FONCTION EXPONENTIELLE de BASE e : f(x) = e x
|
|
|
- Nadine Gervais
- il y a 9 ans
- Total affichages :
Transcription
1 FONCTION EXPONENTIELLE de BASE e : f() = e I) DEFINITION. a) Définition 1 et notations : ( de la fonction eponentielle ) Quel que soit le nombre réel, l équation ln y = où y est inconnu admet une solution unique dans ]0 ; + [ notée y = e, ainsi : La fonction eponentielle de base e, notée «ep» associe à tout nombre réel le nombre réel noté e appelé eponentiel de. On note : ep : IR ]0, + [ e C est l unique fonction telle que quel que soit IR : y = e équivaut à ln y = Remarques : 1 e est l unique nombre dont le logarithme népérien soit égal à. ( ln (e ) = ) 2 e ]0 ; + [ donc e est positif strict. 3 La valeur de e est donné par une table de logarithmes ou par une calculatrice. Par eemple la calculatrice donne : e 2 7,389 à 10 3 près ; e 2 = 0,135 à 10 3 près. 4 ln1 = 0 donc e 0 = 1 Eercice 1 : 1 Trouver y tel que lny = 1 2 Trouver y tel que lny = 1 3 Trouver y tel que lny = 0 ( 1 y = e 2 y = e 1 3 y = 1 ) II) PROPRIETES GENERALES. A) Propriété 1 : ( Domaine de définition ) : La fonction eponentielle est définie pour tout IR e eiste quel que soit IR B) Propriétés de base : ( propriétés semblables à celles sur les puissances) Propriété 2 : Quels que soient les nombres réels a et b. e ab = (e a ) b Preuve : ln (e ab ) = ab et ln( (e a ) b ) = b ln(e a ) = ab lne = ab donc ln (e ab ) = ln( (e a ) b ) puis e ab = (e a ) b. Eemples : 1 e 6 = e 2 3 = (e 2 ) 3 2 (e 5 ) 2 = e 5 2 = e 10 Propriété 3 : Quel que soit les nombres réels a et b. e a e b = e a +b Eemples : 1 e 2 e 3 = e = e 5 2 e 2 e 3 = e 2 + ( 3) = e 5 3 e 2 e 2 = e 2 + ( 2) = e 0 =1.
2 Propriété 4 : Quel que soit les nombres réels a et b. e a e b = e a b Eemples : 1 e2 e 3 = e 2 3 = e 1 2 e 2 e 3 = e 2 ( 3) = e 1 =1 Propriété 5 : Quel que soit les nombres réels a et b. 1 e a = e 0 a = e a Eemples : 1 1 e 3 = e 3 2 e 2 = 1 e 2 III) DERIVEE : a) Propriété 6 : ( dérivée de e et de e u() ) (1) La fonction eponentielle est dérivable sur IR et sa dérivée est la fonction eponentielle elle même : (e ) = e (2) Si u est une fonction dérivable, alors [e u() ] = u () e u() Preuve : (1 ) soit f() = ln ( e ) =, en dérivant on a f () = ( e ) ( e ) = 1 donc ( e ) = e. b) Eemples : 1 Si f() = 3² e pour IR alors f () = e. 2 Si f() = e ² + 2 sur IR alors f() = e u() où u() = ² + 2 donc u () = 2 donc f () = 2 e ² + 2. IV) SENS DE VARIATION : Propriété 7 : ( variations de la fonction eponentielle ) La fonction eponentielle croît strictement sur IR. Valeurs de + Signe de (e ) = e + + Variations de ep V) LIMITES : 0 ( ites vu au V) ) a) Propriété 8 : ( ites de e en, en + ) La ite de e en + est + : + e = + La ite de e en est 0 : e = 0 la droite d équation y = 0 est asymptote à la courbe en
3 Propriété 9 : Si a > 0 alors la ite de ln() quand tend vers a est e a : a e = e a b) Propriété 10 : ( croissances comparées ). e croît plus vite que n importe quelle puissance positive de, c est à dire : Quel que soit n IN-{0} on a : + e n =+ en particulier + e = + Quel que soit n IN-{0} n e = 0 en particulier e = 0. VI) TABLEAU de VALEURS et COURBE REPRESENTATIVE : e 0,006 0,36 1 2,718 7,38 148, y L ae (o) est asymptote horizontale VII) EQUATIONS : a) Propriété 11 : ( égalité ) Quels que soient les réels a et b e a = e a équivaut à a = b. Eemples : 1 On cherche à résoudre l équation : e 2 = e + 1 e 2 = e + 1 donc 2 = +1 donc = 1 donc : S = {1}.
