p, f(m) f(p)=q m q p = q m+p = f(m+ p) Lcée JANSON DE SAILLY 7 novembre 06 FONCTION EXPONENTIELLE T le ES CONSTRUCTION EXPÉRIMENTALE DE LA FONCTION f : x q x, AVEC q>0 Soit q>0 un réel strictement positif. (u n ) est la suite géométrique définie

Plus en détail

Correction du bac blanc spécialtité N 1

Correction du bac blanc spécialtité N 1 Correction du bac blanc spécialtité N 1 Exercice I : QCM. ( 4 points ) Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 0,5 point. Pour chacune des questions posées, une

Plus en détail

TS Feuille de révision n 1 novembre 2017

TS Feuille de révision n 1 novembre 2017 TS Feuille de révision n 1 novembre 017 Exercice 1 Dans un pays de population constante égale à 10 millions, les habitants vivent soit en zone rurale, soit en ville. Les mouvements de population peuvent

Plus en détail

Baccalauréat STMG Antilles Guyane 15 juin 2016

Baccalauréat STMG Antilles Guyane 15 juin 2016 Durée : 3 heures Baccalauréat STMG Antilles Guyane 15 juin 2016 EXERCICE 1 5 points On observe, depuis quelques années, un modification des canaux de distribution du tourisme en faveur du tourisme en ligne.

Plus en détail

Les suites numériques

Les suites numériques Les suites numériques chapitre 4 I Premier regard Définition : suite numérique Une suite numérique est une liste de nombres réels, numérotés généralement par des indices, entiers naturels consécutifs 0,

Plus en détail

Chapitre I : LES SUITES

Chapitre I : LES SUITES Chapitre I : LES SUITES I- Généralités sur les suites 1) Définition et notations Définition 1 : 1) Définir une suite par une formule explicite, c est donner une relation entre le terme et l entier, pour

Plus en détail

Corrigés des travaux pratiques

Corrigés des travaux pratiques . Suites QCM Pour bien commencer Les exercices de cette rubrique sont corrigés dans le manuel, p. 90. Corrigés des travaux pratiques Somme des termes d une suite Le chapitre sur les suites est propice

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 9 avril 008 Document diffusé via le site wwwbacamathsnet de Gilles Costantini fredericdemoulin

Plus en détail

Chapitre 3 - Fonctions exponentielles

Chapitre 3 - Fonctions exponentielles Chapitre 3 - Fonctions exponentielles I Fonctions exponentielles de base q TD1 : Du discret au continu On étudie la croissance d une population de bactéries dans une culture. Le nombre de bactéries (exprimé

Plus en détail

BACCALAURÉAT BLANC LYCÉE DESSAIGNES - BLOIS 8 FÉVRIER 2017

BACCALAURÉAT BLANC LYCÉE DESSAIGNES - BLOIS 8 FÉVRIER 2017 BACCALAURÉAT BLANC LYCÉE DESSAIGNES - BLOIS 8 FÉVRIER 2017 Filière : E.S. Obligatoire - L Spécialité Mathématiques Durée de l épreuve : 3 heures - Coefficient : 5 Avant de composer, le candidat s assurera

Plus en détail

Bac Blanc Terminale ES - Février 2014 Correction de l'épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2014 Correction de l'épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2014 Correction de l'épreuve de Mathématiques (durée 3 heures) Exercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l'indice

Plus en détail

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2 TS Suites récurrentes Exercices Exercice. Soit u la suite définie par u 0 = 3 et pour tout entier n, + = 4un +.. Démontrer que pour tout entier n, >.. On définit la suite v pour n N par v n = un. Montrer

Plus en détail

Modes de générations de suites

Modes de générations de suites I Généralités sur les suites Généralités Une suite u de nombres réels est une fonction dont la variable est un entier naturel. L image par u d un entier naturel n est notée un et se lit «u indice n». un

Plus en détail

Sujet 1 Première partie Deuxième partie Variables : Initialisation : Traitement : Sortie :

Sujet 1 Première partie Deuxième partie Variables : Initialisation : Traitement : Sortie : Sujet 1 Le premier janvier 2014, Monica ouvre un livret d épargne sur lequel elle dépose 6 000 euros. Elle décide de verser 900 euros sur ce livret chaque premier janvier à partir de 2015 jusqu à atteindre

Plus en détail

Baccalauréat Blanc de Mathématiques - Terminales S - 27 janvier La calculatrice est autorisée. 3.5 POINTS

Baccalauréat Blanc de Mathématiques - Terminales S - 27 janvier La calculatrice est autorisée. 3.5 POINTS Baccalauréat Blanc de athématiques - Terminales S - 27 janvier 207 La calculatrice est autorisée. EXERCICE 3.5 POINTS Partie A Une certaine maladie V est présente dans la population française avec la fréquence

Plus en détail

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR.

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. I Notion de suite réelle ) Définition : Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. Le réel U(n) est noté U n il est appelé terme général

Plus en détail

T ES DEVOIR SURVEILLE 3 20 DECEMBRE 2013

T ES DEVOIR SURVEILLE 3 20 DECEMBRE 2013 T ES DEVOIR SURVEILLE 3 20 DECEMBRE 2013 Durée : 3h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme :

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme : Chapitre I : Raisonnement par récurrence et comportement des suites Extrait du programme : 1 I Rappels sur les suites Il existe deux façons de définir une suite : 1 Formule explicite Il existe une fonction

Plus en détail

Raisonnement par récurrence 2

Raisonnement par récurrence 2 1 sur 9 25/10/2015 09:38 Raisonnement par récurrence 2 DATE DE CRÉATION DE L'ARTICLE :16 NOVEMBRE 2010 DATE DE RÉDACTION ANTÉRIEURE : N.C. LANGUE DE L'ARTICLE (français) Cet article est une traduction

Plus en détail

Définition : La corpulence est le nom scientifique correspondant au volume du corps

Définition : La corpulence est le nom scientifique correspondant au volume du corps EXERCICE 1 Commun à tous les candidats Partie A 7 points Voici deux courbes C1 et C2 qui donnent pour deux personnes P 1 et P 2 de corpulences différentes la concentration C d alcool dans le sang (taux

Plus en détail

Chapitre 4. Suites : Premières notions Suites arithmétiques Suites géométriques. 4.1 Activités. Sommaire

Chapitre 4. Suites : Premières notions Suites arithmétiques Suites géométriques. 4.1 Activités. Sommaire Chapitre 4 Suites : Premières notions Suites arithmétiques Suites géométriques Sommaire 4.1 Activités............................................ 23 4.2 Généralités sur les suites...................................

Plus en détail

Fonction exponentielle Bac Série S

Fonction exponentielle Bac Série S Fonction exponentielle Bac Série S - 3 EXERCICE N Pondichéry 6 avril Partie On s intéresse à l évolution de la hauteur d un plant de maïs en fonction du temps. Le graphique ci-après représente cette évolution.,,8,6,4,,,8,6,4,

Plus en détail

Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites,

Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites, Généralités sur les suites Cours maths Terminale S Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites, la monotonie, la convergence des suites,

Plus en détail

Partie A. Le tableau ci-dessous donne la consommation de soins et de biens médicaux (CSBM) en France, en milliards d euros :

Partie A. Le tableau ci-dessous donne la consommation de soins et de biens médicaux (CSBM) en France, en milliards d euros : Terminales STMG BACCALAURÉAT BLANC Corrigé Exercice 1 (4 points) Partie A Le tableau ci-dessous donne la consommation de soins et de biens médicaux (CSBM) en France, en milliards d euros : Année 2000 2005

Plus en détail

Exercices. Rappels sur les suites. Récurrence. u0 = 2, u 1 = 4. u n+2 = 4u n+1 u n

Exercices. Rappels sur les suites. Récurrence. u0 = 2, u 1 = 4. u n+2 = 4u n+1 u n Exercices. Rappels sur les suites. Récurrence Exercice 1 : Généralités sur les suites 1) La suite (v n ) est telle que : v 0 = 1 et pour tout n, v n+1 = 3v n 1. Calculer v 2, v 3. Exprimer v n+2 en fonction