4 b) Propriété 12 : ( antécédents de nombres par la fonction eponentielle ). ln() = 1 = e 2,718. Le nombre «e» est appelé la base des logarithmes népériens. Quel que soit le nombre a IR on a : e = a = ln(a) et quel que soit IR : ln(e ) = Eemples 1 Si e = 2 alors = ln 2 0,69 et S = {ln2} 2 Si e = 2, il n y a pas de solution dans IR car e est positif strict et S = VII) INEQUATIONS : a) Propriété 13 : ( inégalité et eponentiel ). Quels que soient les réels a et b : e a > e a équivaut à a > b. ( idem pour <,, ) Eemple : On cherche à résoudre l inéquation : e 2 > e 2. e 2 > e 2 donc 2 > 2 donc 3 > 2 donc > 2 3 donc S = ] 2 3 ; 2 [. b) Propriété 14 : ( antécédents de nombres par la fonction eponentielle ). Quel que soit le nombre a IR et IR e > a > ln(a) ( idem pour <,, ) Eemples : 1 Si e > 2 alors >ln 2 0,69 et S = [ ln2 ; + [ 2 Si e < 2, il n y a pas de solution dans IR car e c) Propriété 15 : ( signe de e ) est positif strict et S = Valeur de 0 + Signe de e + e est positif strict quel que soit IR VIII) EXPONENTIEL DE BASE a Définition 2 et notations : ( de la fonction eponentielle de base a > 0 ) Soit a > 0 : on pose a = e lna La fonction ainsi définie sur IR est appelée fonction eponentielle de base a On a les mêmes propriétés que pour la fonction eponentielle de base e ( a +y = a. a y a, a y = a -y, a - = 1 a, (a ) y = a.y ) a >1 0 < a < 1 y
5 TEST : FONCTION LOGARITHME NEPERIEN Nom : Eercice 1 : 1) Soit un nombre réel quelconque et y un réel vérifiant lny = Eprimer y en fonction de : y =. Remarques : 1 e est l unique nombre dont le logarithme népérien soit égal à. ( ln (e ) = ) 2 e ]0 ; + [ donc e est positif strict. 3 La valeur de e est donné par une table de logarithmes ou par une calculatrice. Par eemple la calculatrice donne : e 2 7,389 à 10 3 près ; e 2 = 0,135 à 10 3 près. 4 ln1 = 0 donc e 0 = 1 Eercice 1 : 1 Trouver y tel que lny = 1 2 Trouver y tel que lny = 1 3 Trouver y tel que lny = 0 ( 1 y = e 2 y = e 1 3 y = 1 ) II) PROPRIETES GENERALES. A) Propriété 1 : ( Domaine de définition ) : La fonction eponentielle est définie pour tout IR e eiste quel que soit IR B) Propriétés de base : ( propriétés semblables à celles sur les puissances) Propriété 2 : Quels que soient les nombres réels a et b. e ab = (e a ) b Preuve : ln (e ab ) = ab et ln( (e a ) b ) = b ln(e a ) = ab lne = ab donc ln (e ab ) = ln( (e a ) b ) puis e ab = (e a ) b. Eemples : 1 e 6 = e 2 3 = (e 2 ) 3 2 (e 5 ) 2 = e 5 2 = e 10 Propriété 3 : Quel que soit les nombres réels a et b. e a e b = e a +b Eemples : 1 e 2 e 3 = e = e 5 2 e 2 e 3 = e 2 + ( 3) = e 5 3 e 2 e 2 = e 2 + ( 2) = e 0 =1. Propriété 4 : Quel que soit les nombres réels a et b. e a e b = e a b Eemples : 1 e2 e 3 = e 2 3 = e 1 2 e 2 e 3 = e 2 ( 3) = e 1 =1