Plus en détail

Mathématiques. préparation à la Terminale ES

Mathématiques. préparation à la Terminale ES Mathématiques préparation à la Terminale ES Le programme de Terminale ES est chargé et est la continuité de celui de 1 ère ère ES. Les nouvelles notions sont nombreuses et le rythme de progression est

Plus en détail

SESSION 2017 ENSEIGNEMENT OBLIGATOIRE. Durée de l épreuve : 3 heures Coefficient : 4 ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2017 ENSEIGNEMENT OBLIGATOIRE. Durée de l épreuve : 3 heures Coefficient : 4 ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT GÉNÉRAL SESSION 2017 MATHÉMATIQUES - Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures Coefficient : 5 MATHÉMATIQUES - Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve :

Plus en détail

Baccalauréat S Polynésie 10 juin 2016

Baccalauréat S Polynésie 10 juin 2016 Baccalauréat S Polynésie 10 juin 2016 A. P. M. E. P. EXERCICE 1 7 points Partie A Voici deux courbes C 1 et C 2 qui donnent pour deux personnes P 1 et P 2 de corpulences différentes la concentration C

Plus en détail

Sujet Spécialité MATHÉMATIQUES ANTILLES - GUYANE BAC S

Sujet Spécialité MATHÉMATIQUES ANTILLES - GUYANE BAC S Sujet Spécialité MATHÉMATIQUES ANTILLES - GUYANE BAC S - 2016 Sujets Bac Maths 2016 Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Antilles - Guyane Annales Bac Maths 2016 BACCALAURÉAT

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités Sujet Asie 203 EXERCICE. [5 pts] Probabilités Dans cet exercice, les probabilités seront arrondies au centième. Partie A Une grossiste achète des boîtes de thé chez deux fournisseurs. Il achète 80% de

Plus en détail

TS - Maths - D.S.4 - Correction Spécialités : SVT - Physique

TS - Maths - D.S.4 - Correction Spécialités : SVT - Physique TS - Maths - D.S. - Correction Spécialités : SVT - Physique Samedi 05 Décembre 05 - h Exercice ( points) Commun à tous les candidats Une usine produit de l eau minérale en bouteilles. Lorsque le taux de

Plus en détail

Mathématiques. Pour faciliter le travail personnel de révisions en fin de vacances, ce fichier contient

Mathématiques. Pour faciliter le travail personnel de révisions en fin de vacances, ce fichier contient Mathématiques Préparation à la 1 ère ES - L - STMG Le programme de 1 ère s appuie sur les notions étudiées en 2 nde. L acquisition de ces bases est donc essentielle à la réussite en 1 ère. Pour faciliter

Plus en détail

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans DST n 4 - Corrigé Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans l'ensemble des nombres réels, et de construire une suite qui

Plus en détail

La fonction exponentielle

La fonction exponentielle Exercices 16 octobre 014 La fonction exponentielle Opération sur la fonction exponentielle Exercice 1 Simplifier les écritures suivantes : a) (e x ) 3 e x b) ex 1 e x+ e) e 3x f) ex e y (e x ) e x e x

Plus en détail

u n+1 = qu n 100 100 (diminution) (augmentation) ou 1

u n+1 = qu n 100 100 (diminution) (augmentation) ou 1 I SUITES GÉOMÉTRIQUES 1 DÉFINITION Dire qu une suite(u n ) est géométrique signifie qu il existe un nombre réel q non nul tel que, pour tout entier n, u n+1 = qu n Le réel q est appelé la raison de la

Plus en détail

Suites numériques (exercices)

Suites numériques (exercices) Suites numériques (exercices) Exercice 1 : u est la suite définie sur IN par u n = n 2-4n+5. 1. Déterminer une fonction f telle que :pour tout n IN u n = f(n) 2. Dans un repère tracer la courbe représentative

Plus en détail

Un corrigé du baccalauréat blanc

Un corrigé du baccalauréat blanc Un corrigé du baccalauréat blanc XRCIC 1 (5 points). Pour les candidats de la série S Une entreprise fabrique chaque jour des objets. Cette production ne peut dépasser 700 objets par jour. On modélise

Plus en détail

BACCALAUREAT GENERAL MATHEMATIQUES ENSEIGNEMENT OBLIGATOIRE

BACCALAUREAT GENERAL MATHEMATIQUES ENSEIGNEMENT OBLIGATOIRE BACCALAUREAT GENERAL Avril 2011 MATHEMATIQUES - Série ES - ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures Coefficient : 5 Les calculatrices électroniques de poche sont autorisées, conformément

Plus en détail

Corrigé Baccalauréat STL biotechnologies Polynésie 11 juin 2015

Corrigé Baccalauréat STL biotechnologies Polynésie 11 juin 2015 Corrigé Baccalauréat STL biotechnologies Polynésie 11 juin 2015 La calculatrice (conforme à la circulaire n o 99-186 du 16 novembre 1999) est autorisée. Le candidat est invité à faire figurer sur la copie

Plus en détail

Suites numériques. Z, auctore. 4 octobre u n+1 = u n + r. (1) u n = u 0 + n r (2) u 0 + u 1 + u u n = (n + 1) u 0 + u n 2

Suites numériques. Z, auctore. 4 octobre u n+1 = u n + r. (1) u n = u 0 + n r (2) u 0 + u 1 + u u n = (n + 1) u 0 + u n 2 Suites numériques Z, auctore 4 octobre 005 1 Suites arithmétiques Définition. Une suite de nombres (u n ) n N est arithmétique lorsqu il existe un nombre r tel que pour tout entier n on ait Ce nombre r

Plus en détail

Sujets de bac : Intégration

Sujets de bac : Intégration Sujets de bac : Intégration Sujet n 1 : Liban juin 2006 Partie A : étude d une fonction Soit la fonction définie sur l intervalle 0; par ln 1 Sa courbe représentative dans un repère orthogonal ; ; est

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 16 novembre 2016

Baccalauréat ES Nouvelle-Calédonie 16 novembre 2016 Baccalauréat ES Nouvelle-Calédonie 16 novembre 2016 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 4 points Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte un point.

Plus en détail

SUITES. Définition. Propriété. Remarques. Exemples. Exercice 01. Remarque. Exercice 02

SUITES. Définition. Propriété. Remarques. Exemples. Exercice 01. Remarque. Exercice 02 SUITES Définition On dit qu'une suite est arithmétique si la variation absolue lorsqu'on passe d'un terme au terme suivant est constante. Cette variation est appelée la raison de la suite arithmétique.

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de u n et v n Déterminer si possible,

Plus en détail

Initialiser en donnant à A et à I la valeur de N. 1 Pour tout entier naturel N on note A N le nombre affiché à l étape 4

Initialiser en donnant à A et à I la valeur de N. 1 Pour tout entier naturel N on note A N le nombre affiché à l étape 4 1 Soit N un entier naturel non nul. On considère l algorithme ci-contre Initialiser en donnant à A et à I la valeur de N. 1 Pour tout entier naturel N on note A N le nombre affiché à l étape 4 Tant que

Plus en détail

Baccalauréat STL biotechnologies Polynésie 13 juin 2016

Baccalauréat STL biotechnologies Polynésie 13 juin 2016 Baccalauréat STL biotechnologies Polynésie 13 juin 2016 EXERCICE 1 4 points Dans cet exercice, on s intéresse au taux de cholestérol LDL de la population d adultes d un pays. On note X la variable aléatoire

Plus en détail

Bac blanc 2015 Mathématiques - Série ES - durée : 3 heures Sujet pour les élèves n ayant pas suivi la spécialité maths

Bac blanc 2015 Mathématiques - Série ES - durée : 3 heures Sujet pour les élèves n ayant pas suivi la spécialité maths Bac blanc 2015 Mathématiques - Série ES - durée : 3 heures Sujet pour les élèves n ayant pas suivi la spécialité maths Le sujet est composé de 4 exercices indépendants. Le candidat est invité à faire figurer