6 Propriété 5 : Quel que soit les nombres réels a et b. 1 e a = e 0 a = e a Eemples : 1 1 e 3 = e 3 2 e 2 = 1 e 2 III) DERIVEE : a) Propriété 6 : ( dérivée de e et de e u() ) (2) La fonction eponentielle est dérivable sur IR et sa dérivée est la fonction eponentielle elle même : (e ) = e (2) Si u est une fonction dérivable, alors [e u() ] = u () e u() Preuve : (1 ) soit f() = ln ( e ) =, en dérivant on a f () = ( e ) ( e ) = 1 donc ( e ) = e. b) Eemples : 1 Si f() = 3² e pour IR alors f () = e. 2 Si f() = e ² + 2 sur IR alors f() = e u() où u() = ² + 2 donc u () = 2 donc f () = 2 e ² + 2. IV) SENS DE VARIATION : Propriété 7 : ( variations de la fonction eponentielle ) La fonction eponentielle croît strictement sur IR. Valeurs de + Signe de (e ) = e + + Variations de ep V) LIMITES : 0 ( ites vu au V) ) a) Propriété 8 : ( ites de e en, en + ) La ite de e en + est + : + e = + La ite de e en est 0 : e = 0 la droite d équation y = 0 est asymptote à la courbe en Propriété 9 : Si a IR alors la ite de e quand tend vers a est e a : a e = e a b) Propriété 10 : ( croissances comparées ).
7 e croît plus vite que n importe quelle puissance positive de, c est à dire : Quel que soit n IN-{0} on a : + e n = + en particulier + e = + Quel que soit n IN-{0} n e = 0 en particulier e = 0. VI) TABLEAU de VALEURS et COURBE REPRESENTATIVE : e 0,006 0,36 1 2,718 7,38 148, y L ae (o) est asymptote horizontale VII) EQUATIONS : a) Propriété 11 : ( égalité ) Quels que soient les réels a et b e a = e a équivaut à a = b. Eemples : 1 On cherche à résoudre l équation : e 2 = e + 1 e 2 = e + 1 donc 2 = +1 donc = 1 donc : S = {1}. b) Propriété 12 : ( antécédents de nombres par la fonction eponentielle ). ln() = 1 = e 2,718. Le nombre «e» est appelé la base des logarithmes népériens. Quel que soit le nombre a IR on a : e = a = ln(a) et quel que soit IR : ln(e ) =
8 Eemples 1 Si e = 2 alors = ln 2 0,69 et S = {ln2} 2 Si e = 2, il n y a pas de solution dans IR car e est positif strict et S = VII) INEQUATIONS : a) Propriété 13 : ( inégalité et eponentiel ). Quels que soient les réels a et b : e a > e a équivaut à a > b. ( idem pour <,, ) Eemple : On cherche à résoudre l inéquation : e 2 > e 2. e 2 > e 2 donc 2 > 2 donc 3 > 2 donc > 2 3 donc S = ] 2 3 ; 2 [. b) Propriété 14 : ( antécédents de nombres par la fonction eponentielle ). Quel que soit le nombre a IR et IR e > a > ln(a) ( idem pour <,, ) Eemples : 1 Si e > 2 alors >ln 2 0,69 et S = [ ln2 ; + [ 2 Si e < 2, il n y a pas de solution dans IR car e c) Propriété 15 : ( signe de e ) est positif strict et S = Valeur de 0 + Signe de e + e est positif strict quel que soit IR VIII) EXPONENTIEL DE BASE a Définition 2 et notations : ( de la fonction eponentielle de base a > 0 ) Soit a > 0 : on pose a = e lna La fonction ainsi définie sur IR est appelée fonction eponentielle de base a On a les mêmes propriétés que pour la fonction eponentielle de base e ( a +y = a. a y a, a y = a -y, a - = 1 a, (a ) y = a.y ) a >1 0 < a < 1 y
9
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Exo7. Limites de fonctions. 1 Théorie. 2 Calculs
Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
O, i, ) ln x. (ln x)2
EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
FONCTION EXPONENTIELLE ( ) 2 = 0.
FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R.
Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R. Démonstration : Soit la fonction %:& %&!= &!, elle est dérivable sur R et & R, %. &!= &! = &! = %&! [email protected]
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Fonction réciproque. Christelle MELODELIMA. Chapitre 2 :
UE4 : Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Analyse Chapitre 2 : Fonction réciproque Christelle MELODELIMA Année universitaire 2011/2012 Université Joseph
DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )
DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité
Terminale SMS - STL 2007-2008
Terminale SMS - STL 007-008 Annales Baccalauréat. STL Biochimie, France, sept. 008. SMS, France & La Réunion, sept 008 3 3. SMS, Polynésie, sept 008 4 4. STL Chimie de laboratoire et de procédés industriels,
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction
Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses
DUT Techniques de commercialisation Mathématiques et statistiques appliquées
DUT Techniques de commercialisation Mathématiques et statistiques appliquées [email protected] Université de Caen Basse-Normandie 3 novembre 2014 [email protected] UCBN MathStat
Correction du baccalauréat ES/L Métropole 20 juin 2014
Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)
Probabilités conditionnelles Exercices corrigés
Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.
Mais comment on fait pour...
Mais comment on fait pour... Toutes les méthodes fondamentales en Maths Term.S Édition Salutπaths Table des matières 1) GÉNÉRALITÉS SUR LES FONCTIONS...13 1.Comment déterminer l'ensemble de définition
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
Seconde Généralités sur les fonctions Exercices. Notion de fonction.
Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et
Etude de fonctions: procédure et exemple
Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines
FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Table des matières. I Mise à niveau 11. Préface
Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
Pour l épreuve d algèbre, les calculatrices sont interdites.
Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.
Les équations différentielles
Les équations différentielles Equations différentielles du premier ordre avec second membre Ce cours porte exclusivement sur la résolution des équations différentielles du premier ordre avec second membre
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
F1C1/ Analyse. El Hadji Malick DIA
F1C1/ Analyse Présenté par : El Hadji Malick DIA [email protected] Description sommaire du cours Porte sur l analyse réelle propose des outils de travail sur des éléments de topologie élémentaire
Maple: premiers calculs et premières applications
TP Maple: premiers calculs et premières applications Maple: un logiciel de calcul formel Le logiciel Maple est un système de calcul formel. Alors que la plupart des logiciels de mathématiques utilisent
Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2
Les parties A et B sont indépendantes. Partie A Exercice 3 (5 points) Commun à tous les candidats On considère la fonction A définie sur l'intervalle [1 ; + 00 [ par A(x) = 1-e -0039' ' x 1. Calculer la
Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé
Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H
Nombre dérivé et tangente
Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative
ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.
L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.
SYSTEMES LINEAIRES DU PREMIER ORDRE
SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )
SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII
ALGORITHMIQUE II NOTION DE COMPLEXITE 1 2 Comment choisir entre différents algorithmes pour résoudre un même problème? Plusieurs critères de choix : Exactitude Simplicité Efficacité (but de ce chapitre)
Logistique, Transports
Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,
Mathématiques appliquées à l'économie et à la Gestion
Mathématiques appliquées à l'économie et à la Gestion Mr Makrem Ben Jeddou Mme Hababou Hella Université Virtuelle de Tunis 2008 Continuité et dérivation1 1- La continuité Théorème : On considère un intervalle
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
IV- Equations, inéquations dans R, Systèmes d équations
IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation
Cours de mathématiques Première année. Exo7
Cours de mathématiques Première année Eo7 2 Eo7 Sommaire Logique et raisonnements 9 Logique 9 2 Raisonnements 4 2 Ensembles et applications 9 Ensembles 20 2 Applications 23 3 Injection, surjection, bijection
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Corrigé du baccalauréat S Pondichéry 13 avril 2011
Corrigé du baccalauréat S Pondichéry avril EXERCICE Commun à tous ls candidats Parti I points. L ax ds ordonnés st asymptot à C au voisinag d ; la fonction étant décroissant sur ] ; + [, la limit quand
Fonction inverse Fonctions homographiques
Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
F411 - Courbes Paramétrées, Polaires
1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié [email protected] http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Chapitre 1 Régime transitoire dans les systèmes physiques
Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer
Equations différentielles linéaires à coefficients constants
Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I
C f tracée ci- contre est la représentation graphique d une
TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe
a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b
I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01
SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases
SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout
Séquence 8. Fonctions numériques Convexité. Sommaire
Séquence 8 Fonctions numériques Conveité Objectifs de la séquence Introduire graphiquement les notions de fonctions convees et de fonctions concaves. Établir le lien entre le sens de variation d une fonction
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015
Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k
Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch
Principes de mathématiques 12 SÉRIE DE PROBLÈMES Septembre 2001 Student Assessment and Program Evaluation Branch REMERCIEMENTS Le Ministère de l Éducation tient à remercier chaleureusement les professionnels
U102 Devoir sur les suites (TST2S)
LES SUITES - DEVOIR 1 EXERCICE 1 L'objectif de cet exercice est de comparer l'évolution des économies de deux personnes au cours d'une année. Pierre possède 500 euros d'économies le 1 er janvier. Il décide
Premiers pas avec Mathematica
Premiers pas avec Mathematica LP206 : Mathématiques pour physiciens I Année 2010/2011 1 Introduction Mathematica est un logiciel de calcul formel qui permet de manipuler des expressions mathématiques symboliques.