Plus en détail

SUITES. Exercice 01 (voir réponses et correction) Exercice 02 (voir réponses et correction) Exercice 03 (voir réponses et correction)

SUITES. Exercice 01 (voir réponses et correction) Exercice 02 (voir réponses et correction) Exercice 03 (voir réponses et correction) SUITES Exercice 01 (voir réponses et correction) On considère un carré ABCD de coté c = 4. On appelle A 1, B 1, C 1 et D 1, les points situés respectivement sur [AB], [BC], [CD], [DA] à la distance 1 de

Plus en détail

Dans tout ce devoir, la qualité de la rédaction et le soin seront pris en compte dans la notation.

Dans tout ce devoir, la qualité de la rédaction et le soin seront pris en compte dans la notation. Externat Notre Dame Bac Blanc n Tle S) janvier 206 durée : 4 h calculatrice autorisée Dans tout ce devoir, la qualité de la rédaction et le soin seront pris en compte dans la notation. Les exercices pourront

Plus en détail

Epreuve commune maths terminales S 8 décembre 2015

Epreuve commune maths terminales S 8 décembre 2015 Exercice 1 6 points ) On considère la fonction f définie et dérivable sur l ensemble R des nombres réels par fx) = x+1+ x e x On note C sa courbe représentative dans un repère orthonormé O; i ; ) j 1 Soit

Plus en détail

TS - Maths - D.S.3 - CORRECTION

TS - Maths - D.S.3 - CORRECTION TS - Maths - DS3 - CORRECTION Samedi 4 Novembre 20-2h Exercice Les parties A et B sont indépendantes Un site internet propose des jeux en ligne On donnera une valeur approchée à 0 2 près des résultats

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2014 SPÉCIALITÉ MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN Durée de l épreuve : 4 heures Coefficient : 9

BACCALAURÉAT GÉNÉRAL SESSION 2014 SPÉCIALITÉ MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN Durée de l épreuve : 4 heures Coefficient : 9 BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S ÉPREUVE DU JEUDI 19 JUIN 2014 Durée de l épreuve : 4 heures Coefficient : 9 ENSEIGNEMENT DE SPÉCIALITÉ Les calculatrices électroniques de poche sont

Plus en détail

Description d une série statistique à deux variables quantitatives Activité 1

Description d une série statistique à deux variables quantitatives Activité 1 Description d une série statistique à deux variables quantitatives Activité 1 On souhaite répondre à la question suivante : «Y a-t-il corrélation entre le revenu mensuel d un ménage et la somme d argent

Plus en détail

Suites numériques. Table des matières

Suites numériques. Table des matières 1 Suites numériques Table des matières 1 Suite numérique 1.1 Définition................................. 1. Définir une suite.............................. 1..1 De façon explicite.........................

Plus en détail

Baccalauréat S Pondichéry 26 avril 2017 Toutes les questions précédées d un (*) sont facultatives

Baccalauréat S Pondichéry 26 avril 2017 Toutes les questions précédées d un (*) sont facultatives Baccalauréat S Pondichéry 26 avril 2017 Toutes les questions précédées d * sont facultatives EXERCICE 1 Comm à tous les candidats Les parties A, B et C peuvent être traitées de façon indépendante Dans

Plus en détail

Résumé du cours sur les suites.

Résumé du cours sur les suites. Résumé du cours sur les suites. 1 Suites numériques réelles et principe de récurrence 1.1 Les deux façons de définir une suite numérique réelle Définition. On note n 0 un entier naturel (en général n 0

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014

Baccalauréat S Antilles-Guyane 11 septembre 2014 Durée : 4 heures Baccalauréat S Antilles-Guyane 11 septembre 2014 EXERCICE 1 6 points Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue divers tests

Plus en détail

Session janvier 2015

Session janvier 2015 BACCALAUREAT BLANC Session janvier 2015 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures MATERIEL AUTORISE OU NON AUTORISE :

Plus en détail