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
Premier ordre Expression de la fonction de transfert : H(p) = K
Premier ordre Expression de la fonction de transfert : H(p) = K + τ.p. K.e τ K.e /τ τ 86% 95% 63% 5% τ τ 3τ 4τ 5τ Temps Caractéristiques remarquables de la réponse à un échelon e(t) = e.u(t). La valeur
I. Ensemble de définition d'une fonction
Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux
EXERCICES - ANALYSE GÉNÉRALE
EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par
Chapitre 7 : Intégration sur un intervalle quelconque
Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction
W i r e l e s s B o d y S c a l e - i B F 5 T h a n k y o u f o r p u r c h a s i n g t h e W i r e l e s s B o d y S c a l e i B F 5. B e f o r e u s i n g t h i s u n i t f o r t h e f i r s t t i m
LA TYPOGRAPHIE (Norme ISO 31)
LA TYPOGRAPHIE (Norme ISO 31) AVERTISSEMENT : Les exemples en vert sont recommandés, ceux en rouge, interdits. L'écriture des unités de mesure Les unités de mesure s'écrivent en totalité lorsqu'elles -
Circuits RL et RC. Chapitre 5. 5.1 Inductance
Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :
Eercice a Développer les epressions suivantes : A-(-) - + B-0(3 ²+3-0) -0 3²+-0 3+00 B -30²-30+00 C-3(-) -3 + 3-3²+6 D-(-) + ² Eerciceb Parmi les epressions suivantes, lesquelles sont sous forme réduite?
Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles
Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Physique, chimie et sciences de l ingénieur (PCSI) Discipline : Mathématiques Première année Classe préparatoire
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la
Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES
Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable
Annales Baccalauréat. Terminale SMS STL Biologie 2004 à 2009
Terminale SMS STL Biologie 2004 à 2009 Annales Baccalauréat 1. QCM divers 2 1.1. STL Biochimie, France, juin 2009 (8 points) 2 1.2. SMS, Polynésie, sept 2008 (8 points) 2 1.3. SMS La Réunion juin 2008
Tout ce qu il faut savoir en math
Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des
5. Logarithmes et exponentielles
LOGARITHMES ET EXPONENTIELLES 27 5. Logarithmes et exponentielles 5.1. Un peu d'histoire John Napier (1550-1617) John Napier est né à Merchiston Castle, aux environs d'édimbourg. Vers la fin du 16 ème
BACCALAUREAT GENERAL MATHÉMATIQUES
BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la
Ressources pour le lycée général et technologique
éduscol Ressources pour le lycée général et technologique Ressources pour la classe de terminale générale et technologique Exercices de mathématiques Classes de terminale S, ES, STI2D, STMG Ces documents
Fonction quadratique et trajectoire
Fonction quadratique et trajectoire saé La sécurité routière On peut établir que la vitesse maimale permise sur une chaussée mouillée doit être inférieure à celle permise sur une chaussée sèche La vitesse
Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme
Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée
EXAMENS D'ADMISSION Admission RÉCAPITULATIFS DES MATIÈRES EXAMINÉES MATIÈRES Préparation en 3 ou 4 semestres Formation visée Préparation complète en 1 an 2 ème partiel (semestriel) Niveau Durée de l examen
